
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

An Automated System for Testing Static Source

Code Analysis Tools

Damir Gimatdinov

Faculty of Computer Science

Higher School of Economics

11 Porkrovsky Boulevard, Building S

109028, Moscow, Russian Federation
damir.gimatdinov@huawei.com

Veronica Butkevich

Chong-Ming Laboratory

Huawei Russian Research Institute

Derbenevskaya naberezhnaya 7b9

115114, Moscow, Russian Federation

butkevich.veronika.nikolaevna@

huawei.com

 Alexander Gerasimov

Chong-Ming Laboratory

Huawei Russian Research Institute

Derbenevskaya naberezhnaya 7b9

115114, Moscow, Russian Federation
gerasimov.alexander@huawei.com

Natalya Chernova

Chong-Ming Laboratory

Huawei Russian Research Institute

Derbenevskaya naberezhnaya 7b9

115114, Moscow, Russian Federation

chernova.natalya@huawei.com

Petr Privalov

Chong-Ming Laboratory

Huawei Russian Research Institute

Derbenevskaya naberezhnaya 7b9

115114, Moscow, Russian Federation
petr.privalov@huawei.com

Anna Gorelova

Chong-Ming Laboratory

Huawei Russian Research Institute

Derbenevskaya naberezhnaya 7b9

115114, Moscow, Russian Federation
anna.gorelova@huawei.com

Abstract—Automated testing frameworks are widely used

for assuring quality of modern software in secure software

development lifecycle. Sometimes it is needed to assure quality

of specific software and, hence specific approach should be

applied. In this paper we present an approach and

implementation details of automated testing framework suitable

for acceptance testing of static source code analysis tools. The

presented framework is used for continuous testing of static

source code analyzers for C, C++ and Python programs.

Keywords—automated testing, quality assurance, static source

code analysis.

I. INTRODUCTION

Acceptance testing is a very common approach to make
sure required software functionality is satisfying needs of end
user in an automatic way. Wide usage of continuous
integration systems with automatic tests run allows to
automate testing process to make sure the functionality is not
broken by separate change in a program code. That is why it
is important to build suitable testing framework to satisfy
needs in continuous testing of specific software.

A source code static analysis tools are become an
industrial standard for software quality assurance at early
stages in secure software development lifecycle. They are
commonly used for detection of program issues and logical
errors. Being quality assurance tools by nature they need to
satisfy specific requirements such as an analysis precision,
completeness and performance. A possibility to introduce bug
warnings of a safe code, also known as false positive warnings,
set a target for a testing framework to control as true positive
warning, as false positive warnings. An acceptance testing of
such tools controls behavior of a tool on specific code snippets,
which represent as buggy code, as code which has no bugs and
issues. At the same time such tools are very complex in
implementation details, because consist of general analysis
framework, frequently called engine, which propose general
analysis techniques such as reaching definitions, live variables,
taint analysis and others, and a number of specific wrong
program behavior checkers build on top of an engine. Any
small change to the engine can broke checkers behavior.
That’s why it is important to have testing framework which
can check and state sanity of the tool during development
lifecycle.

In our previous paper we have described a generalized
approach for testing static source code analysis tools, which
includes Acceptance Testing Framework and Regression
Testing System called Report History Server [1].

In this paper we introduce requirements, implementation
details, evaluation and limitations of Acceptance Testing
Framework for static source code analysis tools based on our
experience of development and daily usage of such a
framework in industrial development of static source code
analysis tools. This paper is organized as follows. Section II
describes in detail requirements to such kind of framework,
Section III provides overview of existing approaches, Section
IV provides an overview of proposed approach. Section V
describes in detail implementation of proposed approach,
Section VI contains evaluation results of proposed approach,
Section VII concludes proposed approach and future
directions of development.

II. REQUIREMENTS TO ACCEPTANCE TESTING FRAMEWORK

Source code static analysis tools have to check conditions
of source code of programs from the point of view of very
different rules, which can be applied as industrial or
companywide coding standard. Despite of focus for modern
static source code analyzers on code security, lack of logical
errors and performance, some kind of coding rules applied in
companies or industry can contain such requirements to the
code as style of indentation, naming conventions, etc. For
example, if we take a look to Python programs then source
code can contain commentaries of the specific look, such as
Shebang [2], encoding of the file [3], company code
ownership statement and version or license notes. That’s why
trying to satisfy needs of testing industrial static source code
analyzers such a framework cannot rely on specific comments
and code formatting, such as used in most known test cases
database Juliet of National Institute for Standardization and
Technology of USA [4].

Instead of that we have to have a database of error code
snippet describers. Such kind of describers provide all
necessary information on test case in a file or set of files with
directories structure, separated and independent of language
for a source code of target analyzer and target language of
analyzed programs. We use specific JSON [5] formatted
descriptions of test cases which describe every test case as for
erroneous examples, as for clean code examples.

On the other hand we have set a goal to compare tested
static source code analyzer with competing ones. That’s why
we put as a requirement ability to run competing static source
code analyzers in one bundle to compare precision,
completeness and performance of such tools. That is second
requirement.

Next, we need to have solution for different environments
such as operating systems and hardware platforms. That’s
why we set it as one of requirements to the framework.

And, last, but not least, we want to make out Acceptance
Testing Framework independent of target language of
analyzed programs. It should be suitable for testing analyzers
for programming languages C, C++, Java, C#, Python and
other languages.

To summarize:

 Independence of target environment, such as hardware
and operating system.

 Independence of analyzed programming languages.

 Possibility to check source code snippets without
modification of original code even in comments part.

 Possibility to check as erroneous, as clean code
examples (true positive and false positive warnings
checks).

 Support pretty unlimited number of checkers for
coding rules, including, but not limited to formatting
and comment styles.

 Possibility to compare different static source code
analysis tools.

 Possibility to represent results of analysis in different
formats: machine readable (JSON, XML and others),
output formatted to represent result on the screen,
HTML format, etc. with possibility to extend list of
reporting formats on demand.

III. EXISTING APPROACHES

There are a lot of research papers dedicated to evaluation
of static code analysis tools [6, 7, 8]. These works observe
behavior of static code analysis tools on selected subset of
NIST SAMATE test cases for selected OWASP [9] Top 10
vulnerabilities. But these papers a dedicated to manual
evaluation of static code analysis tools and does not solve the
problem of automated frameworks implementation. The work
[10] attempts to solve the problem of creating automated test
suite to evaluate static analysis tools by designing test cases as
small code snippets, which automatically in-lined into
template program to specific placeholder. The work [11]
describes an approach of detecting minimal original test cases
from real-world found errors and tries to add code to the
original test code snippet to check sensitivity of analysis to
paths and call context. The difference of our approach is in
common automation of acceptance testing and evaluation
system for static source code analysis tools. In this paper we
describe technical details and evaluation of proposed
approach.

IV. OVERVIEW

Acceptance Testing Framework solves problem of
evaluating the quality of automatic program analysis tools.

The quality is measured by parameters such as: performance,
scalability, precision, completeness.

Performance — how fast an analysis tool can provide an
analysis result and how much resources it consumes.

Scalability — how analysis time reduces if we providing
additional computational resources.

Precision — how precise an analysis result is (small
number of false positive warnings or noise).

Completeness — how many true positive warnings issued
by a tool in comparison to errors exist in the test suite (number
of false negatives — errors has been missed).

To compute such parameters Acceptance Testing
Framework allows to run program analysis tool against a
limited, manually crafted set of test cases combined in one test
suite. Test suite represents behavior of defective and similar
to defective programs. The defective one gives rate of true
positive warnings should be found and similar to defective
gives rate of false positive warnings, which absence is
expected. So far the resulting precision and completeness are
calculated and evaluated.

As far as precision and completeness are evaluated by
Acceptance Testing Framework for program analysis tool,
decision about quality could be made. In theory perfect tool
has 100 % completeness of test suite (all defects detected) and
100 % precision (no noise and no defect detected on similar to
defective code snippets), but such values cannot be achieved
at current stage of engineering and have the theoretical
limitation of Rice’s theorem [12].

There are no strict generally accepted values for
performance and scalability as far as these parameters depend
on depth, complexity and target of analysis and vary greatly
among analysis tools. Moreover, the exact conclusion about
the quality of analysis tools directly depends on the test suite.
Acceptance Testing Framework doesn't contain built-in
features to get performance and scalability on its own for now.
Despite this Acceptance Testing Framework could be used in
the computation process of these parameters by running
program analysis tool against set of different complexity
(from low to high) test suites and observe how performance
dynamic depends on complexity of test suite or scalability
dynamic in the case of additional computational resources
involved in computation process.

Test suite could follow company or industrial standards,
contain code snippets with security vulnerabilities, code style
or leading to a crash errors. In our case test suite follows
company standard and together with Acceptance Testing
Framework has deployed in continuous integration processes
of static analysis tool development in Huawei Russian
Research Institute.

V. DESIGN & IMPLEMENTATION

In this section we describe the design and implementation
of our framework. We describe it from requirements
perspective.

A. Independence of target environment.

To satisfy requirement of an independence of target
environment such as hardware and operating system we
managed to implement our framework in Python
programming language as far as it has Python source code

interpreters for most of industrial operating systems and for
most popular hardware platforms.

B. Independence of analyzed programming language.

The framework does not rely somehow on code snippets
content by using JSON formatted test case annotations.

C. Possibility to check code snippets without modification

of original code, even in comments. Possibility to check

as erroneous, as clean code snippets without

modification.

We use test case annotation files in JSON format. Test
case for Acceptance Testing Framework is a tuple of
annotation file and source code snippet. JSON annotation file
contains following information:

 Kind of a snippet: does it contains a defect (True
Positive) or it is not expected in this code snippet (True
Negative).

 Kind of a defect expected to be reported or not reported.

 Description of a test case.

 Skip flag for marking test cases which are not
supported, but planned to be supported in future.

 Defect location: filename, line and offset in the line for
expected defect.

 Additional service information. For example, if test
case designed for specific version of language, to
configure analyzer appropriately, or additional field
describing the goal of test case to QA engineer or
developer.

Such decision allows to keep all this information
independent of test cases and needed by Acceptance Testing
Framework to configure analysis tools appropriately.

 And do not rely somehow on number of test cases,
because it is enough to just point the location of file system
directory with test suite formatted to be used with Acceptance
Testing Framework while running framework and all work
related to running analysis tools on the test suite handled by
framework itself via traversing directories structure.

D. Possibility to compare different analysis tools.

Acceptance Testing Framework satisfy this requirement
by introducing abstract interface Tool to run external analysis
tool as executable program and get results of analysis in
Acceptance Testing Framework internal representation.
Having such kind of interface to support of new analysis tool
ones need to implement interface Tool to convert test case
settings from test case annotations to expected arguments of
analysis tool and run this tool as external process. We have
developed a number of interface implementations for tools,
such as PyLint [13], JetBrains PyCharm [14] and eight more
tools, which have different paradigm of analysis. For example,
PyLint accepts analysis of single file and can be run on every
test case separately. PyCharm expects a file system directory
and treats it as one project to analyze.

On the other hand analysis results representation of
different tools can vary significantly. An implementation of
Tool interface also responsible for interpretation of external
analysis tool results and converting it to Acceptance Testing
Framework internal representation. This representation is a
kind of map for every test case to analysis result in term of
Passed or Failed state.

Thus all logic of working with analysis tool is
encapsulated inside of Tool interface implementation.

E. Possibility to represent results of analysis in different

formats.

Acceptance Testing Framework provides universal
interface Reporter which provides one public method report
accepting internal representation of analysis tool run results.
A responsibility of implementation of interface is to issue
report in specific format. We have implemented three
reporters supported out of the box:

 Output reporter. Represents test suite run results in
human readable text format.

 JUnit reporter. Represents test suite run results in JUnit
format.

 HTML reporter. Represents test suite run results in
format of static web-site with possibility to represent
result in different view up to source code snippet of test
case.

Fig. 1. Acceptance Testing Framework architecture diagram

Architecture diagram of Acceptance Testing Framework
is shown on Fig. 1. It consists of following blocks (classes):

 Driver. It is entry point of framework. It allows to
configure test suite, reporter and tools accordingly to
parameters passed to framework on the run.

 TestSuite is a collection of TestCases which
constructed using provided path to test suite directory,
where every test case has it’s annotation in JSON
format and test case source code files directory
structure.

 Tool. It is an interface representing a tool runner.
Instantiations of this interface depends on settings of
the framework passed as command line arguments.

 Reporter. It is an interface allowing to represent
analysis results using unified internal test suite run
results representation.

 In general, Acceptance Testing Framework is a Driver,
which responsible for:

 Instantiation of supported analysis tool wrappers,
which are implementations of Tool interface,
accordingly to parameters passed to the Driver by user.

 Instantiation of the Reporter which will be used to
output result of analysis by every tool.

 Running the analysis process to collect analysis result
in internal representation form and pass received result
to Reporter.

VI. RESULTS & EVALUATIONS

This section aims to obtain a classification of tools
according to the metrics applied to the results obtained from
the execution of the tools against our test suite.

Tested static analysis tools:

 Huawei Python Analysis Tool (HPAT) is a PyCharm
plugin with the set of inspections requested by
Huawei Python Code Style Guide and Huawei Secure
Coding Style Guide.

 Flake8 [15] is an open source tool that glues together
pep8 [16], pyflakes [17], mccabe [18], and third-party
plugins to check the style and quality of some python
code.

 PyLint is an open source tool that checks for errors in
Python code, tries to enforce a coding standard and
looks for code smells.

The summary of metrics used is:

 True positives rate – TP (correct detections).

 False positive – FP (reporting false error warning).

 Number of vulnerability categories for which the

tool was tested.

 Precision (1). Proportion of the total TP detections:

 TP / (TP + FP)

 Recall (2). Ratio of detected vulnerabilities to the

number that really exists in the code. Recall is also

referred to as the True Positive Rate:

 TP / (TP + FN)

Tab. 1 and Fig. 2 shows a number of vulnerability
categories (NVC) for which the tool is tested. HPAT has the
biggest value because test suite is developed exactly for
satisfying needs of Huawei coding standards.

TABLE I. NUMBER OF VULNERABILITY CATEGORIES

Tool

Metric
HPAT Pylint Flake8

NVC 68 32 15

Fig. 2. Number of checked defect types

Tab. 2 and Fig. 3 shows a result of running tools on test
suite in terms of true/false positive, true/false negative.

TABLE II. VULNERABILITIES DETECTION. NUMBERS OF TRUE/FALSE

POSITIVE, TRUE/FALSE NEGATIVE TEST CASE DETECTION

Tool

Metric
HPAT Pylint Flake8

TP 695 91 102

FN 0 324 368

FP 0 0 0

TN 591 121 184

Total 1286 536 654

Fig. 3. Test cases ratio obtained by the tools comparison

Tab. 3 and Fig. 4 show metrics results of all tools included
in this analysis.

0

20

40

60

80

HPAT Pylint Flake8

NUMBER OF VULNERABILITY CATEGORIES

0

500

1000

1500

TP FN FP TN Total

Tools test cases ratio

HPAT Pylint Flake8

TABLE III. ASSESSMENT RESULTS COMPUTING AND RANKING THE

SELECTED METRICS BY TP RATIO

Metric

Tool
TP ratio FP ratio Precision Recall

HPAT 1 0 1 1

Pylint 0.219 0 1 0.219

Flake8 0.217 0 1 0.217

Fig. 4. Metrics obtained by the tools comparison

Implemented framework allows to assess tools on the
same testing code base and present relative results.

VII. CONCLUSION

 In this paper we were focused on checking quality of static
source code analysis tools with help of an automated
framework for running such tools against a number of test
cases combined in one suite. This approach allows us to
control quality of the tool in terms of created erroneous and
error free test cases as code snippets on target for analysis
programming language. The framework allows to use any
kind of test suites if configured well within a profile or
manifest in expected format. This approach to testing static
source code analysis tools has applied in development process
of static source code analysis tools for Python and C/C++ in
Huawei Russian Research institute. In future we plan to
extend functionality of Acceptance Testing Framework to
check non-functional requirements for tools such as time of
running, memory consumption and CPU utilization.

REFERENCES

[1] A. Gerasimov, P. Privalov, S. Vladimirov, V. Butkevich, N. Chernova,
A. Gorelova. An approach to assuring quality of automatic program
analysis tools. Proceedings of 2020 Ivannikov ISP RAS Open
Conference (ISPRAS).(Still no reference to printed version)

[2] M. Cooper. Advanced Bash Scripting Guide – Volume 1: An in-depth
exploration of the art of shell scripting. (Revision 10) 2019, 589 p.

[3] M.-A. Lemburg, M. von Löwis. PEP-263 – Defining Python Source
Code Encodings. 2001.

[4] NIST SAMATE Juliet Test Suite

https://samate.nist.gov/SARD/testsuite.php

[5] RFC-8259. The JavaScript Object Notation (JSON) Data Interchange
Format, 2017.

[6] H.H. AlBreiki, Q.H. Mahmoud. Evaluation of static analysis tools for
software security. IEEE 2014 10th International Conference on
Innovations in Information Technology. Al Ain, United Arab Emirates,
2014.

[7] R. Mamood, Q.H. Mahmoud. Evaluation of static nalysis tools for
finding vulnerabilitites in Java and C/C++ source code.
arXiv:1805.09040, 2018.

[8] T. Hofer. Evaluating static source code analysis tools. Masters thesis.
École Polytechnique Fédérale de Lausanne, 2010, pp. 1-74.

[9] OWASP – Open web application security project. https://owasp.org

[10] M. Johns, M. Jodeit. Scanstud: a methodology for systematic, fine-
grained, evaluation od static analysis tools. 4th International conference
on software testing, verification and validation workshops. Berlin,
Germany, 2011, pp. 523-530.

[11] G. Hao, F. Li, W. Huo, Q. Sun, W. Wang, X. Li, W. Zou. Constructing
benchmarks for supporting explainable evaluations of static application
security testing tools. 2019 International symposium on Theoretical
Aspects of Software Engineering, Guilin, China, 2019, pp. 66-72.

[12] H. G. Rice Classes of Recursively Enumerable Sets and Their Decision
Problems. Transactions of the American Mathematical Society, 1953,
Vol. 74, No. 2, pp. 358-366.

[13] Pylint. https://pypi.org/project/pylint/

[14] JetBrains PyCharm. https://www.jetbrains.com/pycharm/

[15] Flake8. https://pypi.org/project/flake8/

[16] Pep8 – Python style guide checker. https://pypi.org/project/pep8/

[17] Pyflakes. https://github.com/PyCQA/pyflakes

[18] McCabe coomplexity checker https://github.com/PyCQA/mccabe

0

0,5

1

1,5

TP ratio FP ratio Precision Recall

Tools metrics comparison

HPAT Flake8 Pylint

https://samate.nist.gov/SARD/testsuite.php
https://owasp.org/
https://pypi.org/project/pylint/
https://www.jetbrains.com/pycharm/
https://pypi.org/project/flake8/
https://pypi.org/project/pep8/
https://github.com/PyCQA/pyflakes
https://github.com/PyCQA/mccabe

