
What Software Architecture Styles are Popular?
Alexey A. Mitsyuk

Faculty of Computer Science,
HSE University

Moscow, Russia
amitsyuk@hse.ru

Nikolay Jamgaryan
Faculty of Computer Science,

HSE University
Moscow, Russia

nazhamgaryan@edu.hse.ru

Abstract—One can meet the software architecture style’s
notion in the software engineering literature. This notion is
considered important in books on software architecture and
university sources. However, many software developers are not
so optimistic about it. It is not clear, whether this notion is just
an academic concept, or is actually used in the software industry.

In this paper, we measured industrial software developers’
attitudes towards the concept of software architecture style. We
also investigated the popularity of eleven concrete architecture
styles.

We applied two methods. A developers survey was applied
to estimate developers’ overall attitude and define what the
community thinks about the automatic recognition of software
architecture styles. Automatic crawlers were applied to mine the
open-source code from the GitHub platform. These crawlers
identified style smells in repositories using the features we
proposed for the architecture styles.

We found that the notion of software architecture style is not
just a concept of academics in universities. Many software devel-
opers apply this concept in their work. We formulated features
for the eleven concrete software architecture styles and developed
crawlers based on these features. The results of repository mining
using the features showed which styles are popular among
developers of open-source projects from commercial companies
and non-commercial communities. Automatic mining results were
additionally validated by the Github developers survey.

Index Terms—software architecture style, software design, code
smells, software repository mining, survey

I. INTRODUCTION

Software architecture [1] is a discipline within software
engineering dealing with software systems’ structural and
behavioral design. Software architects and designers define
how the system is organized, its components, how these
components communicate, etc. Software engineering literature
(see, for example, foundational works by Shaw and Garlan [2],
Taylor et al. [3], Richards and Neal [4]) applies a notion of
software architecture style or pattern. Shaw and Garlan [2]
define it as follows: “An architectural style defines: a family
of systems in terms of a pattern of structural organization; a
vocabulary of components and connectors, with constraints on
how they can be combined.” Taylor et al. [3] proposed another
definition: “An architectural style is a named collection of
architectural design decisions that (1) are applicable in a
given development context, (2) constrain architectural design

This work is an output of a research project implemented as part of the
Basic Research Program at the National Research University Higher School
of Economics (HSE University).

decisions that are specific to a particular system within that
context, and (3) elicit beneficial qualities in each resulting
system.” These definitions are general and relatively abstract
as well as most other definitions from software engineering
books and papers. Usually, no clues on how these styles can
be identified and implemented in a concrete software source
code are given.

This work summarizes our team’s first results to understand
better the concept of software architecture style and make it
more tangible.

To do so, we first tried to find out the developers’ attitude
towards the concept of software architectural style. Are real
non-academic developers familiar with this concept in general
and with different particular styles? Do they consider this con-
cept useful in their everyday professional activities? Secondly,
we tried to identify empirical features of software architecture
styles, which can be used in practice to recognize the usage
of software architecture styles in Java and Python programs.

For our research, certain architecture styles were chosen.
Then, we chose a small sample of software repositories, which
were investigated to get empirical features of the architecture
styles in source code. Afterward, the crawlers were written and
applied to parse the bigger sample of open source repositories
on GitHub1 service.

Besides, we conducted two developers’ surveys. The first
survey aimed to find out the developers’ attitude towards the
concept of software architecture styles. We held the survey to
understand better whether this topic is worth researching. The
second survey aimed to validate the results of the crawlers’
parsing.

The aim of our research project—to identify empirical
features of architecture styles—is new to software engineering,
while the applied methods are well known. Surveys and
repository mining were applied in many other research projects
on code smells detection and design patterns identification (see
Section VI). The methods we used had shown themselves as
feasible in exploratory research projects.

Due to the first survey results, developers have positive
attitude towards architecture styles. Many of them apply this
concept in their projects, and even more of them think it is
beneficial to be acquainted with the concept. In data provided
by the automatic crawlers we found, how much each of the

1GitGHub web-page: https://github.com/

https://github.com/


chosen architecture styles is used in practice. We validated the
results of crawlers mining using the second survey.

II. RESEARCH QUESTIONS AND PAPER STRUCTURE

In this paper, we consider the three following research
questions.

RQ1: What is the community attitude towards the concept
of software architecture style? Software architecture is taught
in universities. Technical experts and master coaches promote
advanced styles. However, what does a typical software engi-
neer think about this concept? We try to answer this question
in Section III using a developers’ survey.

RQ2: How can we detect a software architecture style
in code? Results of the RQ1 survey encouraged us to try
to construct a procedure for detecting software architecture
styles in an actual source code. To do so, we first needed
to select features related to particular styles using which we
can automatically detect them. Section IV answers the second
research question and presents style features and automated
scripts which help us to detect styles in code.

RQ3: What software architecture styles are popular in
open-source projects? Finally, it is of interest to investigate
the source code of existing software to decide what styles are
popular. Fortunately, much open-source software is available
for researchers in the modern world. Thus, we can mine open-
source repositories and apply our architecture style detection
tool to them. This procedure is presented and discussed in
Section V.

Section VI describes some works related to our research
project, while Section VII concludes this paper and proposes
the ideas for further work.

III. SOFTWARE ARCHITECTURAL STYLES (RQ1)

Our first questions were as follows. Whether the concept
of software architecture style is familiar to developers? Is
this concept considered applicable? What particular styles
are familiar to developers and are worth considering in the
following steps of our research?

A. Architecture Styles Survey

To answer these questions, we provided a developers’ survey
described in this section.

For our research, we have created a survey2 using Google
Forms3. This survey consisted of 3 categories of questions.

Demographical questions: These are questions about pro-
gramming experience, job area, preferences in technologies,
and a respondent’s frameworks.

General questions about software architecture styles:
Whether participant had or had not heard and used the concept
of architecture styles in their professional life?

Questions about the set of particular architecture styles we
selected for our research: We asked whether the participant

2It can be found at the web-page of our project: https://pais.hse.ru/en/
research/projects/softarchstyles

3Google Forms: https://docs.google.com/forms

knew the name of the style and how he or she thought it is
possible to identify that certain style in code.

These questions aimed to find out what community of
developers thinks and knows about architecture styles usage
and architecture styles identification.

B. What Styles did We Select?

We have selected the following eleven software architecture
styles for this research:

• Model-View-Controller (MVC) architecture;
• Main and sub-programs;
• Machine-learning-based software;
• Event-driven software architecture;
• Reflection-using software;
• Data-centric software architecture;
• Expert system;
• Cloud-service-based software;
• Software with containerization;
• Aspect-oriented software architecture;
• Reactive-based software architecture.
These particular styles were chosen based on software archi-

tecture pattern and style catalogs from foundational literature
of the field [3]–[7]. Usually, software architecture books are
large and contain profound discussions on each of the styles
considered important by book authors. The list of software
architecture styles is a massive one. We had to limit this list
somehow for it to be treatable within a single research project’s
borders. To select the particular set of styles, we consulted
with literature of the field [3]–[7] as well as Wikipedia.org
information4. Some of these styles (for example, MVC and
Event-driven architectures) are popular and frequently used
among software developers. Others (for example, aspect-based
software and expert systems) are not famous in modern soft-
ware engineering. Besides, we selected styles for which we can
define features based on which the style smells can be detected
in source code. Thus, we consider it worth investigating this
particular set of styles. However, we do not state that this is
an exhaustive set.

C. Survey Data

The survey was held from September till December 2020.
As it has been mentioned, Google Forms were used for the
survey. The survey form was spread in different developer
communities connected with various areas of development:
game development, back-end development, front-end devel-
opment, data science, etc. We hoped to achieve randomness
and broader coverage by doing so. In total, 111 developers
participated in the survey.

Participants of the survey have different experiences in
software programming. Figure 1 shows participant program-
ming experience in years. From this figure we can conclude
that about half of all participants were in the middle of
the experience range: slightly less than one quarter have

4See page https://en.wikipedia.org/wiki/List of software architecture
styles and patterns which itself refers to the paper of Sharma et al. [8]

https://pais.hse.ru/en/research/projects/softarchstyles
https://pais.hse.ru/en/research/projects/softarchstyles
https://docs.google.com/forms
https://en.wikipedia.org/wiki/List_of_software_architecture_styles_and_patterns
https://en.wikipedia.org/wiki/List_of_software_architecture_styles_and_patterns


Fig. 1. Participant programming experience in years

experience from 1 to 2 years, a little bit more than one-quarter
of the total have experience from 3 to 5 years. Experienced
developers make one-third of the total number: about one-fifth
have experience from 6 to 10, and slightly more than 15% have
experience from 11 to 20 years. At the ends of the distribution,
we can observe 5% of developers with experience less than 1
year and about 3% of very experienced developers who are in
the field for more than 35 years.

Figure 2 represents fields of software engineering which
participants selected as their primary occupation. Note that a
participant could select several fields as their primary occu-
pations. We can conclude that survey participants in different
areas, with most of them, are back-end developers. The top 7
categories of participant job areas were: back-end development
(65.8%), front-end development (34.2%), mobile development
(22.5%), data analytics (19.8%), machine learning (18.9%),
research (18%), and game development (9.9%).

Fig. 2. Participant occupations

Finally, we asked participants about the programming lan-
guages they used in their work. Figure 3 show how they
answered. It can be seen that the survey participants are
using different languages in their practice. The top three most

popular languages in our survey are Python (45.9%), Java
(33.3%), and SQL (32.4%). Partially because of these results,
we decided to continue our research based on Java and Python
source code.

Demographic data showed that our survey participants were
similar to the typical software developers. For example, the
participants’ set of main languages is very similar to the well-
known TIOBE Index5. Our selection is somehow shifted to
object-oriented languages for back-end development. How-
ever, of the top 10 languages in TIOBE Mar 2021 (C, Java,
Python, C++, C#, Visual Basic, JavaScript, PHP, Assembly
language, SQL) 7 are also presented in the top 10 languages
used by survey participants. Developers came from different
fields, which are popular in modern software engineering.

Fig. 3. Participant main programming languages

D. Survey Results

Our survey asked whether participants used the concept
of software architecture style in their daily work practice.
Figure 4 shows how they answered this question. In this figure,
we can see that almost 40% frequently use the concept of
architecture styles in development. 36% of all participants
use them from time to time, and one quarter does not use
architecture styles at all.

The next question brought us surprising results. We decided
to find out what participants thought about the developers’
community in general. In particular, we asked what partici-
pants thought about how their colleagues applied the concept
of software architecture style in their work? Figure 5 shows
that only 14.4% think that developers from their community
do not use the concept of architecture styles. Interestingly,
developers tend to think their colleagues are significantly more
familiar with the concept of software architecture style than
themselves.

Finally, we were interested in what participants think about
the feasibility of detecting architecture styles. The developers
were asked whether they thought it is possible to identify
the usage of a software architecture style in the source code
automatically or manually.

For each of the styles there were five possible answers as
follows:

5TIOBE Index: https://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/


Fig. 4. Do participants apply the concept of software architecture style
in their work? Fig. 5. What participants think about how their colleagues apply the

concept of software architecture style in their work?

1) Yes, by looking at language constructions manually;
2) Yes, by looking at language constructions automatically;
3) Yes, by looking at frameworks (you can list frameworks

in “other” section);
4) I haven’t used this style;
5) Other (open answer).

A participant was able to select several answers simultane-
ously.

Figure 6 summarizes the answers. To make the figure more
illustrative we merged all the answers into the three categories:

• Manually: variant 1) and some of variant 5);
• Auto: variant 2), variant 3), and some of variant 5);
• Have not used: variant 4).

Numbers in Figure 6 show how many developers selected
this particular answer category for a particular architecture
style. According to our data, developers are not very optimistic
regarding software architecture style detection. However, for
most architectural styles, at least one-third of all survey devel-
opers believe they can be identified either automatically (30%–
50%) or manually. Developers tend to think that familiar styles
are more likely to be identified. For example, MVC is the
most known style among the others. Most developers think it
can be identified manually (53.2%) and automatically (51.4%).
Expert systems and aspect-oriented software are unfamiliar
to more than half of the developers from our selection. Not
so many participants believe these styles can be identified by
investigating the software source code.

E. Conclusions

The results of the developers’ community survey are in-
teresting events separately. However, we analyze them in the
context of a larger project.

The survey shows that 3 of 4 typical developers apply
the concept of software architecture styles in their practice.
Moreover, developers believe their colleagues use this concept

even more often. This means that developers consider the
concept important and valuable in the software engineering
process.

From 3.5 to 4 out of 10 typical developers believe that
software architecture style can be identified by investigating
the software source code. In general, slightly more developers
think that a style can be identified manually. Besides, the more
familiar a particular style is to the developer, the more likely
it would be considered identifiable by this developer.

Thus, it would be interesting to investigate if software archi-
tecture styles can be identified using an automated procedure,
how this can be done, and what styles are more prevalent in
open source.

Note that we can somehow estimate styles’ popularity
by comparing developers’ numbers unfamiliar with different
styles. However, we believe that such research based on survey
data only would be insufficient.

IV. ARCHITECTURE STYLE IDENTIFICATION (RQ2)
A. Detection Methods and Data Sources

In this research open-source software repositories were
used as data. We chose 10 technological communities and
companies with extensive lists of open-source repositories on
GitHub, which is the largest resource with open software
sources. Repositories related to the following companies’
Github accounts are considered in this paper:

1) Adobe — https://github.com/adobe,
2) Amazon — https://github.com/amzn,
3) Amazon Web Services — https://github.com/aws,
4) AWS Labs — https://github.com/awslabs,
5) Apache Foundation — https://github.com/apache,
6) Apple — https://github.com/apple,
7) Google — https://github.com/google,
8) IBM — https://github.com/IBM,
9) Microsoft — https://github.com/microsoft,

https://github.com/adobe
https://github.com/amzn
https://github.com/aws
https://github.com/awslabs
https://github.com/apache
https://github.com/apple
https://github.com/google
https://github.com/IBM
https://github.com/microsoft


Fig. 6. What participants think about whether particular software architecture styles can be detected, or not?

10) 18F — https://github.com/18F.
We decided to consider only repositories with the code writ-

ten in Python and Java as these two programming languages
are among the most popular according to both well-known
indices6 and to our preliminary developer survey.

The crawler was written in Python 3. We used the library,
called PyGitHub7. Every crawler gets access to the companies’
repositories by tokens previously generated by us manually on
Github.

Our crawlers got access to GitHub repositories by using the
token mechanism. Every token allows making ten thousand
requests to Github per hour. For the mining process to continue
flawlessly, several tokens have been used. The tool iterates
through the token list and requests the source code from
every repository taken for the research. For every software
architecture style, we created a separate specific crawler. Their
code is accessible at the project web page.

B. Features of Software Architecture Styles

We have created features of different origins for eleven
styles from our research. These features can be grouped into
two main categories.

The first group of features contains framework-based fea-
tures. We firstly identified frameworks that propose implemen-
tations of particular architectural styles. After that, we identi-
fied usage of the style by finding usage of these frameworks in
source code. Such features were used when identifying Model
View Controller (4 python frameworks, 4 java frameworks),
Machine Learning based style (24 python frameworks, 11
java frameworks), Event-driven (10 python frameworks, 8
java frameworks), Data-centric (25 python frameworks, 22
java frameworks), Expert systems (7 python frameworks, 3
java frameworks), Cloud systems (10 python frameworks, 7
java frameworks), Aspect-based applications (3 python frame-
works, 1 java frameworks).

The second group of features contains language-based fea-
tures. This means that we first identified how certain styles are

6For example, see TIOBE Index here: https://www.tiobe.com/tiobe-index/
7PyGitHub web page: https://pygithub.readthedocs.io

implemented in specific languages (Java, Python). After that,
we identified usage of the style by finding particular language
constructs. These features were used when identifying Main
and Sub-programs, Reflection architecture styles.

Table I provides a short description of every architecture
style we have chosen for our research. It is assumed to hint
about how they are presented in books and online resources.
Besides, we give examples of features that we have used to
identify the architectural styles. The complete list of features
we used is available on the project web page.

V. INVESTIGATING POPULARITY OF PARTICULAR STYLES
IN OPEN-SOURCE SOFTWARE (RQ3)

A. Dataset Description

Our web crawlers gathered a dataset that we
used to answer RQ3. This dataset consists of JSON
files. Each file in the dataset is related to a triple:
(programming_language; company_name;
software_architecture_style). In total, the
3057 repositories were processed. 1682 of them are
repositories with source code in Java, whereas 1375 contain
Python source code. Each repository can contain code
in other programming languages as well. The results of
mining contain 172 JSON files. These files contain data on
features identified for a particular triple. Each file includes
a set of pairs (repository : [found_features]),
where [found_features] is a list of features of
the particular architecture style which were found in the
repository. Here is the example of such a pair: ...,
"EmbeddedSocial-Android-SDK": ["NONE",
"getName_feature", "getClass_feature"],
...

Every string includes a constant indicating if the related
repository’s processing was finished. It was used for repository
processing and did not have any special meaning. Some of the
lines may contain constant indicating that the mining process
was stopped. This happened when a repository weighted too
much to be processed by 10 000 requests of the crawler. In
these cases, a GitHub API token reaches its’ limit. This case

https://github.com/18F
https://www.tiobe.com/tiobe-index/
https://pygithub.readthedocs.io


TABLE I
EMPIRICAL FEATURES OF ELEVEN SOFTWARE ARCHITECTURE STYLES

Architecture style Short description Examples of empirical features

Model-View-Controller Architecture style includes: model (a dynamic
data structure), view (a component to represent
the information), and controller (this component
accepts user input and converts it to commands).

Python, Spring: @Controller,
import org.springframework.stereotype.Controller
Java, Django: from django.db import models,
from models import

Main and sub-programs Architecture style assumes an absence of
classes. It means that application use only func-
tions/procedures and may use classes only as
storage for functions/procedures without creat-
ing instances of classes.

Python features: def main, {without def} main()
Python anti-feature: def __init__
Java feature: public static void main(String[] args),
Java anti-features: class {ClassName}, new {ClassName}

Machine-learning-
based

Architecture style assumes usage of any data-
science-related frameworks and libraries.

Python, Scikit learn: from sklearn, import sklearn
Java, Apache Spark ML-lib: org.apache.spark.mllib

Event-driven software Architecture style implies production, detection,
consumption and reaction to events. Usually,
implemented based on special frameworks.

Python, Apache Kafka: from kafka, import kafka
Java, Apache Kafka: org.apache.kafka

Reflection-using
software

Architecture style assumes that application’s
processes can and do examine, introspect and
modify their own structure and behavior.

Python features: type(obj), isinstance(obj, obj)
Java features: java.lang.reflect, .getClass()

Data-centric software Architecture style implies that database is a
crucial (central) part of application.

Python, MySQL: from mysql, import mysql
Java, MySQL: import java.sql, com.mysql.jdbc.Driver

Expert system Architecture style assumes usage of any expert
system frameworks and libraries as a part of the
considered software.

Python, Experta: from experta, import experta
Java, Apache Jena: import org.apache.jena,
org.apache.jena

Cloud-service-based Architecture style implies usage of frameworks
and libraries, which let usage of cloud based
delivery and inter-cloud network.

Python, Apache Libcloud: from libcloud, import libcloud
Java, Google Cloud: com.google.cloud

Software with
containerization

Architecture style assumes usage of frameworks
and libraries which let usage of virtual ma-
chines.

Python, VMWare: from vmware, import vmware
Java, VMWare: com.vmware

Aspect-oriented
software

Architecture style aims to increase modularity
by allowing separation of cross-cutting con-
cerns.

Python, AspectLib: import aspectlib, from aspectlib
Java, AspectJ: @Aspect, import org.aspectj

Reactive-based
software

Architecture style pays attention to data streams
and propagation of change.

Python, ReactiveX: from rx, import rx
Java, ReactiveX: import io.reactivex

was not frequent. In particular, 2162 pairs out of a total 27107
contain these stops.

The full dataset is available on the project web page.

B. Data Analysis and Discussion

Summarized results derived from the dataset are presented
in this section. The following tables show these results. Let us
consider and discuss the popularity of particular styles. Note
that open repositories of Apple company contain no source
code in Java.

1) Model-View-Controller (MVC) architecture: In Table II
one can see that MVC is used in approximately 25% of
Microsoft, IBM, and Apache Java repositories. In Java reposi-
tories, the MVC style is mostly represented by the usage of the
Spring framework that is very popular, especially in Apache
Foundation projects.

MVC is used in slightly less than 10% of Microsoft,
IBM, Google, AWSlabs Python repositories (see Table III).
In Python repositories, MVC style is mostly represented by
Django framework. Thus, web development is responsible for
a significant fraction of usage cases in Python community.
It is also interesting that Python is relatively more popular
in open projects of commercial companies, whereas Apache
Foundation is the leader in the development of Java projects.

This style is the second most popular from all styles in
our style set. It is a significantly more popular style than
others. This conclusion agrees with the survey results shown
in Figure 6.

2) Main and sub-programs: Let us consider Figure 7 and
Figure 8. Each of these two figures shows two intersecting
disks. The left one shows the number of repositories with
”main” function. The right one shows a number of repositories
without the usage of constructors. Thus, repositories that
satisfy our criteria lie in the intersection.

It is easy to see no more than 1 repository of such type
in Java. It is not unexpected because Java is a pure object-
oriented language. So, any Java program contains objects or
classes.

On the other hand, there are about 7% of all Python
repositories (59) in which this procedural style was applied.

In general, we can conclude that this style is not very
popular among open-source repositories from our dataset.

3) Event-driven software architecture: According to Ta-
ble IV and Table V Event-driven architecture style is used in
approximately 9% of IBM and Apache Java repositories. Curi-
ously, event-driven style is applied in more than 50% of AWS
Python repositories and approximately 20% of Apache Python
repositories. Such applications are related to distributed and



TABLE II
MVC STYLE USAGE FREQUENCY (JAVA REPOSITORIES)

Microsoft IBM Google Awslabs Aws Apache Amzn Adobe 18F

Processed 118 135 205 75 28 1044 18 53 6
MVC 29 28 4 7 6 274 0 4 0
Spring 29 27 4 1 4 237 0 4 0

Free Marker 0 1 0 0 4 48 0 0 0
Apache Struts 0 0 1 1 0 29 0 0 0

TABLE III
MVC STYLE USAGE FREQUENCY (PYTHON REPOSITORIES)

Microsoft IBM Google Awslabs Aws Apple Apache Amzn Adobe 18F

Processed 293 279 337 159 51 20 68 15 26 127
MVC 26 15 32 12 8 2 10 2 3 44

Django 19 10 20 4 2 1 5 1 1 42
Giotto 7 4 12 9 6 1 4 1 2 8

CherryPy 2 1 2 1 0 0 2 0 0 1
Turbo Gears 0 0 0 0 1 0 3 0 1 0

Fig. 7. Main and sub-programs style (Java repositories)

Fig. 8. Main and sub-programs Style (Python repositories)

asynchronous software for web applications. Other companies
tend to apply event-driven style in less than 1% of their Java
and Python repositories. Event-driven architectures are mostly
represented by the usage of Kafka framework and Amazon
Active MQ framework in both Java and Python repositories.

We can conclude that usage of event-driven architectures
hugely variates from company to company and relatively
popular in projects of AWS and Apache whose business
is mostly web-based and large-scale oriented. Thus, these
companies invest in scalable web applications and infrastruc-
ture code. Other companies concentrate more on desktop,
mobile, and web applications without such need in scaling
and asynchronous code.

4) Machine-learning-based software: The first general
finding is that Java is not used commonly to develop machine-
learning-based software. According to Table VI we found
smells of machine-learning-based style only in 16 Java repos-
itories. On the other hand (see Table VII), this style is often
used in Python repositories by various companies: Microsoft
(61%), IBM (52%), Google (38%). ML source code is mostly
represented by the usage of Numpy, Pandas, Matplotlib, and
libraries for neural networks.

We can conclude that machine-learning applications are
very popular in Python ecosystem. Most Python repositories of
companies contain smells of ML. Moreover, we can conclude
that machine-learning software is the most popular software
style (with respect to a total number of repositories with this
style) according to our data.

5) Data-centric software architecture: We found smells of
data-centric style in 15%–25% of Java repositories (Microsoft,
IBM, Google, Apache, see Table VI) and in 8%–20% of
Python repositories (Microsoft, IBM, Google, 18F, see Ta-
ble VII). In Java repositories, data-centric software style is
mostly represented by PostgreSQL and MySQL libraries’ us-



TABLE IV
EVENT-DRIVEN STYLE USAGE FREQUENCY (JAVA REPOSITORIES)

Microsoft IBM Google Awslabs Aws Apache Amzn Adobe 18F

Processed 118 135 205 75 28 1044 18 53 6
Event-driven 3 10 0 0 0 88 0 2 0

Kafka 3 9 0 0 0 41 0 2 0
Apache Qpid 1 0 0 0 0 10 0 0 0

RabbitMQ 0 1 0 0 0 6 0 0 0
Amazon ActiveMQ 0 0 0 0 0 41 0 0 0
Apache RocketMQ 0 0 0 0 0 7 0 0 0

Zero MQ 0 0 0 0 0 2 0 0 0

TABLE V
EVENT-DRIVEN STYLE USAGE FREQUENCY (PYTHON REPOSITORIES)

Microsoft IBM Google Awslabs Aws Apple Apache Amzn Adobe 18F

Processed 293 279 337 159 51 20 68 15 26 127
Event-driven 9 11 5 0 32 0 13 1 3 6

Kafka 0 5 0 0 0 0 3 0 0 0
Apache Qpid 0 0 0 0 0 0 3 0 0 0

RabbitMQ 0 1 0 0 0 0 0 0 0 0
Amazon ActiveMQ 8 5 5 0 32 0 6 1 3 6
Apache RocketMQ 0 0 0 0 0 0 1 0 0 0

Zero MQ 1 0 0 0 0 0 1 0 0 0

TABLE VI
OTHER ARCHITECTURE STYLES USAGE FREQUENCY (JAVA REPOSITORIES)

Microsoft IBM Google Awslabs Aws Apache Amzn Adobe 18F

Processed 118 135 205 75 28 1044 18 53 6
ML-based 1 1 0 3 0 11 0 0 0

Data-centric 21 20 34 15 9 228 1 3 1
Cloud-based 0 0 0 0 25 0 0 0 0

Container 0 0 0 0 0 0 0 0 0
Aspect-oriented 0 0 0 0 0 0 0 0 0
Reactive-based 0 0 0 0 1 0 0 0 0
Expert system 0 0 0 0 1 13 0 0 0

age. This style is represented by the usage of the SQLAlchemy
library in Python repositories.

We can conclude that this style is the third most popular
of all styles thanks to Apache Foundation with more than two
hundred such projects. Other companies apply the style as
well.

6) Reflection-using software: This style was detected using
several language features that indicate reflection appliances in
a source code. Many repositories contain at least one of the
features of a reflective code. However, we believe that the code
with such an ephemeral smell can be called reflection-using.
However, what should be the number of reflective features in
code to call it reflection-using software. It is not that easy
to define the concrete number. Thus, we decided to show
the summarized data in this paper. A better definition of this
architecture style will be a subject for future work.

Figure 9 shows the results for Java repositories, whereas
Figure 10 considers Python repositories. In both cases, one

can see that about 20% of repositories contain no reflective
code smells. So, we can conclude that about 80% of Java and
Python repositories have at least one feature of Reflection-
using software.

Our conclusion is that most of the open-source software
in our dataset contains some reflective code features. Our
definition for this style is too vague and has to be refined.

7) All other styles: cloud-service-based, aspect-oriented,
reactive-based software, expert systems, software with con-
tainerization: It is clearly seen in tables VI and VII that smells
of all other software architecture styles are very uncommon in
our dataset.

Cloud-service-based style tends to appear in AWS Java
repositories. This can be explained by the usage of AWS’s
own library for cloud development. Also, the Cloud-service-
based style was found in Google Python repositories. It can
be explained by the usage of Google’s library for cloud
development. These two cases are outliers, and overall we did



TABLE VII
OTHER ARCHITECTURE STYLES USAGE FREQUENCY (PYTHON REPOSITORIES)

Microsoft IBM Google Awslabs Aws Apple Apache Amzn Adobe 18F

Processed 293 279 337 159 51 20 68 15 26 127
ML-based 180 146 129 45 24 13 13 8 12 25

Data-centric 47 25 29 10 3 2 22 0 2 24
Cloud-based 3 1 42 1 0 0 2 0 1 2

Container 1 0 0 0 0 1 1 0 0 0
Aspect-oriented 0 0 0 0 0 0 0 0 0 0
Reactive-based 0 0 0 0 0 0 0 0 0 0
Expert system 0 0 0 0 0 0 0 0 0 0

Fig. 9. Reflective code features in Java repositories

Fig. 10. Reflective code features in Python repositories

not find out Cloud-service-based style as a popular one.
The same is true for other styles. We did not find almost

any usage of these styles with the proposed features. Thus,
we can conclude that all these software architecture styles are
unpopular in open-source repositories of our dataset.

This can be due to at least two reasons: either these styles
are uncommon in open-source software, or we use flawed
features. Both reasons are possible. The future work will be
to elaborate on this issue.

C. Additional Results Validation

To verify the proposed feature model, we decided to ask
developers of repositories, which we have processed, about
the usage of the 11 architecture styles in their repositories.
We extracted developers’ emails from each repository we
have processed. There were about 10 thousand repositories.
Then we used Python code to send every one of them a
letter with a link to the particular survey based on Google
Forms. This form asked developers to specify what of our
11 software architecture styles they used in their repository.
We got 69 replies to our Google Form. Out of these replies
we extracted information on 78 repositories that we have
previously processed.

One can easily see that we have no significant number of
answers here. Thus, the following can not be considered as an
extensive validation. However, we believe these results still
can be of interest to the reader.

On every architecture style out of 11 we counted 4 met-
rics: accuracy, precision, recall, and F1-score. We considered
developers’ answers from the form as correct data and our
answers as predictions. Among the repositories that authors
answered our survey, there was no that used the following
styles: Main and sub-programs, Expert system, or software
with containerization.

Table VIII shows the results. According to the table, the
best F1-score was reached for Reflection-using software (0.58)
and Data-centric software (0.45). Recall overall was less
than 30% with such exceptions as Reflection-using software
(0.64), Model-View-Controller (0.39), and Data-centric soft-
ware (0.39). The highest precision was achieved for Event-
driven software (0.75).

The results are different for various architectural styles. We
can conclude the following.



TABLE VIII
ADDITIONAL RESULTS VALIDATION

MVC Main ML-based Event-driv. Reflect. DB-centr. Expert Sys. Cloud-based Container Aspect React.-based

Accuracy 0.65 0.92 0.79 0.51 0.58 0.72 0.88 0.56 0.62 0.76 0.68
Precision 0.41 — 0.44 0.75 0.53 0.53 — 0.5 — 1 0.67

Recall 0.39 0 0.27 0.14 0.64 0.39 0 0.09 0 0.14 0.08
F1 0.4 — 0.33 0.24 0.58 0.45 — 0.15 — 0.25 0.14

Features for Main and sub-programs style and Expert sys-
tems could not be validated because among the repositories
from the validation survey, there was no use of these two
styles. Features for software with containerization style are
not full. Using our features, we did not find it in any of
the repositories in which the style was used according to
their developers. Features for Reflection-using software and
Data-centric software styles have not been enough for per-
fect identification, but they showed appropriate F1-score re-
sults. Features for Model-View-Controller, Machine-learning-
based, Event-driven, Cloud-service-based, Aspect-based, and
Reactive-based software styles show bad performance, mostly
because of low recall. This means that our features have not
fully covered the usage of these styles, and further investiga-
tion is needed.

D. Conclusions

Most of the results obtained by our automatic crawlers agree
with the survey results, which are shown in Figure 6. Less-
known styles are less common in open-source repositories;
well-known styles can be found in many more repositories.

An outlier here is software with containerization style.
Feature for this style seems ill-designed because many people
are accounted for it, whereas we can not detect it in source
code.

Both an automated analysis and a survey indicate aspect-
based software and expert systems as the least popular archi-
tecture styles.

However, the additional validating survey (with a small
number of answers) indicated that our features for some
architecture styles show lousy performance. Thus, additional
work is needed to improve the style and feature sets.

VI. RELATED WORK

We consider two large fields as related to our research.
These fields are software architecture research and software
repository mining. Whereas the former field is relatively old in
terms of software engineering time scale, the latter is relatively
young and fast-growing. We will try to observe both fields in
this section.

Sharma, Kumar, and Agarwal [8] listed 23 software ar-
chitecture styles in 6 categories due to the application type.
This paper can be considered as a starting point to discuss
architecture styles. The authors have chosen some styles (what
styles?) out of all mentioned and gave short descriptions to
them. However, there can not be observed any code features

of any style which can be used to identify it in a real project.
The paper also leaves without attention statistical aspects of
architecture style popularity in practice.

Automated software architecture recovery is related as well.
Researchers in this field aim at constructing models of archi-
tecture decisions of existing software using data analysis and
other automated techniques [9].

In software repository mining papers on code smell detec-
tion are close related to our project. Fontana et al. [10] concen-
trated on code smells and a machine learning-based approach
to code smells detection. The authors collected a dataset of
heterogeneous systems and a set of tools for detecting code
smells and trained different machine learning algorithms with
default parameters. Boussaa et al. [11] introduced code smell
detection based on genetic algorithms that are called the
competitive-co-evolution-based method. The method’s idea is
to generate two data samples: a sample of code smells and
a sample of solutions. The aim of code smells generation
is to escape from search methods, and the solution aims to
cover more code smells. These works do not pay attention to
software architecture styles, but their general approach seems
attractive.

A repository mining method has been applied to reveal how
software architecture evolves with time [12]. Code mining can
help to evaluate software architecture as well [13]. Kouroshfar
et al. [14] applied automated architecture recovery techniques
to show how the erosion of software architecture decisions
influences software evolution.

There is a massive corpus of literature on software architec-
tural smells and their automated detection. Architectural smells
are signs of bad practices in the software design process, sim-
ilar to code smells. The difference is that architectural smells
are related to the level of general design decisions, whereas
code smells are related to anti-patterns and bad practices on
the level of software code. Fontana et al. [15] investigated
how these two types of smell are interrelated. Previously,
many automated tools have been developed to detect or predict
architectural smells [16]–[20]. Azadi et al. [21] even proposed
a catalog of such smells which different tools can detect.
Features of software architecture styles that we consider in
this paper are similar to smells. However, our features do not
sign bad practices or anti-patterns. Contrariwise, our features
indicate the presence of an architectural style.

Note that surveys are considered a good research tool
in empirical software engineering. For example, Palomba et
al. [22] used surveying to understand how developers feel



a relationship between code and community smells. In our
research, we apply surveys as well.

Recently, repository mining has been used to explore soft-
ware in an empirical study on what software project artifacts
are [23]. Not surprisingly, software projects consist of code
but also of documentation, data, and many more different
artifacts. Our research is similar in the sense of intentions. We
seek for better understanding of the current field of software
development.

VII. CONCLUSIONS AND FURTHER WORK

In this paper, we measured industrial software developers’
attitudes to the concept of software architecture style. We
also investigated the popularity of eleven concrete architecture
styles.

We found that the notion of software architecture style is not
just a concept of academics at universities. Programmers apply
this concept in their work. Moreover, industrial software de-
velopers consider the concept as improving their professional
skill-set.

We formulated features for eleven concrete software archi-
tecture styles and developed crawlers based on these features.
The results of repository mining using the features show that
the most popular styles among developers of open-source
projects are machine-learning-based software, Model-View-
Controller architecture, and Data-centric software architecture.

We additionally validated the results obtained by crawlers
using a special developer survey. This validation shows that
features for some architecture styles are ill-defined and have
to be improved.

This paper presents up-to-date results of our research
project. We plan to continue the project to understand the
concept of software architecture style better. Updates can be
found at the project web page: https://pais.hse.ru/en/research/
projects/softarchstyles.

The set of software architecture styles we used in the paper
is not comprehensive. It is possible to modify and extend it
based on this work’s results. This will be one of the directions
of our future work.

Besides, the dataset gathered by our crawlers is related to a
limited set of open-source repositories related to large software
communities and companies. It is possible that our results are
somehow biased and overfitted to this particular dataset. So,
additional research is needed based on wider datasets.

Particular software architecture styles are still not suffi-
ciently well-defined. Some of them — like reflection-using
software — need better and clearer definitions to deal with
them in a less vague manner. We believe it is possible to
construct concise and rigorous definitions based on more
profound empirical research results.

ACKNOWLEDGMENT

We thank our colleagues from PAIS Lab (HSE University)
whose advice was very helpful in doing our developer surveys
better. In particular, Sergey A. Shershakov proposed useful
improvements.

This work is an output of a research project implemented as
part of the Basic Research Program at the National Research
University Higher School of Economics (HSE University).

REFERENCES

[1] P. C. Clements and M. Shaw, ““The Golden Age of Software Architec-
ture” revisited,” IEEE Softw., vol. 26, no. 4, pp. 70–72, 2009.

[2] M. Shaw and D. Garlan, Software architecture - perspectives on an
emerging discipline. Prentice Hall, 1996.

[3] R. N. Taylor, N. Medvidovic, and E. M. Dashofy, Software Architecture
- Foundations, Theory, and Practice. Wiley, 2010.

[4] M. Richards and N. Ford, Fundamentals of Software Architecture: An
Engineering Approach. O’Reilly, 2020.

[5] M. Richards, Software architecture patterns. O’Reilly Media, Incor-
porated 1005 Gravenstein Highway North, Sebastopol, CA . . . , 2015,
vol. 4.

[6] M. Kleppmann, Designing data-intensive applications: The big ideas
behind reliable, scalable, and maintainable systems. ” O’Reilly Media,
Inc.”, 2017.

[7] L. Atchison, Architecting for Scale: High Availability for Your Growing
Applications. ” O’Reilly Media, Inc.”, 2016.

[8] A. Sharma, M. Kumar, and S. Agarwal, “A complete
survey on software architectural styles and patterns,” Procedia
Computer Science, vol. 70, pp. 16 – 28, 2015, proceed-
ings of the 4th International Conference on Eco-friendly
Computing and Communication Systems. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S187705091503183X

[9] A. Shahbazian, Y. K. Lee, D. M. Le, Y. Brun, and N. Medvidovic,
“Recovering Architectural Design Decisions,” in ICSA. IEEE Computer
Society, 2018, pp. 95–104.

[10] F. A. Fontana, M. Zanoni, A. Marino, and M. Mäntylä, “Code smell
detection: Towards a machine learning-based approach,” in ICSM. IEEE
Computer Society, 2013, pp. 396–399.

[11] M. Boussaa, W. Kessentini, M. Kessentini, S. Bechikh, and S. B.
Chikha, “Competitive coevolutionary code-smells detection,” in SSBSE,
ser. Lecture Notes in Computer Science, vol. 8084. Springer, 2013, pp.
50–65.

[12] D. M. Le, P. Behnamghader, J. Garcia, D. Link, A. Shahbazian, and
N. Medvidovic, “An empirical study of architectural change in open-
source software systems,” in MSR. IEEE Computer Society, 2015, pp.
235–245.

[13] L. Zhu, M. A. Babar, and D. R. Jeffery, “Mining patterns to support
software architecture evaluation,” in WICSA. IEEE Computer Society,
2004, pp. 25–36.

[14] E. Kouroshfar, M. Mirakhorli, H. Bagheri, L. Xiao, S. Malek, and Y. Cai,
“A study on the role of software architecture in the evolution and quality
of software,” in MSR. IEEE Computer Society, 2015, pp. 246–257.

[15] F. A. Fontana, V. Lenarduzzi, R. Roveda, and D. Taibi, “Are architectural
smells independent from code smells? an empirical study,” J. Syst. Softw.,
vol. 154, pp. 139–156, 2019.

[16] F. A. Fontana, I. Pigazzini, R. Roveda, and M. Zanoni, “Automatic
detection of instability architectural smells,” in ICSME. IEEE Computer
Society, 2016, pp. 433–437.

[17] F. A. Fontana, I. Pigazzini, R. Roveda, D. A. Tamburri, M. Zanoni, and
E. D. Nitto, “Arcan: A tool for architectural smells detection,” in ICSA
Workshops. IEEE Computer Society, 2017, pp. 282–285.

[18] A. Biaggi, F. A. Fontana, and R. Roveda, “An architectural smells
detection tool for C and C++ projects,” in SEAA. IEEE Computer
Society, 2018, pp. 417–420.

[19] U. Azadi, F. A. Fontana, and M. Zanoni, “Machine learning based
code smell detection through wekanose,” in ICSE (Companion Volume).
ACM, 2018, pp. 288–289.

[20] F. A. Fontana, P. Avgeriou, I. Pigazzini, and R. Roveda, “A study on
architectural smells prediction,” in SEAA. IEEE, 2019, pp. 333–337.

[21] U. Azadi, F. A. Fontana, and D. Taibi, “Architectural smells detected by
tools: a catalogue proposal,” in TechDebt@ICSE. IEEE / ACM, 2019,
pp. 88–97.

[22] F. Palomba, D. A. Tamburri, A. Serebrenik, A. Zaidman, F. A. Fontana,
and R. Oliveto, “How do community smells influence code smells?” in
ICSE (Companion Volume). ACM, 2018, pp. 240–241.

[23] R. Pfeiffer, “What constitutes software?: An empirical, descriptive study
of artifacts,” in MSR. ACM, 2020, pp. 481–491.

https://pais.hse.ru/en/research/projects/softarchstyles
https://pais.hse.ru/en/research/projects/softarchstyles
http://www.sciencedirect.com/science/article/pii/S187705091503183X

	Introduction
	Research Questions and Paper Structure
	Software Architectural Styles (RQ1)
	Architecture Styles Survey
	What Styles did We Select?
	Survey Data
	Survey Results
	Conclusions

	Architecture Style Identification (RQ2)
	Detection Methods and Data Sources
	Features of Software Architecture Styles

	Investigating Popularity of Particular Styles in Open-source Software (RQ3)
	Dataset Description
	Data Analysis and Discussion
	Model-View-Controller (MVC) architecture
	Main and sub-programs
	Event-driven software architecture
	Machine-learning-based software
	Data-centric software architecture
	Reflection-using software
	All other styles: cloud-service-based, aspect-oriented, reactive-based software, expert systems, software with containerization

	Additional Results Validation
	Conclusions

	Related Work
	Conclusions and Further work
	References

