

An approach to automating software product quality

assurance using templates for all levels of the

testing pyramid

Dmitriy Cherepovskiy

Institute of Computer Science and
Technology

Peter the Great St.Petersburg
Polytechnic University

Saint – Petersburg, Russian Federation
gdk1743@gmail.com

Pavel Drobintsev

Institute of Computer Science and
Technology

Peter the Great St. Petersburg
Polytechnic University

Saint – Petersburg, Russian Federation
drobintsev_pd@spbstu.ru

Abstract — software product quality assessment is an

important activity in the software development lifecycle. Testing

involves running a program on a specific set of test data and

comparing the visible results with the expected results.

Nowadays, IT companies are increasingly switching from

manual testing to automated testing. Automation brings many

benefits that speed up test execution time, increase the accuracy

of the testing process, and minimize software support costs.

However, the support and development of automation tools is

not so simple and requires a certain qualification in the field of

development and testing. In order to save money and time,

SDET (Software Development Engineer in Test) specialists are

increasingly developing tools that simplify the writing and

support of automated test cases. This article presents a

framework that solves the problem of different understanding

of test design among the project team and provides detailed

reporting on all types of automated tests.

Keywords — framework, automated tests, templates, reporting.

I. TEST PYRAMID

A key concept in the automation of product quality
assessment is the testing pyramid described by Mike Cohn.
[1,2] The testing pyramid shown in Fig. 1 consists of three
layers, which are arranged depending on the number of test
cases and the goals of the testing.

• User Interface Tests – this type of test is responsible
for the correct response of the system to the actions of
the end user.

• Service Tests – this type of tests checks the
availability of the web services that the application
accesses. Most often, working with them is organized
using the API requests.

• Unit Tests – this type of tests checks the behavior of a
function or method in the source code.

When writing auto-tests, experts try to adhere to the

basic rules that come from the testing pyramid:

Test execution speed as well as the tested objects isolation
both decrease from the bottom up (from Unit to UI).

This is due to the simplification of support for automated

cases, as well as optimization of the speed of execution of a
certain test set.

When using the concept of the testing pyramid, most often

for each type of test, its own reports are compiled, which is
created by the test coverage analysis or by comparison of the
number of written tests with the test base. This work is quite
time-consuming and with a large number of test scenarios,
some of them may be skipped or incorrectly compared with
automated tests during manual analysis. The article describes

a tool that generates testing reports at all levels of the pyramid

and provides it to the project team in a single format.

II. TEST-DRIVEN DEVELOPMENT

 Within TDD [3], both testers and developers participate in
writing auto-tests at all levels of the testing pyramid [4], since
most tests are written at the initial stage of software
development. This process is based on converting the
requirements for the software product into test cases before
the software is fully developed. An example of a TDD
development cycle is shown in Fig. 2.

It is when writing auto-tests and at the refactoring step

that the problem of different understanding of test design is
clearly visible, by developers who strive for the highest
percentage of code coverage [5] and by testers who are
responsible for the quality of the product and think through
test scenarios to test the main functionality [6]. To solve this
problem, STED specialists’ resort to using pre-developed

tools-frameworks, with a ready-made architecture and the
structure of automated tests. However, re-development of the
framework and training the specialists involved in writing
tests is very expensive work, which requires a huge amount
of time and effort. To solve this problem, the article describes

Fig. 1 Testing pyramid

Fig. 2 Test-driven development cycle

a framework, the feature of which is the use of templates
based on design patterns in test automation [7].

III. TEST AUTOMATION FRAMEWORK

Currently, testing automation is treated as a project under
development, which should easily adapt to several products by
any software company the company, for this it is necessary to
consider all the nuances of testing software products, to this
end, ISTQB (International Software Testing Qualifications
Board) has described the general architecture of the test
automation tool [8], which are shown in Fig. 3.

• Test General Layer – a layer that supports manual or
automatic design of test suites and test cases. Within
this level of test automation, the language for writing
tests (Python/Java/Gherkin) is selected.

• Test Definition Layer – the layer responsible for
implementing the test, supporting specific test suites
and test cases, for example, it describes templates or
test principles.

• Test Execution – the layer responsible for finding and
running tests, collecting reports and logs, and
integrating with external tools.

• Test Adaptation Layer – the interaction layer with the
system under test which includes:

o Abstraction over GUI technologies: Web,
Mobile, Desktop, Image Recognition.

o Abstraction over communication protocols:
HTTP, AMQP, SSH, JDBC, etc.

In this article, special attention is paid to the layer that
includes testing reporting (Test Execution) and the layer
responsible for implementing tests (Test Definition).

IV. ANALYSIS OF EXISTING TESTING AUYOMATION TOOLS

 To solve the problems mentioned earlier, the most popular
tools for testing automation [9-12] where analyzed, the results

of the analysis are shown in Table 1.

TABLE I. RESULTS OF THE ANALYSIS OF TOOLS

Tools Selenium Katalon

Studio

UFT Test

Complete

Positive

aspects

1. Support

for a large

number of

programmi

ng

languages

2. The tool

is provided

free of

charge

3. The tool

is cross-

platform.

1. Simplified

script writing

2. The tool is

free of charge

3. CI Support

4. Structure of

the auto test

project

1. A wide

range of

tested

applications

2.

Simplified
test cases

writing

1. Support

for a large

number of

programmi

ng

languages

2. A wide
range of

tested

applications

Negative

aspects

1. Support

for Web

Apps only

2. Lack of

templates/st

ructure

1. Support for

a small

number of

programming

languages

2. Lack of
detailed

reports

1. The tool

is paid for

2. Support

for a small

number of

programmi

ng

languages

3. Lack of

detailed

reports

4. The tool
is not cross-

platform

1. The tool

is not cross-

platform

Among the main disadvantages of the considered tools, the
most important ones can be identified:

1. Problem with automatic test report generation.

2. Lack of cross-platform compatibility.

3. Support for a small number of languages.

We attempted to design and implement a new testing
automation tool to overcome problems mentioned above.

None of the considered tools provide testing across the

entire test pyramid, which is a significant disadvantage

because these tools are designed for use only by the testing
team.

V. IMPLEMENTATION DESCRIPTION

The developed tool for testing automation is based on the
following scheme, shown in Fig. 4.

Fig. 3 General test automation architecture

The developed framework integrates the structure and
templates necessary for writing tests into the application
source code, which is then filled in by team members. At the
stage of building the application, automated tests are
performed, as a result of which reports on all types of testing

are generated based on the received data. The report is
deployed to a web server, and a link to view it is sent to the
project team.

 At the initial stage, a person with knowledge and skills in
all areas of development, testing, and the product domain
creates a project in the user interface of the tool, views and
makes changes to standard automated testing templates
stored in the database, or imports pre-prepared templates into

the project (Fig. 5.). Templates include the following:

TABLE II. CONTENT OF AUTOMATED TESTS TEMPLATES

Unit Tests Service Tests User Interface Tests

1. Automatic

generation of test

structure.

2. Connecting the

main libraries and

framework needed

for writing tests.

3. Arrangement of

annotations in the test

source code.

4. Specifies which

methods to test.

1. Automatic

generation of the test

structure.

2. Connecting

libraries and

frameworks.

2. General functions

required for tests

(helpers).

3. Creating data in

the application

database for tests.

4. Environment

variables for the test

environment.

5. A class with query

methods (a wrapper

for the API).

6, Arrangement of

annotations in the test

source code.

1. Automatic

generation of the test

structure.

2. Classes with

common methods for

simulating users.

3. A class that

describes WebDriver

(a wrapper over

Selenium [9]).

4. Arrangement of

annotations in the test

source code.

5. Example Page

Object Model [7].

6. Create data in the

application database

for tests.

Environment

variables for the test

environment.

After filling in the templates, the framework generates a
test structure and creates a project to automate testing. The
scheme of the project generator is shown in Fig. 6.

In the generated project, a team of developers and testers
write tests according to prepared rules and run them on the
desired part of the development process through Test Runner
– bash scripts that are responsible for running tests on
different environments and with different settings. Through
the API of the test base-Client for Test Base, test plans are

automatically analyzed and checked with automated cases by
name. Later, information about the test coverage is stored in
temporary files.

 During the test run, the data about the passing of the tests
is also stored in temporary files, Generator Reports generates
a report on all the collected information. At the final stage,
Worker Reports raises the web server and deploys the report
on it. The link to the report is sent as an email to the email
address specified in the mailing list via Mail Sender. A
detailed implementation diagram of the module for running
tests with report generation is shown in Fig. 7

 To create reports on the coverage of automated testing, use
the test database, which contains the test IDs or test names.
Using the API (Application Programming Interface) provided
during the development of the test tool, we get the number of
all test cases in the test plan and the number of automated test
cases. Based on the data obtained from the test database, we
calculate the percentage of test coverage, for example, for the
user interface. For unit tests, coverage information can be
taken from temporary files using the flag to evaluate coverage
when running a test run. To display the report, we used the
most popular Allure framework [13], which can be adapted to
your own needs. When creating a report, a pre-prepared json

Fig. 5 The general scheme of the developed framework

Fig. 6 Project generator diagram for test automation

Fig. 7 Diagram of the module for running auto-tests and generating a test

report

Fig. 4 Example of an interface for creating or editing templates

file with coverage data is used [14]. The data from the file is
then simply inserted into the original report template. An
example of the report is shown in Fig. 8.

VI. CONCLUSION

In conclusion, it is worth noting that this tool is
designed for easy integration into the application with the
possibility of further refinement of reporting and test
templates. The main advantage of the tool is its flexibility and
the ability to use it within different projects with different

processes, due to the ability to develop automated tests not
only by the testing team, but also to provide an opportunity
for developers to participate in the testing process. Using this
framework will reduce the development time of automated
tests at an early stage of software application design,
eliminate the problem of frequent code refactoring, and

provide complete, automatically collected product quality
reporting to all stakeholders.

In the future, we plan to provide an opportunity to

write automated scripts to specialists who do not have
programming skills. Adding modules to the tool to bind the

prepared templates to specific commands. This feature will
speed up the testing process by allowing manual testers,
analysts, and managers to write and edit test cases
themselves.

REFERENCES

[1] H. Vocke, "The Practical Test Pyramid", February 26, 2018

[Electronic resource]. Available in:

https://martinfowler.com/articles/practical-test-pyramid.html.

[2] Mike Cohn "Success with Agile: Software development using Scrum

(Addison-Wesley Signature Series)" - Moscow: "Williams", 2011. - p.

576. - ISBN 978-5-8459-1731-7.

[3] A. Xenakis, F. Foukalas «Cross-layer aware TDD Frame adaptation

for FDD/TDD carrier aggregation in LTE-A System » ACM

International conference proceeding series, DOI:

10.1145/3139367.3139370

[4] Y. Wang, «Test Automation Maturity Assessment», 2018 IEEE 11th

International Conference on Software Testing, Verification and

Validation (ICST), 2018.

[5] Voinov N. V., Drobintsev P. D., Kotlyarov V. P., Nikiforov I. V.,

Selin I. A., Test set generation based on control flow, Systems and

computer science tools. 2015. Vol. 25. No. 1. pp. 54-73.

[6] Voinov N. V., Drobintsev P. D., Kotlyarov V. P., Nikiforov I. V.,

Analysis of the coverage of the UCM model with test scenarios,

systems and computer science tools. 2015. Vol. 25. no. 1. pp. 74-88.

[7] N. Adimenkov, "Design Patterns in Test Automation," in

HEISENBUG, 2017.

[8] ISTQB «Cert certified tester advanced level syllabus – test

automation engineer», 21 ОСТ. 2016 Available:

https://www.istqb.org/downloads/send/48-advanced-level-test-

automation-engineer-documents/201-advanced-test-automation-

engineer-syllabus-ga-2016.html

[9] Documentation "The Selenium Browser Automation Project"

[Electronic resource]. Available:

https://www.selenium.dev/documentation/en/.

[10] Documentation "The Katalon Studio" [Electronic resource] Available:

https://docs.katalon.com/katalon-studio/docs/overview.html

[11] Documentation "Unified functional testing" [Electronic resource].

Available in: https://admhelp.microfocus.com/uft/en/15.0-

15.0.2/UFT_Help/Content/User_Guide/Ch_UFT_Intro.htm

[12] Documentation "The Test Complete" [Electronic resource] Available:

https://support.smartbear.com/testcomplete/docs/

[13] Documentation "Allure" [Electronic resource] Available:

https://docs.qameta.io/allure/

[14] Eroshenko A., "Allure 2: New generation test reports" [Electronic

resource] Available: https://habr.com/ru/company/jugru/blog/337386/

Fig. 8 Example of a report with coverage assessment

