
Review of static analyzer service models
Maxim Menshikov

Department of Software Engineering
Saint Petersburg State University

Saint Petersburg, Russia
info@menshikov.org

Abstract—The static program analysis is gradually adopting
advanced use cases, and integration with programming tools
becomes more necessary than ever. However, each integration
requires a different kind of functionality implemented within
an analyzer. For example, continuous integration tools typically
analyze projects from scratch, while doing the same for code
querying is not efficient performance-wise. The code behind
such use cases makes “service models”, and it tends to differ
significantly between them.

In this paper, we analyze the models which might be used
by the static analyzer to provide its services based on aspects
of security, performance, long-term storage. All models are
assigned to one of the groups: logical presence (where the actual
computation is performed), resource acquisition, input/output,
change accounting and historic data tracking.

The usage recommendations, advantages and disadvantages
are listed for each reviewed model. Input/output models are
tested for actual network throughput. We also describe the model
which might aggregate all these use cases. The model is partially
evaluated within the work-in-progress static analyzer Equid, and
the observations are presented.

Index Terms—static analysis, integration, service model, re-
view, classification.

I. INTRODUCTION

Static analyzers are widely used in the industry for dif-
ferent purposes: defect search, verification, linting, quality
assurance, code refactorings [1]. Most of these use cases can
be implemented via a standard sequential model. The more
projects are created, the more efforts are put into developing
lifelong support tools. One example is clangd [2], the tool
acting as a language server [3] providing syntax highlighting,
code inspections and refactorings. We believe that analysis
tools have the potential to be used by a larger audience
comprising not only engineers but also architects, technical
management, quality assurance staff. Partially this extended
audience uses analyzers nowadays, but mostly to understand
code quality, while analyzers may provide more kinds of
information. Currently, static analyzers are either isolated or
are running locally. That limits the possibilities of the analyzer.
To become agnostic to the way the analyzer is called, tools
have to adopt more user scenarios and service models.

One way to approach this issue is to research how are
analyzers used and in which circumstances. Combined with
the technical review, classification of these service models
would show the positive and negative aspects of each model.
The paradox is that each model is so interconnected with the
underlying architecture that it is hard to judge which entity is

primary and which is secondary. By reviewing service models,
we review the analysis architectures as well. Working out a
way to support all models contributes to developing a more
unified analyzer structure, improving user experience [4], and,
ultimately, may lead to wider adoption of static analysis tools.

The goal of this paper is to classify service models that
can be used by static analyzers and analyze their positive
and negative networking, performance and other aspects. The
novelty is that these models are analyzed towards application
to analysis tools concerning an extended set of parameters and
are combined in one model.

This paper is organized as follows. In section II, the
literature is examined. In section III, we review all models,
including logical presence models (section III-A), resource
acquisition (section III-B), input/output (section III-C), change
accounting (section III-D) and historic data tracking models
(section III-E). The most widespread models are wrapped in
section IV. Then, in section V, we define what’s required for
service model agnostic static analyzers. Our model-agnostic
static analyzer, as well as some of the models, are tested and
discussed in section VI.

II. RELATED WORK

Most works in the static analysis field explore improvements
that can be applied to the analysis algorithms. The effects of
service models are not typically reviewed. Common software
architectural patterns [5] and patterns for data-intensive appli-
cations [6] still apply to static analyzers.

As for classification, [7] bases taxonomy on rules, technol-
ogy, supported languages, configurability, etc. This separation
is developer-centric, while our research is focused on the
technical effects of implementation. A different approach is
explored in [8], in which authors introduce a notion of de-
velopment context comprising local programming, continuous
integration and code review contexts. We expand further on
it by exploring the service model from an analyzer’s point of
view, such as when handling incremental input, performing
time-limited operations for IDE, etc.

The research [4] focuses on finding an answer to the
question why static analysis tools are not widely adopted.
One of the concerns presented by authors is that tools don’t
integrate into existing development processes, which intersects
with our implicit thesis that industry needs more sophisticated
service models. The mentioned research [8] also confirms that
developers tend to avoid using the same tools for different



development contexts, which means that a single analysis tool
might benefit from employing more service models.

III. MODELS

Any software may be used via different service models.
In this research, we review models based on the influence on
software cooperation. Namely, the physical location influences
the distance between the analysis requester and the analysis
executor. In modern networking [9], such a distance is logical
rather than physical since server and client might reside in
the same host, so we define such models as logical presence
models.

The second question is how are resources needed for analy-
sis, such as input sources, headers and libraries, are retrieved.
These models form a group of resource acquisition models.

The third problem is the propagation of input parameters
from the requester to the server and the delivery of results
back. This is about input/output models.

The fourth question is the attitude of the model to incre-
mental analysis: change accounting models.

The fifth issue is similar to incremental analysis: the han-
dling of historic data, such as revisions in version control
systems.

In the next subsections, all these model groups are reviewed.

A. Logical presence models

The first theoretical model is based on where the actual
computation is done. As mentioned, the location of the analy-
sis executor is mostly logical rather than physical in presence
of network namespaces (containers) and virtual machines. All
reviewed models are summarized in Table I.

• Local computation.
The model is widely used in static analyzer projects. In
that case, the static analyzer is located on the machine
requesting the analysis. The examples are LLVM and
Clang [10], Svace [11], cppcheck [12] and other tools.

– Security: by default, the analyzer has access to all
the sources and has an access to the Internet, which
lowers the security in general. Moreover, access
to the most data located on the host is possible.
Research like [13] also stresses that the employees of
companies fail to comply with security regulations.
In security-critical cases, it is important to limit avail-
able file system locations by tools such as AppArmor
and SELinux [14], disable internet access for the
application.

– Networking: unused except for loopback communi-
cation or inter-process communication, which imply
no use of networking hardware.

– Performance: developer work stations tend to have
limited resources, so performance & concurrent work
is limited. The solution involving the use of server-
grade performant work stations is not economically
effective.

– Long-term storage: storing artifacts for a long time
is not feasible on developer work stations, except for

the case when network file systems, such as NFS [15]
or SSHFS [16], are involved.

• Isolated computation.
The schema is used by modern Continuous Integration
(CI) tools, such as Jenkins [17], SonarQube [18], Cover-
ity [19]. The computation is moved to a designated server
that has access to committed input sources.

– Security: CI has all the data required to con-
strain allowed file system locations, for example,
via SELinux, AppArmor [14]. This schema can
be achieved using containerization platforms like
LXC [20], Docker [21]. Even though containers have
several weak points [22], [23] and setting them up
correctly requires an understanding of parameters
and a modern kernel, exploiting such errors is not
easy. Going forward, a designated virtual machine
without direct Internet access, built solely for the
static analysis of one project, is the most secure
solution.

– Networking: such systems typically create
workspaces by downloading repositories from
scratch, causing significant traffic flows. However,
this operation mode is usually network hardware-
friendly since, as a rule of thumb, such servers have
good network adapters and are connected to central
switches by wire, so they are close to the repository
server.

– Performance: the raw power needed for computa-
tions is offloaded to a server, reducing the load on
developer stations to zero. Incremental operation is
usually impossible due to the way workspaces are
prepared and discarded.

– Long-term storage: storing analysis artifacts is
mandatory because users might need to check results
later. This shouldn’t have a significant influence
on disk space (since such servers have designated
storage, in general) and analysis runs sporadically.

• Remote computation with resource acquisition.
The model implies that the computation is done on
a separate server, but resources are acquired from de-
veloper machines via various communication channels.
Clangd [2] and other language servers [3] present tools
that are not technically recognizable from static analyzers
but provide a similar set of services. We present the model
in [24], but in this research the model is evaluated from
a non-architectural perspective.
The following characteristics are seen in this model:

– Security: derived from isolated computation model,
but data leaks are possible on the way from a local
machine to a server [13]. This can be solved by using
secure communication with certificate pinning.

– Networking: the model in which the workspace is
obtained from the user directly is inefficient in the
case of large projects. For example, Linux 5.10.261

1https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.10.26.tar.gz

https://cdn.kernel.org/pub/linux/kernel/v5.x/linux-5.10.26.tar.gz


TABLE I
LOGICAL PRESENCE MODELS & THEIR PROPERTIES

Model Security Data leak risk Stable connection Network load Environment Performance Score
Local computation Low (1) High (1) Unneeded (3) None (3) Preserved (3) Low (1) 12
Isolated computation High (3) Low (3) Unneeded (3) High (1) Not preserved (1) High (3) 14
Remote computation High (3) Medium (2) Required (1) Medium (2) Manageable (2) High (3) 13

is 1GB (174MB in tar.gz format), which would take
80 seconds (14 seconds for compressed format) on
a perfect 100 Mbps link. In the case of compressed
format, it takes 6 seconds to unpack on Intel Core i7-
7700HQ based laptop with Samsung 980 Pro SSD,
Ubuntu 20.04. Compressing to this format takes 30
seconds on the same host. That means that, if the
workspace is obtained from the user, the complete
transmission time is 80 seconds or 30 + 14 = 44
seconds (considering the receiver a more advanced
host with higher unpack performance). The link is,
however, usually not perfect: for example, WiFi links
are ailing from network congestion [25], decreasing
available bandwidth even further. The viable option
is collecting changes from the revision known to
the static analysis host (this option is discussed in
section III-D).

– Performance: the computation is offloaded to the
high performant server, with no load to developer
stations. The incremental operation is possible in
case snapshots of the internal state are stored by the
static analysis host.

– Long-term storage: storing analysis artifacts is also
mandatory, the influence on sparse runs is the same
as for isolated computation, however, significant
disk space might be consumed by per-developer
incremental runs. As a result, the recommendation
is to prepare a mechanism for discarding old per-
developer analysis results.

B. Resource acquisition models

All resource acquisition models are reviewed in Table II.
• Local resources.
• Shared repository.

These two models just define the typical schemas used in
software engineering. The local resource model is used
in all tools running locally, such as compilers, static
analyzers. The shared repository model is enforced by
continuous integration environments.

• Preprocessing.
In this schema, the input is preprocessed locally and the
analyzer gets a preprocessed version for further analysis.

– Input size: preprocessed definitions are very large.
The file with only <iostream> header included
and an empty main() is 49 bytes long, while the
preprocessed version is 751954 bytes long (GCC
9.3.0 on Ubuntu 20.04).

– Analysis: the problem might be the preprocessor’s
output is not compatible between the requester and
analyzer hosts. This is better seen if source and
target hosts have different operating systems and
toolchains.

If it is clear that the compiler used on both localhost
and analysis host matches or at least is compatible, and
the analysis runs on one input file at most, then this
schema might be a simple and cost-effective solution for
the implementation of remote analysis.

• Pre-tracing of dependencies.
The core idea is to perform tracing of all needed files
before sending an analysis request. This process can be
not straightforward. Tools like Build EAR [26] intercept
commands passed to compilers, but don’t provide lists of
all needed files. This tool can be used in conjunction with
utilities tracing system calls to get this information (such
as strace2).

– Input size: reasonable since it includes only needed
files.

– Analysis: requires integration of virtual file system
with pre-downloaded files into parsing stage.

This model is similar to preprocessing, however, files
are packed into request individually. This schema is
less problematic than preprocessing because files are not
present in the request twice or more times, reducing the
cost of networking transfer.

• Virtual network file system.
A virtual network file system is a technique that can be
used to acquire resources from a source host on-demand.
It can be used through the well-known implementation
such as NFS [15] and SSHFS [16], or via a custom
protocol. This schema has the following properties:

– Input size: optimal because taken on demand (in case
files are cached on a server).

– Analysis: requires integration with the parsing stage.
This model reduces the cost of analysis in case of
early termination which may occur if an input has
obvious syntax defects.

– Networking: needs a stable connection between a
local host and an analysis host. It can be problematic
considering that a significant part of hosts is behind
Network Address Translation (NAT) [9] gateways
and thus doesn’t have a fixed IP. In such systems,
the hosts need to use keep-alive techniques to avoid

2https://github.com/strace/strace

https://github.com/strace/strace


TABLE II
RESOURCE ACQUISITION MODELS & THEIR PROPERTIES

Model Input length R&D efforts Preparatory work Stable connection Compiler compatibility Score
Local resources Optimal (3) Low (3) None (3) Unneeded (3) Full (3) 15
Shared repository Moderate (2) Low (3) None (3) Unneeded (3) Full (3) 14
Preprocessing Large (1) Low (3) High (1) Unneeded (3) Absent (1) 9
Pre-tracing Moderate (2) Moderate (2) High (1) Unneeded (3) Full (3) 11
Virtual file system Optimal (3) High (1) Low (3) Required (1) Full (3) 11

early preemption of entries in gateway NAT tables.
Also, the use of well-known implementation may
exhibit the problem of passing traffic through in case
the static analysis client is behind NAT or a firewall
and the implementation uses the pipe in the direction
from server to client.

C. Input/output models

All input/output models are reviewed in Table III.
• Command line interface model. This model is

widespread in the industry. The input is provided with
input arguments and input stream, the output — with the
result code and stdout/stderr stream.

• A stateless client/server model: the input is the request
to the server, the output is a response to the request.

– Networking: this model implies that after the request
is sent, the response must follow after analysis is
done, not necessarily to the same request (might be
a status request).
The problem with this model is that notifications
need a side-by-side implementation (i.e. a communi-
cation channel directed towards the client). Without
notifications, the status polling is redundant, but not
harmful due to small absolute packet sizes.
A significant performance issue in real conditions
may occur if a large amount of input data is sent
over short-living TCP sessions. The reason is that
most home-grade gateways accelerate network traf-
fic only if the session reaches a specific number
of packets (e.g. 5). Shorter sessions may appear
unaccelerated and may be processed via CPU, not
reaching a maximum practically performance (in the
author’s experiments with 1gbit links, the accelerated
performance tops at 940 Mbps, while unaccelerated
traffic reaches 50 Mbps, at most).

– Practical aspects: the approach can be implemented
within the REST paradigm, which has many avail-
able implementations for any platform.

Practically, this limits the usage of the model to short
requests. That’s the reason the model is used within Con-
tinuous Integration systems, data management cases (such
as the configuration of services like Jenkins, GitLab;
manipulation of objects in bug trackers, etc). In other
cases (e.g. compiler support case), this paradigm is not
efficient.

• A stateful client/server model with or without notifi-
cations: the input is a series of requests to the server, the
output is a series of responses from the server.

– Networking: this model is efficient regarding net-
working hardware in the case of long-term TCP
sessions. Most traffic will be accelerated, so the
maximum performance will be demonstrated.

– Practical aspects: the model requires a custom state
machine, notification system. The development cost
is higher.

• A streaming model is a variation of the client/server
model, so the throughput is nearly the same. The input
seen on the server is dynamically formed by requests, the
computation is performed for currently known data.

D. Change accounting models

• Fixed revision.
The analyzer pulls the specific version of a source. If it is
needed to re-analyze some part of the code, the complete
analysis is performed.

– Time: complete execution every time.
– Analysis: requires no special handling from the ana-

lyzer’s side.
– Networking: download of the complete repository

might take significant time, however, this process is
unconditionally networking hardware-friendly.

This schema is suitable for Continuous Integration pro-
cesses, but long analysis time blocks the interactive use
cases.

• Incremental updates.
The analyzer builds the model of a program on the first
run. If the user decides to reanalyze a file or two, changes
are obtained incrementally.

– Time: slow once, fast on incremental updates. How-
ever, in the case of global changes, the analysis time
might increase dramatically, reaching the complete
time or even overcoming it due to preliminary de-
pendency graph analysis.

– Analysis: puts additional requirements, such as dis-
cardable state that is trivial to invalidate when a part
of dependency graph changes. Dependent parts of
the state should be rewritable.

– Networking: the difference between projects typi-
cally has negligible size compared to complete repos-
itory, so the process of obtaining differences is net-



TABLE III
INPUT/OUTPUT MODELS & THEIR PROPERTIES

Model R&D efforts Stable connection Network load Notifications Score
CLI Trivial (3) Unneeded (3) None (3) Unneeded (3) 12
Stateless client/server Trivial (3) Unneeded (3) High (1) Impossible (1) 8
Stateful client/server Moderate (2) Required (1) Low (3) Possible (3) 9
Streaming model High (1) Required (1) Low (3) Possible (3) 7

working hardware-friendly, especially in the case of
one TCP session or the same UDP source/destination
addresses and ports.

• Daily updated global revision with incremental user-
defined changes.
A typical use case would be that the analyzer runs every
night on the latest revision, but if the user requests the
analysis of a diverging source, the “latest” revision is
forked and only differences are reanalyzed.

– Time: this schema improves analysis performance for
developers running the analysis on a large codebase
with minor differences.

– Analysis: the incremental schema requirements plus
scheduling of daily updates, temporary storage of
analysis artifacts.

– Networking: developers typically don’t change the
large codebase significantly. Because of that, the
difference is ought to be minor, and the network load
is the same as for the incremental schema.

If the analysis state is transferrable, the developers might
cache the state and run the analysis locally. This is
possible for some analysis kinds, such as code queries,
dependency analysis.

E. Historic data tracking models

Some analyzers might take advantage of historic data. In
addition to the usual code metrics changing over time, the
practically useful case would be to narrow down a revision
with a specific defect not tracked by analyzers (i.e. logical
mistake)

• A model without tracking of historic data.
– Analysis: trivial to implement compared to a model

with tracking.
– Data storage: only needs one specific revision, no

extra data is needed.
• A model with complete snapshots of historic analysis

data.
– Analysis: requires meta run of analysis over two or

more revisions, which complicates the structure of
analysis.

– Data storage: the analysis data for all revisions in
question should be collected.

• A model with differential snapshots of historic data.
– Analysis: more complicated compared to the model

with complete snapshots, additional invalidation of

data is needed. That also requires maintenance of
algorithms for propagating analysis data differences,
which may make the complete task difficult.

– Data storage: analysis can be done once, and then
only analysis database differences can be stored.

Model without tracking is trivial to implement. Models with
snapshots may support use cases in which historic data is
important, but it comes with a cost of extra time, data storage
(high in the model with complete snapshots) and development
complexity (high in the model with differential snapshots).

IV. COMBINATION SHORTCUTS

After review of basic models, it is obvious that their
combinations are already used worldwide:

1) Local (incremental) model — local computation, local
resources, command line or server model with a fixed re-
vision (incremental updates) and no tracking of historic
data.

2) Continuous Integration model — remote computation,
source repository, stateless client/server model with cus-
tom notifications, fixed revision, no tracking of historic
data.

V. CONSIDERATIONS FOR SERVICE MODEL AGNOSTIC
STATIC ANALYZERS

Considering suggested use cases, it is possible to form
suggestions on what should be done in a static analyzer to
support more these models (Fig. 1).

Logical presence models and input/output models are tightly
coupled. A service model agnostic analyzer should have
an abstraction layer for the complete execution — the job
subsystem.

Resource acquisition methods imply that there must a
separate abstraction layer for retrieving file data from different
hosts.

Incremental change support implies that objects must be
addressable in a unified and interchangeable manner, so that
older object versions might be discarded, while new versions
added as-is. This should be done right after retrieving data and
remote resources.

To facilitate status polling, incremental change handling
and historic data tracking, the output should be saved to
data storage, accessible for extended periods. Historic data
tracking also implies having a subsystem of meta-analysis,
which allows reviewing deltas between revisions.



Fig. 1. Possible schema for model agnostic static analyzer

VI. TESTING AND DISCUSSION

A. Characteristic-based evaluation

The characteristic-based evaluation of models was per-
formed in tables I, II and III. For each characteristic, a numeric
value ranging from 1 (worst) to 3 (best) had been chosen. The
total score for each model is written in the column “Score”.
This evaluation is partially subjective but had been discussed
with a few experts in relevant domains.

The results are as follows. The best model among logical
presence models is an isolated computation, which is con-
firmed by its popularity in the software engineering industry.
The second model is a remote computation with resource
acquisition. It combines the high performance of isolated
computation with manageable customization to comply with
the environment and use cases. The third model is a local
computation. The problems of this model lie in practically low
performance and high data leak risk (the developer machine
is likely to be insecure). However, if this risk is diminished
by using a secure operating system and working firewall rules,
this model would share the score with remote computation.

Among resource acquisition models, classical local and
shared repository models are the best. When considering
models for non-classical use cases, pre-tracing of dependencies
and virtual file system are better choices than preprocessing
method. But, in practice, preparatory work for tracing might be
time-consuming, making the provision of thin clients hard. So,
in the author’s opinion, the virtual file system is the preferred
choice for non-classical use cases.

For input/output models, the choice is related to the use case
even more than for previous models. However, when choosing
among networking models, stateful client/server communica-
tion is preferred as it reduces network load, provides notifica-
tions (reducing polling) while keeping R&D efforts moderate.

The preference between change accounting models is un-
ambiguous. The incremental model supports more use cases,
and at the same time, the daily updated revision enhances it
with much better performance in common developer routines.

Historic data tracking stays a little apart from this compar-
ison. The more data is processed, the more time is taken and
the more useful data is carved, therefore it is hard to name the
preferred model.

B. Evaluation in static analyzer project

The considerations for service model agnostic analyzers
were used as a basis for our project — Equid static ana-
lyzer [27]. We emphasize that the project is not following
the schema in all ways since there is a lag between design
and actual implementation. Our implementation includes a
frontend library — the part that manages jobs for a specific
workspace. The frontend library is used by the command
line interface and server binary, both of them construct the
workspace and fill it with job types, paths and environment
information. The job types define the semantic visitors that
are invoked at the end of analysis stages, during meta run,
and have an impact on the selection of verification rules. The
frontend library starts the analysis and provides an interface
to get the current status or stop execution if needed. After
finishing all jobs related to a specific run, the user might obtain



the result of the analysis in all requested forms. The supported
forms are defects, dependency analysis, call graphs, language
identification.

The incremental analysis model lags behind the design. The
support of incremental analysis is built into an object database,
and it is possible to discard old objects and then drop new
objects in. There is a saved dependency graph that can be
used to invalidate parts of the analysis run. However, the
incremental analysis support is not finished yet and we can
only experiment with it. In our testing, if the incrementally
changed file makes 10% of input size, then the time to
recompute it will match 20.07% (on average) of time taken for
the whole input due to the need to invalidate the map. In case
of excessive dependencies between updated and untouched
files, the computation might take up to 40% of the original
analysis time, although it is possible to design a case that will
invalidate the complete program model.

The supported mediums are JSONRPC3 and binary stream-
ing over TCP with TLS enabled. These mechanisms are
implemented in a straightforward manner and are adequate
considering networking and security requirements.

During the evaluation, we have found that the optimal
model effectively falls back to trivial software architecture if
some functionality is not needed. When they are needed, extra
stages get enabled and start adding expected diagnostic data
to reports. That is the reason why it is possible to experiment
with unfinished functionality in Equid’s architecture. This is
an advantage of the model.

The other advantage is a clear decomposition between the
core and the service. The analysis functionality is a black box
for the service. The service part provides input arguments,
takes notifications provided by the core, passes streaming data
to the analyzer and reuses the output as many times as needed,
however, those are only extension points available. As seen in
the schema, the main part remains sequential, therefore, still
simple for development.

There are certain problems. While the simple design
matches the complex architecture, imminent conditional jumps
still make performance penalties. Also, it is harder to maintain
the support of these service models, though this issue may be
neglected by keeping the core as minimal as possible.

C. Network performance

As for network performance numbers, we performed testing
of:

• Stateless polling versus notification model. In the case of
using exponential backoff variation (5, 10, 20, 40, 80, 160
seconds at most), there are around 294 bytes per request
and 210 bytes per response. In the case of notifications
(Table V), a response is around 140 bytes and keepalive
packets are around 70 bytes (Analysis start/destroy is not
considered for the case of polling, TCP session instanti-
ation/finalization is not considered for notifications). The
time difference is large between polling and keepalive

3https://www.jsonrpc.org

models, but in absolute numbers, these differences don’t
impact allocated bandwidth significantly and thus might
be ignored.

• Data transfers over WiFi (Table VI). A dual-band home
gateway based on MediaTek platform with IEEE802.11n
and IEEE802.11ac bands was used for testing. The test
server is connected to the gateway over the 2.4GHz band
(actual frequency is 2.412GHz), the client is connected
to the gateway over the 5GHz band (actual frequency is
5.3GHz). For single-thread TCP performance, the data
has been sent in the biggest possible packets according
to MTU/MRU in the network. For SSHFS, the data has
been sent file by file. The actual performance numbers
demonstrate that the preprocessing schema is, indeed,
slower due to higher input size. The difference between
single-thread TCP with raw input is around 18.57 Mbps
(21.6% of raw TCP performance), however, this differ-
ence may be either judged by the simpler implementation
of SSHFS. On the other hand, a possible reduction of
input based on the existence of files on the server not
only in one user’s sandbox might have a positive impact
on the performance of custom protocols based on TCP.
At the same time, the local model has zero penalties on
file transfers and this result cannot be surpassed.
We can conclude that preprocessed input is not an option
due to significantly higher input size. Between SSHFS
and raw input single-thread TCP, the difference is quite
significant but may be judged by the ease of implemen-
tation.

D. Limitations of the approaches and further development

The proposed schema of the service model agnostic analyzer
aggregates models in a straightforward manner. The problem
with it is that it is not optimized as there was no research on
the most optimal model. In our view, an improvement can be
achieved if some numerical quality measure for service model
combinations is proposed.

The problem with the comparison of models is that it is
biased towards implementation. The most widespread cases
were carefully chosen, such as source code transfer evaluation
or polling versus continuous data transfer testing, however,
actual implementation may work around negative aspects
shown in the paper. That may happen since analyzers can
not be seen as pure implementations of these discrete models.
Combining models for reaching the best quality of output
model is encouraged, even if complete aggregation is not in
question.

Also, as the research’s goal is to study common models
and their generalizations, it is often the case that a widespread
example of the specific model does not exist, and we have no
resources to implement all of them in the analyzer with suf-
ficient detail level. That limits model reviewing possibilities.
A further improvement would be achieved after developing
such examples (toy analyzers) and verifying them on many
samples.

https://www.jsonrpc.org


TABLE IV
DATA TRANSFERS WITH POLLING

Total time (sec) Start (sec) End (sec) Steps Delta (sec) Data transmitted (bytes) Data received (bytes)
630 5 160 8 5 2352 1680
95 5 160 5 60 1460 1046
13080 5 160 86 35 25542 18232

TABLE V
CONTINUOUS DATA TRANSFERS

Total time (sec) Keepalive packets (pkts) Data transmitted (bytes) Data received (bytes)
634 10 700 140
92 1 70 140
13189 219 15330 140

TABLE VI
SOURCE CODE TRANSFERS

Approach Total time (sec) Input length (MB) Links Throughput (Mbps)
Single-thread TCP (raw input) 9.85 101 5.3GHz → Gateway → 2.412GHz 82
Single-thread TCP (preprocessed input) 48.75 470.66 5.3GHz → Gateway → 2.412GHz 77.2
SSHFS (raw input) 12.054 101 5.3GHz → Gateway → 2.412GHz 67.03

E. Suggested use cases

These models may work on different occasions. Based on
the review of models, we propose the following mapping from
use cases:

• Complete project and inter-project analysis: based on
the advantages of isolation, the continuous integration
model seems a better choice.

• Basic reference search, refactoring: since these use
cases don’t imply deep project inspection [28], a local
(incremental) model should be optimal.

• Code queries [29]. Depends on the size of a project:
small projects might be analyzed locally in a separate
instance of the analyzer. Big projects with a distributed
team mostly sharing the same source may take advan-
tage of remote computation with a virtual file system,
a stateful client/server model, a daily updated global
revision with incremental changes model and historic data
tracking.

• Project import & dependency analysis. Depending on
the requirements such as the location of the project and
its size, the preferred model might range from a simple
local model to a remote computation (with or without a
virtual file system), source repository and a fixed revision
model.

• Debugger support — analyzer supports debugger with
code insights (e.g. similar model is seen in [29]). The
local model is sufficient for small projects, but large
projects should be analyzed within the remote compu-
tation, virtual file system, daily updated global revision
and incremental updates model.

• Compiler supporting model. In that case, the compiler
does code generation, but the analyzer supports it with
additional inferred contract checks, the information about
clearly unsatisfied assertions, et cetera. Local computa-

tion, local resources, streaming model, fixed revision.
• Static/dynamic analysis cooperation. Such cooperation

is suggested by FSTEC [30] “Protection against unautho-
rized access to information” certification. For example,
a dynamic analyzer might trace the execution to let the
static analyzer verify that all traces are valid. It might
be done in a remote execution model with a virtual file
system, daily updated global revision with incremental
updates.

• Technical documentation preparation. Also a part of
FSTEC [30] certification. Usually, the process is done
once at the end of a release cycle. Considering the
importance of precision, Continuous Integration is the
most efficient model.

VII. CONCLUSION

The service models that can be used by static analyzers
were described. This list includes logical presence, resource
acquisition, input/output, change accounting and historic data
handling models. An aggregate model enabling significantly
diverging use cases is presented. It was tested in a real-
world static analyzer and demonstrated technical advantages
and disadvantages. Part of the models was compared directly
by characteristics, and recommendations for model selection
were provided.

REFERENCES

[1] D. Binkley, “Source code analysis: A road map,” in Future of Software
Engineering (FOSE ’07), 2007, pp. 104–119.

[2] What is clangd? [Online]. Available: https://clangd.llvm.org
[3] Langserver.org - A community-driven source of knowledge for

Language Server Protocol implementations. [Online]. Available:
https://langserver.org

[4] B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, “Why don’t
software developers use static analysis tools to find bugs?” in Proceed-
ings of the 2013 International Conference on Software Engineering, ser.
ICSE ’13. IEEE Press, 2013, p. 672–681.

https://clangd.llvm.org
https://langserver.org


[5] M. Richards, Software architecture patterns. O’Reilly Media, Incor-
porated 1005 Gravenstein Highway North, Sebastopol, CA . . . , 2015,
vol. 4.

[6] M. Kleppmann, Designing data-intensive applications: The big ideas
behind reliable, scalable, and maintainable systems. ” O’Reilly Media,
Inc.”, 2017.

[7] J. Novak, A. Krajnc et al., “Taxonomy of static code analysis tools,” in
The 33rd International Convention MIPRO. IEEE, 2010, pp. 418–422.

[8] C. Vassallo, S. Panichella, F. Palomba, S. Proksch, H. C. Gall, and
A. Zaidman, “How developers engage with static analysis tools in
different contexts,” Empirical Software Engineering, vol. 25, no. 2, pp.
1419–1457, 2020.

[9] A. S Tanenbaum and D. J Wetherall, “Computer networks,” 2010.
[10] C. Lattner and V. Adve, “Llvm: A compilation framework for lifelong

program analysis & transformation,” in International Symposium on
Code Generation and Optimization, 2004. CGO 2004. IEEE, 2004,
pp. 75–86.

[11] V. Ivannikov, A. Belevantsev, A. Borodin, V. Ignatiev, D. Zhurikhin,
and A. Avetisyan, “Static analyzer svace for finding defects in a source
program code,” Programming and Computer Software, vol. 40, no. 5,
pp. 265–275, 2014.

[12] Cppcheck - a tool for static C/C++ code analysis. [Online]. Available:
http://cppcheck.sourceforge.net

[13] F. Bélanger, S. Collignon, K. Enget, and E. Negangard, “Determinants
of early conformance with information security policies,” Information
& Management, vol. 54, no. 7, pp. 887–901, 2017. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0378720617300113

[14] Z. C. Schreuders, T. McGill, and C. Payne, “Empowering end
users to confine their own applications: The results of a usability
study comparing selinux, apparmor, and fbac-lsm,” ACM Trans.
Inf. Syst. Secur., vol. 14, no. 2, Sep. 2011. [Online]. Available:
https://doi.org/10.1145/2019599.2019604

[15] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler,
and D. Noveck, “Rfc3530: Network file system (nfs) version 4 protocol,”
2003.

[29] M. Martin, B. Livshits, and M. S. Lam, “Finding application errors and
security flaws using pql: A program query language,” in Proceedings
of the 20th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications, ser. OOPSLA ’05.

[16] M. E. Hoskins, “Sshfs: super easy file access over ssh,” Linux Journal,
vol. 2006, no. 146, p. 4, 2006.

[17] J. F. Smart, Jenkins: The Definitive Guide: Continuous Integration for
the Masses. ” O’Reilly Media, Inc.”, 2011.

[18] G. A. Campbell and P. P. Papapetrou, SonarQube in action. Manning
Publications Co., 2013.

[19] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler, “A few billion lines
of code later: using static analysis to find bugs in the real world,”
Communications of the ACM, vol. 53, no. 2, pp. 66–75, 2010.

[20] K. Ivanov, Containerization with LXC. Packt Publishing Ltd, 2017.
[21] D. Merkel, “Docker: lightweight linux containers for consistent devel-

opment and deployment,” Linux journal, vol. 2014, no. 239, p. 2, 2014.
[22] J. Wenhao and L. Zheng, “Vulnerability analysis and security research

of docker container,” in 2020 IEEE 3rd International Conference on
Information Systems and Computer Aided Education (ICISCAE), 2020,
pp. 354–357.

[23] T. Combe, A. Martin, and R. Di Pietro, “To docker or not to docker: A
security perspective,” IEEE Cloud Computing, vol. 3, no. 5, pp. 54–62,
2016.

[24] M. Menshikov, “Towards a resident static analysis,” in International
Conference on Computational Science and Its Applications. Springer,
2019, pp. 62–71.

[25] Z. Hays, G. Richter, S. Berger, C. Baylis, and R. J. Marks, “Alleviating
airport wifi congestion: An comparison of 2.4 ghz and 5 ghz wifi
usage and capabilities,” in Texas Symposium on Wireless and Microwave
Circuits and Systems, 2014, pp. 1–4.

[26] “rizsotto/bear: Bear is a tool that generates a compilation database for
clang tooling.” [Online]. Available: https://github.com/rizsotto/Bear

[27] M. Menshikov, “Equid—a static analysis framework for industrial ap-
plications,” in International Conference on Computational Science and
Its Applications. Springer, 2019, pp. 677–692.

[28] M. Fowler, Refactoring: improving the design of existing code.
Addison-Wesley Professional, 2018.
New York, NY, USA: Association for Computing Machinery, 2005, p.
365–383. [Online]. Available: https://doi.org/10.1145/1094811.1094840

[30] Federal Service for Technical and Export Control. [Online]. Available:
https://fstec.ru

http://cppcheck.sourceforge.net
https://www.sciencedirect.com/science/article/pii/S0378720617300113
https://doi.org/10.1145/2019599.2019604
https://github.com/rizsotto/Bear
https://doi.org/10.1145/1094811.1094840
https://fstec.ru

	Introduction
	Related work
	Models
	Logical presence models
	Resource acquisition models
	Input/output models
	Change accounting models
	Historic data tracking models

	Combination shortcuts
	Considerations for service model agnostic static analyzers
	Testing and discussion
	Characteristic-based evaluation
	Evaluation in static analyzer project
	Network performance
	Limitations of the approaches and further development
	Suggested use cases

	Conclusion
	References

