Integration of micro-services as components
in modeling environments for low code development

Hafiz Ahmad Awais Chaudhary
CSIS, University of Limerick, Limerick, Ireland
Confirm - Center for Smart Manufacturing
ahmad.chaudhary @ul.ie

Abstract—Low code development environments are gaining
attention due to their potential as a development paradigm for
very large scale adoption in the future IT. In this paper, we
propose a method to extend the (application) Domain Specific
Languages supported by two low code development environments
based on formal models, namely DIME (native Java) and Pyro
(native Python), to include functionalities hosted on heteroge-
neous technologies and platforms. For this we follow the analogy
of micro services. After this integration, both environments can
leverage the communication with pre-existing remote RESTful
and enterprise systems’ services, in our case Amazon Web
Services (AWS) (but this can be easily generalized to other
cloud platforms). Developers can this way utilize within DIME
and Pyro the potential of sophisticated services, potentially the
entire Python and AWS ecosystems, as libraries of drag and
drop components in their model driven, low-code sytle. The new
DSLs are made available in DIME and Pyro as collections of
implemented SIBs and blocks. Due to the specific capabilities and
checks underlying the DIME and Pyro platforms, the individual
DSL functionalities are automatically validated for semantic and
syntactical errors in both environments.

Index Terms—Domain Specific Language (DSL), Model Driven
Development (MDD), eXtreme Model Driven Development
(XMDD), Service Independent Building Blocks (SIBs), Low code
development environments, DIME, Pyro.

I. INTRODUCTION

Low code development platforms enable their users to
design and develop applications with minimal coding knowl-
edge [1], with the support of drag-and-drop visual interfaces
that operate on representations of code as encapsulated code
wrappers. The main aim [2] of these platforms is to produce
flexible, cost effective and rapid applications in a model driven
way. Ideally, they are adaptive to enhancements and less
complex is terms of maintenance. Model-driven development
(MDD) is an approach to develop such systems using models
and model refinement from the conceptual modelling phase to
the automated model-to-code transformation of these models
to executable code [3]. The main challenges with traditional
software development approaches are the complexity in de-
velopment at large scale, the maintenance over time, and the
adaptation to dynamic requirements and upgrades [1]. Doing
this on source code is costly, and it systematically excludes
the application domain experts. who are the main knowledge
and responsibility carriers. At the same time, the cost of
quality documentation and training of new human resources

Tiziana Margaria
CSIS, University of Limerick, Limerick, Ireland
Lero - The Irish Software Research Center
Confirm - Center for Smart Manufacturing
tiziana.margaria@ul.ie

for code-based development are other concerns in companies
and organizations that depend on code.

Domain Specific Languages (DSLs) conveniently encapsu-
late most complexities of the underlying application domain.
Encapsulation of code and abstraction to semantically faithful
representations in models empowers domain experts to take
advantage of these platforms. They can develop products
in an efficient manner and also meet the growing demands
of application development without having deep expertise
in software development. Based on a study [4] from 451
researches, the maintenance effort with low code platforms
proved to be 50-90% more efficient as compared to changes
with classical coding languages.

Software systems in general, and especially web apps in
internet-centered ecosystems and digital threads in an Industry
4.0 context, are not isolated in nature: they demand interaction
with various external systems, libraries and services. Frequent
needs are (but not limited to)

 acquire sensors data from external systems,

o feed data to external dashboards for analytics and pub-
lishing,

« utilize the compute power of cloud systems,

« reuse sophisticated enterprise services.

In this context, microservices [5] play an important role at
the enterprise level. The microservices paradigm (SOA done
right) defines certain methods to design software services
as suite of independently deployable components with the
purpose of modularity, reusability and autonomy [5]. Different
versions of these services may coexist in a system as a set
of loosely coupled collaborative components and must be
independently replaceable without impacting the operations of
heterogeneous systems.

This paper proposes the integration of microservices as
components in two graphical modelling development environ-
ments based on formal models: the general purpose, desktop
DIME [6] Integrated Modelling Environment and the special
purpose, web based Pyrus(Pyro) [7]. Their extension and
integration with external systems through services extends the
capabilities of these platform to meet wider communication
needs (e.g. in the cloud), and also to take advantage of existing
sophisticated enterprise services (e.g. AWS).

Low-code programming both at the API and the platform
level is considered to be a game changer for the economy
of application development. Gartner Inc., for example,
predicts [8] that the size of the low-code development tools
market will increase by nearly 30% year on year from 2020
to 2021, reaching a $5.8 billion value in 2021. They state
that so far, this is the fastest and probably the simplest and
most economical method of developing applications.

In this paper, Sect. II discusses the state of art, Sect. III
states the problem, Sect. IV gives an overview of the platforms
used to extend the low-code DSLs. Sect. V explains the
integration, architecture and implementation of SIBs in DIME
(the desktop IME) and blocks in Pyro/Pyrus (the web IME).
Finally, in Sect. VI we conclude and discuss.

II. STATE OF THE ART

Most domain specific languages today are at the coding level
and do not leverage a model driven approach at the platform
level. The rise in re-usability and maintainability demands
paved the path to low code development environments and
gained the attention of the developer’s community [9]. The
construction of meta-models behind these DSLs is challenging,
since they must capture all the domain knowledge, i.e. provide
both semantic and syntactic rules. Ktrain [10] is a popular
coding level DSL: a python wrapper that encapsulates Tensor
Flow functionalities and facilitates developers to augment
machine learning tasks with fewer lines of python code.
Xatkit [11], still in early stages of development, increases
the reusability of chat bots by evolving NLP/NLU engine
for text analytics. At the language level they support several
versions of bots, but the generation of chatbots from exist-
ing data sources at the framework level is in future plans.
JABC [12] is a general purpose XMDD framework for the
development of desktop and enterprise applications in model
driven fashion. It enables its users to compose models by drag
and drop of reusable blocks into hierarchical graph structures
that are executable (interpreted) and compilable. Aurera [1]
is a standalone desktop system for business modelling and
addresses the challenges of frequent changes to IT solutions.
The system is in early stages of development and does not
support communication with external systems. DIME [6] is a
general purpose MDD platform-level tool, suitable for agile
development due to its rapid prototyping for web application
development. It follows the One Thing Approach based on
XMDD [13], in a lineage of development environments that
traces back to the METAFrame’95 [14]. DIME supports both
control flow and data flow modelling in its process diagrams.
Control flow models admit a single start node but may have
multiple end nodes, and nodes (called SIBs)representing single
functionalities or sub-models are graphs, i.e. formal models.
The SIBs are connected via directed edges depending on
the business logic, with distinct edge types for dataflow and
control-flow. Agent-based modelling paradigm [15] is another
popular approach to increase the development productivity
in simulation environments. CaaSSET [16] is a Context-as-a-
Service based framework to ease the development of context

services. The transformation into executable services is semi-
automatic.

The market segment of web based development environ-
ments is still relatively young. Not having many established
environments, there is a huge potential for research and
collaboration in this area. Theia [17], is a textual DSL tool sup-
porting both desktop and web based IDEs. Pyro [7] is a web
base graphical modelling environment for the collaborative
development of web applications based on DSLs. Pyro, like
DIME, is itself a product modelled with the Cinco [18] Meta
Tooling Framework, which provides a suite of textual DSLs
in which to specify the models for which to generate editors.
The MGL ("Meta Graph Language”) defines the structural
information on the tool’s model; the “Meta Style Language”
(MSL) file specifies the visual characteristics (e.g. shapes and
colors) of this model. The “Cinco Product Definition” (CPD)
file specifies the details of the tool generation. Both DIME and
Pyro are advanced graph model editors generated in this way
from Cinco specifications. In this sense, they share a common
philosophy, the semantic and syntactic characteristics of their
respective models and edit/check/manipulate capabilities are
described formally in their MGL, MSL and CPD files.

To interact with external entities, Micro service [19] is a
popular way to develop modular, reusable and autonomous
service components. We adopt this approach to extend the
functionalities of two of the platforms in a model driven
way. Following the same principles of graphical microservices
architectures, AjiL [20] is a good effort in this direction,
but due to performance delays in complex applications, they
shifted their focus from graphical to textual notations.

III. PROBLEM STATEMENT

We consider the DIME [6] and Pyro [7] Cinco-products
as our case study. Both are graphical Integrated Modelling
Environments for low-code/no-code application development,
used to develop research [21], [22] as well as industrial
applications. We will use DSLs to virtualize the technological
heterogeneity of the services, delivering a simple, coherent and
efficient extension to both low-code modelling platforms.

Concretely, we show how to extend the capabilities of the
DSLs through new, heterogeneous services. We

1) extend DIME, an offline eclipse-based general-purpose
MDD environment for Web applications, by integrating
a generic RESTful service as a new component, tech-
nically adding a new executable SIB that a) represents
and b) executes this REST service;

2) extend Pyrus/Pyro, a collaborative, web based special-
purpose MDD environment for data analytics and
AI/ML, by integrating cloud-based enterprise services in
a similar fashion. Here we chose Amazon Web Services.

The models in the 2 IMEs are different: DIME has rich
models that cover processes, data, GUI, roles and security,
and supports both dataflow and control flow models. Pyrus
is simpler, and supports only dataflow modelling, which is
popular and suffcient in the analytics pipelines it addresses.

As the specific integration depends on the characteristic and
expressive power of the models, there are differences.

The extension by integration adds to the tools the capabil-
ity to communicate with sophisticated enterprise ecosystems,
without sacrificing the flexible yet intuitive modelling style for
the no-code users, who just use the DSLs that are available.

IV. OVERVIEW OF THE IMES

Domain-specific languages aim at minimizing the do-
main/IT knowledge gap between domain experts and software
developers by lifting the vocabulary, granularity and structure
of the application domain into the modelling language, so
that the modelling entities stay familiar to the domain experts
and their intuition is indeed correct. Domain experts prefer
graphical languages because of the haptic functionality of
drag-and-drop from a collection of functionalities is an apt
metaphor for the construction of complex behaviors from an
appropriate network of identifiable, well understood building
blocks along intuitive control flow and data flow patterns.

The effort to develop these tools from scratch is enormous.
Consequently, the specialization and evolution of such tools
is hindered by the sheer cost and complexity of managing
their code and its quality and support. Cinco [18] was a
game changer: a meta-level platform that wipes out this cost
and complexity by providing the above described domain
specific graphical modelling and code generation capabilities.
Most Cinco products are based on Eclipse, enhanced with
graphical modelling tools and various plug-ins. Suddenly,
one can create a new Integrated Modelling Environment by
specifying properties in three files and availing of the Cinco
code generation capability for the target execution environment
(e.g, eclipse or web). Modifications are not anymore at the
code level: to change DIME or Pyro, one edits the specifying
files and re-generates the tool with the appropriate generator.

In this paper!, we will discuss the extension and integration
of external systems as micro services in two of the Cinco’s
products DIME and Pyro (particularly Pyrus).

A. DIME

DIME is an Integrated Modeling Environment based on
J2EE eclipse, to design, develop and deploy web applications
in an agile paradigm. Its model types help users to graphically
model and develop different aspects of ordinary web applica-
tion: (i) data model, (ii) GUI model, (iii) business logic in
terms of processes and persistence, and (iv) roles and security
model. The specific functional capabilities are provided to the
users as a family of Graphical DSLs. The GUI DSL and a
DSL providing a collection of generic blocks (called SIBs, for
Service Independent Building Blocks) come with DIME, and
other, domain specific DSLs can be added at need. Modelling
in DIME happens mainly by the mechanism of drag-and-drop
of DSL components on a canvas, and components comprise a
node and a predefined set of outgoing edges. DIME supports
both data and control flow to implement different aspects of

IThe complete project code is available in Github:

https://github.com/ahmadch1991/syrcose21

business logic. Consistency checks are built-in in the DIME
MGL and MSL, so that errors are either prevented (e.g., an
output cannot connect to another output) or detected (e.g. the
model is incomplete because some edges are dangling, not
connected). DIME follows the One Thing Approach philoso-
phy [23] by enforcing the SIBs to be generic and encapsulate
only the required functionality. This way, SIBs are easily
understandable and reusable, and application experts that are
not coders can develop complex applications by using the SIBs
in the provided DSLs. GUI models represent single pages of
the web application and links to the underlyong functionalities.
Process models can be hierarchical, i.e. contain other process
models, this way easing the organization and comprehension
of the structure and behaviour of complex applications. Once
the models are ready, the product generation step feeds the
models collection to successive model-to-model and model-
to-code transformers, resulting in a complete code generation
for a standard web application runtime.

The setup for the development environment for DIME
requires Java version 1.8 and eclipse dependencies to be
installed on the development machine.

B. Pyro

In contrast to DIME, Pyro is a web based Cinco-product
that runs in a web browser and turns it into a collaborative
domain-specific graphical modelling environment for data-
flow applications. Pyro stores objects and data types in a
loosely coupled manner [24]. To incorporate the rich features
of typical web application, like the built-in support of cross-
platform and a reusable components focused architecture, its
front-end is built upon the Angular Dart [25] framework.
To meet the needs of uninterruptible user interaction with
the modelling environment, data exchange is implemented
via non-blocking REST-based asynchronous communication.
As a more recent development, Pyro is being enhanced with
performance optimization and integration of external systems.

Pyrus is a specific Pyro derivative specialized for dataflow
models executing within the popular Jupyter notebook envi-
ronment. It is therefore particularly attractive for data analytics
and AI applications, that are frequerntly coded in Python.

Working with Pyro/Pyrus requires the platform deployment
on a local or remote server accessible via browser.

V. EXTENDING THE IMES

We show now how to extend DIME and Pyrus with RESTful
services and cloud-based AWS services, respectively. This
happens by implementing a new DSL consisting of a collection
of capabilities that run on an external platform in a different
technology. Effectively, these are akin to microservices. We
show here exemplarily how to implement one such microser-
vice for each case. The extension to other RESTful services or
other AWS or similar services is then easy to achieve following
these blueprints.

DIME

Native
Library %

Control Layer |« 1
(Business Logic)

A TN
Interface Layer
v (Gun)

s

Data Layer
N ,/I

Fig. 1. DIME: Modelling Architecture and Native Library support

A. RESTful extension of DIME

We show now how to develop a generic Service Independent
Building Block (SIB) in DIME that communicates with any
external RESTful system.

Extending the DIME functionality happens by using the
support of native library it provides. In DIME’s multi-model
type architecture, the business/logic model type is where the
new SIBs will be utilized. As shown in Fig. 1, the existing
model architecture is extended with the addition of a native
library as a new block belonging to the process/business
logic model type. The native block will be merged to the
process/business logic models during the automated code gen-
eration phase for the web application. Concretely, the extended
functionality will be integrated as Java code with the remainder
of the application during the compilation, and this way it will
not add any additional performance penalty.

package app.demo
sib rest_read_str_list
url text
input_var
input text
output text
-> success
output:
-> noresult
-> failure

file_path#Java_fn

text

[text]

Listing 1. SIB declaration for the "REST Read” SIB

For the SIB implementation, we consider here a REST
service that acts as a server and returns a list of country
names on the basis of a country code input, e.g. United
Kingdom for input ‘uk’, and the name of all countries from the
database for input ‘all’. The service is implemented in PHP
in a conventional fashion, and deployed on an external public
server. It will respond to the requests generated by client SIBs

Now, we need to create a new client SIB with appropriate
characteristics to communicate with RESTful service. This
encompasses the SIB declaration and the SIB implementation.

The SIB declaration is shown in Listing 1.

) Basic
~ B Native
~ @ app.sibs
rest_read_str_list { Text Text Text Text) -> |success|noresult|failure|
rest_read_str_str (Text Text Text Text) -> |success|noresult|failure|

Fig. 2. SIBs explorer with the new Native SIBs

« Firstly, in the project explorer we add a new, empty file
with extension “.sib” and the name of the proposed SIB.

o This SIB declaration file contains the signature of the new
SIB. It starts with the keyword ”sib”, followed by the
new SIB name, that in our case is REST read_str_list,
followed by a colon and the path to the attached Java
function. This is the function be invoked when the SIB
is used in the process modelling.

o The next section contains the proper signature: the list
of inputs and outputs, with name and data types. In our
case, the SIB accepts the following I/O:

— URL of an external server

— input variable name and data to create a valid URL
at run time.

— the output variable name is also added in the sig-
nature, to extract the requested data from server
response for further JSON parsing.

o finally the list of different control branches based on
outcomes. In our case the three branches are “’success”,
which returns a text output provided by the external
service, “noresult” of the external services returns no
result, and failure” in case of error in the communication
with the external service.

For the SIB implementation, The RESTful "Rest Read”
service is implemented in PHP in a conventional fashion, and
deployed on an external public server. It will respond to the
requests generated by this SIBs.

Once the declared SIB, its signatures and the attached Java
function are validated by the platform, the SIB will be visible
in the explorer as a Native SIB, with the other default SIBs
as shown in Fig. 2. At this point it is ready to be used, and
available to the DIME users as a drag and drop item, ready to
be inserted in any process model.

Fig. 3 shows the visual representation of the newly devel-
oped SIB, as it appears when it is used in a process model. The
required four inputs are being fed to this block using data flow
(dotted) arrows. We see the three outgoing branches, labelled
as defined. On success, the result will be conveyed as a string
(or list of strings) to the successive SIB.

DIME automatically validates semantic and syntactic errors
after the insertion and data connectivity of SIBs, ensuring this
way the correctness of intended behaviour (automatic quality
assurance [26] of models).

B. Cloud extension of Pyrus

We extend now the Pyrus is an online data analytics
platform built using Pyro with Amazon Web Services (AWS),

rest_read_str_list

url ‘Text
input_var :Text
input Text
output :Text

Success
output :[Text]

lterate

@®

D list :[Texi]

Fig. 3. The REST Read SIB in use: Visual representation in a model

choosing the Amazon Translate service [27]. Pyrus commu-
nicates with Jupyter hub at the backend. It uses the RESTful
protocol to read function signatures and execute the attached
python code. As shown in Fig. 4, Jupyter and Pyrus commu-
nicates in asynchronously manner.

The mechanism for the new AWS Translate block definition
and implementation is similar to the DIME SIB declaration,
but it only contains the signature, no outgoing branches.
As Pyrus supports a dataflow modelling style, there are no
control elements (the branches). The signature declaration
starts with the # keyword, it is followed by meta data and
the implementation of the functions in a python file. It has an
extension “.py” and is located in the Jupyterhub space. Pyrus
automatically reads these annotated signatures and shows them
as drag-able blocks in its explorer.

/Pyro Modeling Environment\

')

WS

i Explorer ¢ i

| o o

@ I Pelette : i t
¢ i Checks |2 i *‘:‘

\\ s ,, —

Pyro Pyrus’ I
>
Pyro Runtime g—
S

¥/ov S

Fig. 4. The Pyrus/Pyro Architecture extended with AWS

Fig. 5 shows the working pipeline of AWS_translate: in
reality we have defined 2 blocks, AWS init_session and AWS
translate_string. The workflow is in fact logically divided in
two phases: initialization and implementation.

The initialization block must meet the preconditions of the
external server in order to use its services. Communication

with the AWS server/services requires a valid session, val-
idated with credentials, i.e. access key, secret key, server
information. The “AWS.init_session” initiates the communica-
tion transaction with the AWS server. It accepts the required
inputs/tokens from connected grey blocks, which are constants.

Once successfully authenticated by AWS, a session token
is provided for further communication with AWS. This token
(output) is fed to the "AWS.translate_string” block along with
the other required inputs: the text string to be translated and
the code of the from and to languages.

Finally, the (translated text) result is passed to the next
block, “text_util.print_string”, that prints it on screen.

The pipelines are automatically validated by the underlying
modelling platform to check for connectivity errors of the
blocks on the canvas.

C. Tool and Technologies

The tools and technologies used for these implementations
and extensions are Eclipse, Java, JSON library, PHP, Python,
DIME, Pyrus, Jupyter Hub and Amazon Web Services.

As the methodology is generic, it can be followed like a
blueprint to implement communication and integrate a large
variety of external services and platforms. The resulting drag
and drop components enrich the DSL domain and expressive
features of low code development in the mentioned platforms.

VI. CONCLUSION AND DISCUSSION

We presented a generic extension mechanism to two low
code development environments along a microservice phi-
losophy. We showed it by integrating preexisting remote
RESTTful services and cloud-based enterprise system services
as new drag and drop components in the respective DSLs. In
DIME, an offline low-code IME, we used the native library
mechanism, with signature declaration, linked Java backend
code, and the code is merged with the logic layer at compile
time. Pyrus, an online no code graphical data analytics tool,
is linked with Jupiter Hub for functions discovery and code
execution. To display new python functions as components in
Pyrus, custom signatures are added to the python files defined
in Jupyter hub, and the data flow pipeline of the service is
modelled in the Pyrus frontend.

The simplicity and generality of the integration are an im-
portant feature of the chosen platforms. We envisage in fact a
systematic integration of DSLs for various application domains
stemming for our research collaborations. The simpler this is,
the easier is the adoption of the approach across diverse appli-
cation domains, research groups, and industrial partners. The
(hand)code based extension approach of most popular low-
code environments, that do not use formal models, nor gener-
ate “intelligent” modelling domains that have built-in checks
for the model conformance are in fact inferior and sources
again of complexity in the management of heterogeneity, code
maintenance and evolution. The next application domains will
be data visualization and data streaming platforms. We will
support more AI/ML and data analytics functionality both in
DIME and in Pyrus, adding also cross-platform integration, in

us-east-1 (& AWS.init_session e
) region_name:te:
ko] Gb) access_key:text
D secret_access_key:text
oo (@ ~— \laws_session:sessio

Hello, this is a sample text and welcome to hello world.
en

deG’

&

"~ BRMIEEIESE e,

a

AWS. translate_string

) valid_session:segsion

) input_string:text

) from_language_gode:text

text_utilprint_string

to_language_code:text

translatedistringﬁe“

Fig. 5. Pyrus pipeline using AWS_translate

order to use the analytics capabilities of Pyrus pipelines in the
DIME Digital Twin applications for Industry 4.0.

ACKNOWLEDGMENT

This work was supported by the Science Foundation Ireland
grants 13/RC/2094 (Lero, the Irish Software Research Centre)
and 16/RC/3918 (Confirm, the Smart Manufacturing Research
Centre).

[1]
[2]

[5]
[6]

[7]

[8]

[91

[10]

[11]

REFERENCES

R. Waszkowski, “Low-code platform for automating business processes
in manufacturing,” IFAC-PapersOnlLine, vol. 52(10), pp. 376-381, 2019.
R. Sanchis, 0. Garcia-Perales, F. Fraile, and R. Poler, “Low-code as
enabler of digital transformation in manufacturing industry,” Applied
Sciences, vol. 10, no. 1, p. 12, 2020.

S. J. Mellor, T. Clark, and T. Futagami, “Model-driven development:
guest editors’ introduction. ieee software, 20 (5). pp. 14-18. issn 0740-
7459, IEEE software, vol. 20, no. 5, pp. 14-18, 2003.

(Accessed Feb, 2021) Intelligent process automation and
the emergence of digital automation platforms. [Online].
Available: https://www.redhat.com/cms/managed-files/mi-451-research-
intelligent-process-automation-analyst-paper-f11434-201802.pdf

S. Newman, Building microservices: designing fine-grained systems.
O’Reilly Media, Inc.”, 2015.

S. BoBelmann, M. Frohme, D. Kopetzki, M. Lybecait, S. Naujokat,
J. Neubauer, D. Wirkner, P. Zweihoff, and B. Steffen, “Dime: A
programming-less modeling environment for web applications,” in
ISoLA 2016, T. Margaria and B. Steffen, Eds. Cham: Springer
International Publishing, 2016, pp. 809-832.

P. Zweihoff, S. Naujokat, and B. Steffen, “Pyro: Generating domain-
specific collaborative online modeling environments,” in Fundamental
Approaches to Software Engineering, R. Hihnle and W. van der Aalst,
Eds. Cham: Springer International Publishing, 2019, pp. 101-115.
(Accessed Feb, 2021) Gartner forecasts. [Online]. Available:
https://www.gartner.com/en/newsroom/press-releases/2021-02-15-
gartner-forecasts-worldwide-low-code-development-technologies-
market-to-grow-23-percent-in-202 1

K. Ordoiiez, J. Hilera, and S. Cueva, “Model-driven development of
accessible software: a systematic literature review,” Universal Access in
the Information Society, pp. 1-30, 2020.

A. S. Maiya, “ktrain: A low-code library for augmented machine
learning,” arXiv preprint arXiv:2004.10703, 2020.

G. Daniel, J. Cabot, L. Deruelle, and M. Derras, “Xatkit: A multimodal
low-code chatbot development framework,” IEEE Access, vol. 8, pp.
15332-15346, 2020.

”»

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]

[26]

[27]

B. Steffen, T. Margaria, R. Nagel, S. Jorges, and C. Kubczak, “Model-
driven development with the jabc,” in Hardware and Software, Verifica-
tion and Testing, E. Bin, A. Ziv, and S. Ur, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2007, pp. 92—-108.

T. Margaria and B. Steffen, eXtreme Model-Driven Development
(XMDD) Technologies as a Hands-On Approach to Software Develop-
ment Without Coding, A. Tatnall, Ed. ~Cham: Springer International
Publishing, 2020.

B. Steffen, T. Margaria, A. Claen, and V. Braun, “The metaframe’95
environment,” in CAV, R. Alur and T. A. Henzinger, Eds. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1996, pp. 450-453.

F. Santos, I. Nunes, and A. L. Bazzan, “Quantitatively assessing the
benefits of model-driven development in agent-based modeling and
simulation,” Simulation Modelling Practice and Theory, vol. 104, p.
102126, 2020.

H. Moradi, B. Zamani, and K. Zamanifar, “Caasset: A framework for
model-driven development of context as a service,” Future Generation
Computer Systems, vol. 105, pp. 61-95, 2020.

(Accessed Feb, 2021) Cloud and desktop ide platform. [Online].
Available: https://theia-ide.org/

S. Naujokat, M. Lybecait, D. Kopetzki, and B. Steffen, “Cinco: a
simplicity-driven approach to full generation of domain-specific graph-
ical modeling tools,” International Journal on Software Tools for Tech-
nology Transfer, vol. 20, pp. 1-28, 06 2018.

L. Baresi and M. Garriga, “Microservices: The evolution and extinction
of web services?” Microservices, pp. 3-28, 2020.

F. Rademacher, J. Sorgalla, P. Wizenty, S. Sachweh, and A. Ziindorf,
“Graphical and textual model-driven microservice development,” in
Microservices. Springer, 2020, pp. 147-179.

T. Margaria and A. Schieweck, “The digital thread in industry 4.0,”
in International Conference on Integrated Formal Methods. Springer,
2019, pp. 3-24.

S. Jorges, C. Kubczak, F. Pageau, and T. Margaria, “Model driven design
of reliable robot control programs using the jabc,” in Proc. EASe’07,
vol. 07, 2007, pp. 137-148.

T. Margaria and B. Steffen, “Business process modeling in the jabc:
the one-thing approach,” in Handbook of research on business process
modeling. 1GI Global, 2009, pp. 1-26.

J. Neubauer, M. Frohme, B. Steffen, and T. Margaria, “Prototype-
driven development of web applications with dywa,” in ISoLA 2014,
T. Margaria and B. Steffen, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2014, pp. 56-72.

(Accessed Feb, 2021) Angular dart open source packages. [Online].
Available: https://github.com/angulardart

S. Windmiiller, J. Neubauer, B. Steffen, F. Howar, and O. Bauer, “Active
continuous quality control,” in Proceedings of the 16th International
ACM Sigsoft symposium on Component-based software engineering,
2013, pp. 111-120.

(Accessed Feb, 2021) Amazon translate; fluent and accurate machine
translation. [Online]. Available: https://aws.amazon.com/translate/

