
Historical Civil Registration Record Transcription
Using an eXtreme Model Driven Approach

Rafflesia Khan∗, Alexander Schieweck ∗, Ciara Breathnach∗†, Tiziana Margaria∗†
∗University of Limerick, Limerick, Ireland - {name.surname@ul.ie}

†Lero: The Irish Software Research Centre

Abstract—Modelling is considered as a universal approach to
define and simplify real-world applications through appropriate
abstraction. Model-driven system engineering identifies and inte-
grates appropriate concepts, techniques, and tools which provide
important artefacts for interdisciplinary activities. In this paper,
we show how we used a model-driven approach to design and
improve a Digital Humanities dynamic web application within
an interdisciplinary project that enables history students and
volunteers of history associations to transcribe a large corpus
of image-based data from the General Register Office (GRO)
records. Our model-driven approach generates the software
application from data, workflow and GUI abstract models, ready
for deployment.

Index Terms—Software and System Engineering, Model-
Driven Development, Web Application, Historical Civil Record,
Digital Humanities, XMDD, DIME.

I. INTRODUCTION

Historical data concerning individual life events, combined
with wider socio-economic records provide excellent sources
for analysis and reflection. Accordingly, the digitalisation
of corpora of historical data concerning various aspects of
the life and activities of individuals and communities is an
essential precondition for the ease of analysis, for example
using modern data analytics and AI techniques. The Digital
Humanities Manifesto 2.0 (DH) [1] presents DH as a discipline
which studies the intersection of the disciplines of computing
and humanities. DH currently combines methods, tools, and
technologies provided by the computing sciences (such as data
visualization, information retrieval, text mining etc.) with the
perspectives and methodologies stemming from the humanities
disciplines (such as history, trend analysis etc). One of the
increasingly popular means of using digitally available data
foots on the concept of a Digital Twin (DT) [2]. A Digital Twin
is a virtual and abstract model of a physical entity (an engine,
a patient, a student, a plant or a city) that serves as the en-
abler means for simulation, analysis, prediction, and real-time
analysis of the system it represents. It has gained enormous
relevance and popularity in recent years as it provides a handy
virtual model of a physical process or service. In the Industry
4.0 context, it often leverages technologies such as the Internet
of Things (IoT), Artificial Intelligence (AI), Cyber-Physical
Systems (CPS) and Big Data for digitization. By definition,

“Death and Burial Data: Ireland 1864-1922” is a project funded by Irish
Research Council Laureate Award IRCLA/2017/32 to Dr. Ciara Breathnach
(Department of History - DH), in cooperation with Prof. Tiziana Margaria
(Software Systems, Dept of Computer Science and Information Systems -
CSIS) at the University of Limerick.

digital twins refer to a “live” model that continuously updates
and changes as its physical counterpart changes [3]. In the
Humanities, the DT concept unfold a massive potential to
transform the landscape of how DH methods can assist in the
representation, analysis and understanding of our past, which
in turn can provide useful learnings for the present and future.
It promises a tremendous innovation potential, and most of
the current research on digital twins is focusing on specific
implementations for concrete use cases and the generalization
towards reusable abstract models [4]. Developing a mirror of
a traditional Digital Humanities record system through the
digital twin lens is time-consuming, complicated and requires
deep interdisciplinary knowledge in the humanities domain
and model creation and software development. Too often, this
induces a knowledge gap, giving rise to fundamental research
questions on how to connect the two disciplines in such a way
that a “lingua franca” can bridge the concepts and the means
of expression and analysis of both disciplines.

We use a specific kind of Model-Driven Design, called
XMDD for (eXtreme Model-Driven Design) [5] to bridge this
gap. Model-Driven Development (MDD) specifically focuses
on supporting the collaborative (software) development pro-
cess by using abstract representations of data and processes.
Using these models, we combine computing knowledge with
the formal descriptions of the historian’s knowledge, and this
way succeed in reducing complexity and improve productivity,
as described by [6].

To reduce the discipline-specific knowledge gap between
humanities and technology, the project “DBDIrl1 - Death
and Burial Data: Ireland 1864-1922 [7]” adopts a data-driven
public-history and digital-humanities research methodology
which uses advanced MDD for application development. DB-
DIrl is an interdisciplinary project that combines historians’
understanding of Big old data with computer analysts’ tools
and methodologies. Its objective is to build an extensible and
reusable Big Data interoperability and analysis framework
that supports flexible Big Data integration between different
historical data sources and provides a web-based platform for
the analysis of its underlying corpora. The corpora stem from
various sources of national records, like the civil registration
records of the General Register Office, the individual level
census returns of 1901 and 1911, and various coroner’s court
records within the period 1864 to 1922, i.e., from the intro-

1https://www.dbdirl.com/



duction of civil registration records in 1864 to 1922, when
the Irish Free State was established. This Digital Humanities
platform needs to be robust and easily evolvable, able to
integrate different data and interpreted terms, able to manage
and analyze various data representations and enrichments,
all in a transparent and FAIR (i.e., Findability, Accessibility,
Interoperability, and Reuse of digital assets) [8] data context.

This paper focuses on developing an efficient and flexible
data access mechanism to make the heterogeneous sources of
historical data available to a wider range of researchers through
adequate user interfaces.

DBDIrl applies the eXtreme Model-Driven Approach for
complete design, development and execution of a Big Data
interoperability framework. The first component of that frame-
work is a Web application that supports efficient and correct
data entry. We refer to it as the Historian DIME app or His-
torian app in short, and it is completely developed following
a model-driven approach.

Key contributions of this work are:
• A model-driven Web application for input and storage of

Irish Civil Registration data, specifically death registra-
tion data, from 1864 to1922, introducing a database for
subsequent digital data analysis.

• Producing a systematic and clean data source for (rele-
vant subsets of) the death records. Massive information
regarding the death records was previously collected as
images of the original registers stored as TIFF files, plus
an excel index summary. The page-by-page images of the
handwritten records were digital, but it was impossible to
analyze them. The database of systematic and clean data
can now be processed for further research, concerning
the discovery of information, its evolution, trends over
time, and finding insightful patterns about individuals and
families.

• Illustrating the impact of the MDD approach on the adap-
tation and evolution of the Historian App, from its first
version to the current one, including the re-usability of
components and the refinement of its organization, to sup-
port increasing levels of error prevention and embedded
error checking. It is essential if we want to gradually build
a platform, where such applications and data analytics
applications can be quickly and correctly assembled from
a service-oriented Domain Specific Language that covers
the functionalities and the data occurring in a history
research context.

• Showcasing the use of DIME [9], a specific low-code
application design framework, where stakeholders can
develop their specific application without any coding
knowledge.

To our knowledge, this is the first attempt to work with
Historians as customers using a model-driven approach.

The paper is organized as follows: Section II presents
the project background and motivation. Section III describes
related work in the fields of MDD and Big data analysis. Sec-
tion IV discusses the co-development methodology and its life-

cycle along with an explanation of the abstract architecture and
workflow of the proposed XMDD based application. Section V
illustrates the model types of the XMDD technology and the
concrete design of the Historian App. Section VI describes
some major challenges with corresponding proposed solutions.
Finally, Section VII concludes the paper and highlights some
future work.

II. DBDIRL PROJECT BACKGROUND

The General Register Office (GRO) is responsible for
recording Irish civil information of birth, marriage and death.
In 2016 it placed historical data online for free on irishge-
nealogy.ie. To initiate a search at the site, some basic personal
information is required, but it has limited functionalities. This
site holds civil data sets regarding individuals, but for the
fundamental objectives of DBDIrl, a centralized data storage
containing complete and correct data is needed for future
research and exploration. As the primary data, DBDIrl uses
the Death Registration Data (DRD) from 1864 to 1922 directly
shared by from the GRO. We received approximately 4.3
million individual Civil Register records of death registration
in two different formats. Over 1 TB were images produced
through high-resolution scans of the original register pages and
provided as .TIFF files. We also received .csv files with group
id, name, age, superintendent’s district and .TIFF file path of
all individual death records. Fig. 1 shows a page from the death
register. Each scan captures a full register page, including up
to 10 individual records, each recording an individual death.

Fig. 1: Death record of Irish civil registration: the GRO
original register page (TIFF file available at irishgenealogy.ie)
with properties highlighted.

In the absence of complete metadata and a fully digital
version of the image’s contents, the .TIFF file is de facto just
a picture, i.e., an unstructured analog image of the page, and
useless for the purpose of automatic analysis of the contained
information. A human eye sees easily that every record has 11
index properties (identified and numbered in Fig. 1) describing
the death event and its circumstances. This set of complex



properties collectively represents the individual’s death event
along with its essential information. Their complete digiti-
zation, meaning the transformation of the TIFF images into
a curated repository of clean and faithful data that is fully
automatically searchable and analyzable, is the aim of the
current phase of DBDIrl.

For essential quality guarantee, the historical digital data
collection must maintain with certainty the overall integrity of
the original historical data. Additionally, the technology needs
to enable domain experts, like historians and archivists, to
handle the maintenance of the data collection and the evolution
of the applications. These experts are mostly not programmers,
and most certainly not experienced in all of web development,
databases, software architectures, UI design and development,
privacy and security, testing and deployment. So we adopted a
programming-less low code approach based on an Integrated
Modelling Environment (IME) that subsumes most of these
characteristics in the development platform of choice.

The goal consists of three main tasks:
1) transform the TIFF files into a digital curated repository;
2) achieve this transformation in a low-code environment

that is easily maintainable and evolvable, effectively
building a new generation data entry, storage and man-
agement platform for digital humanities;

3) make historical data from heterogeneous sources avail-
able to a wider range of researchers through adequate
user interfaces and easy-to-use analysis tools.

Currently we are working on tasks 1 and 2.

A. Automated Digitization Attempt

DBDIrl started with attempts to transcribe the .TIFF files
to an operable, structured data format. A widespread approach
would use OCR or Natural Language Processing (NLP) tools
to extract the text from each .TIFF file. While the state of the
art tools work quite well for printed texts, they severely failed
in our case. In fact well-known language processing tools
could not produce any useful results. There are many reasons
for this failure: (1) death records are handwritten texts, which
is a difficult problem; (2) they were written by different regis-
trars and their superintendents, with considerable variation of
handwriting pattern; (3) tools have difficulty handling the data
variety, (4) for some writers the corpus of records is very small
and insufficient for a good training set; (5) very few existing
tools extract the text as individual properties, thus even in
case of success a significant manual post-processing would be
needed; (6) accurate text extraction needs a well-trained model
with a huge and precisely labelled data sets for training, which
is not available here; (7) there should be reliable methods to
combine all the individual property texts into correct death
record entries, which is difficult when most properties are not
correctly recognized; and (8) there is a scalability issue when
uploading millions of records into a server.

B. Supported Digitization

As a consequence, we abandoned an automated recognition
approach for the time being, in favour of a manual, but

highly assisted and supported data enrichment through a web
based application. In this sense, the first and second task
now align much more closely: We have now an XMDD
based web application for the historians’ data entry, where
application developers and historians work side by side in
application design and development within a model-driven,
low-code environment. This application development approach
helps the historians to further develop and maintain their
own application at the model level, without the need of any
programming knowledge.

III. RELATED WORK

Since the emergence of UML and its predecessors, several
MDD approaches have been proposed in the literature to
address the generation of code from models representing
various aspects of the system [10], including for telecommu-
nications [11], web and client applications [12]–[15]. MDD
techniques are mainly used for decreasing the effort needed
for application development and maintenance and increase
the portability to new platforms. The eXtreme Model-Driven
Development (XMDD) [5] approach is a low-code approach
that combines several software designs and programming
paradigms such as agility, model-driven development, service
orientation, domain-specific languages, data management, data
flow and control flow design, Formal models and methods,
generative programming, eXtreme programming, aspect ori-
entation and full code generation [5], [16]. According to [17],

“Models allow sharing a common vision and knowl-
edge among technical and non-technical stakehold-
ers, facilitating and promoting the communication
among them.”

In terms of specific MDD approaches and applications, [18]
proposed automated extraction, analysis, and visualization of
data and metrics on model-driven artifacts. In cyber-physical
systems, [19] and [20] demonstrate the use of MDD in
robotics. [21] proposed a DSL for service customization for
telecommunications sytems. [22] proposed a Domain-Specific
Modelling Language for smart home applications with two
transformation templates that generate code from instances of
SmartHomeML for SmartThings and Alexa. They designed the
transformation using an MDD approach in a platform-specific
model-to-code implementation artefact.

In e-learning, [23] propose a course management system
that stores a course model as machine-readable components
that generates a final course in different platform-specific
target models. In web applications, modern Single-Page Appli-
cations (SPA) use MDE to connect between client and server
of a web application, and [24] present a model-driven approach
for the consumption of RESTful Web services in SPA.

Ref [25] defines a Machine Learning based MDE approach
that analyzes Big Data for probabilistic modelling by defining
a domain-specific modelling language. In Big Data, [26]
introduced SkyViz, a model-driven approach for automating
the translation of user objectives to visualize the Big Data
Analytics’ results into a set of most suitable and concrete



visualizations. [27] proposed a design method to specify,
deploy, and monitor Big Data Analytics solutions using MDD.

While all this shows that MDD is applied in a variety of
relevant areas for the DBDIrl project, as per our study there
are no MDD based context-aware web applications that work
with real-world big data archiving, management and analysis.

IV. THE HISTORIAN APP AS A MDD APPLICATION

The Historian App we developed and evolved in a number
of iterations is the DBDIrl solution to data entry, storage and
management for the historical civil registration (i.e., death)
data of Ireland from 1864 to 1922.We adopt the eXtreme
Model-Driven Development (XMDD) paradigm [28], which
provides a fast turnaround of easily modifiable prototypes
understandable to the non-IT experts. In this way, a more
collaborative approach between domain experts (here the
historians as central stakeholders) and developers establishes
itself along the entire project life cycle.

The agile model-based approach helps repeat the feedback
and co-design cycles with the historians in a continuous
refinement process. In addition, using models also helped the
developer team when reflecting, presenting and explaining
the work progress to the historians and the historians when
understanding and monitoring the development.

We chose the DIME Integrated Modelling Environment [9],
[29], based on Domain-Specific Libraries (DSLs), as the
XMDD framework for our project. DIME provides reusable
features, and functionalities [20], [30] where developers can
develop web applications within a low-code environment
without having any programming knowledge. DIME supports
model types for processes, services, data, and the UI that
are integrated and kept consistent to a reasonable extent
by the platform. Many domain-specific libraries (DSLs) are
already available, for example, for the GUI design of the web
applications. New services as well as entire new DSLs can be
introduced in an easy way. These characteristics help the IT
specialists and the domain specialists to better understand and
monitor the development throughout the project life cycle on
the basis of the domain knowledge.

A. The IME-based co-development lifecycle

The application development life cycle of the Historian App
is illustrated in Fig. 2.

The project development life cycle involves in each phase
both the computer scientists and historians, in different roles.
The historians become successively more skilled in dealing
with the models and application design. At project completion
the historians may be able to modify and evolve, or even
design and implement, their own web applications on the basis
of the existing DSLs, without any coding knowledge.

1) Phase 1 - Application Modelling:
As illustrated in Fig. 2, the project life cycle starts by col-
lecting and collaboratively analyzing the historians’ require-
ments. They are materialized as abstract workflow models
with the corresponding (unique and coherent) data model.
Data and processes go hand in hand in DIME, so they are

typically co-developed and co-evolved in an XMDD approach.
In this phase, the historians used their expert knowledge
about handling historical data and the correctness of the
data and the records. The historians collected the data and
analysed their characteristics. While historians were finalizing
the data properties that they need for their further analysis, the
computer scientists started designing the data models including
entities, attributes and relations. Then the historians specified
how they want the data to be stored, explaining what is already
there and usable, what else needs to be added, and how. Next,
the CS team designed the corresponding data and workflow
models, expressing the high-level application logic and the
elementary operations required for application development.
Gathering this expert knowledge in terms of workflows and
properties or conditions (on the individual data item, the
record, the workflows) corresponds to gathering the historian
data entry application’s static and behavioral requirements. At
this phase, the historians also validated the models and helped
in finalizing them.

2) Phase 2 - Model Completion and Compilation:
The second phase includes all the XMDD: model refinement,
followed by DSL extension and implementation of new func-
tionalities. Here the historians participated as stakeholders for
detailed questions, the CS team as fine granular designers
and developers. The CS team extended the DSLs where
functionalities were missing, implemented them in a reusable,
service-oriented way and modelled the Web application GUI.
A growing hierarchy of nested workflows structure the appli-
cation logic in behavioural features. For the business logic they
acted as application configurators on the basis of these models
and services. We reuse existing DIME process models such as
RetrieveEnumLiteralSIB that gets a field status (illustrated in
Fig. 4) but also designed new processes for further required
operations such as GetPrePopulated to load in the application
a predefined set of data from a file. This phase also includes
the models-to-code generation phase from the collection of
validated models, and the deployment on a standard web stack.
It produces a deployed, running application, that is further
examined, updated, recompiled and redeployed.

3) Phase 3 - Application Execution and Testing:
In this phase, the Historians and other end users (like history
students and volunteers in the transcribathons for the data
entry) test and use the application, as shown in Fig. 3.
Small adjustments and optimizations may be carried out as
a consequence of live testing. This is the validation and use
phase of the current version of the application. It includes live
debugging, error handling and fixing, as well as the definition
of new features and changes for the next development phase.

The whole cycle follows an agile software development
procedure.

B. Modeling the Historian Web Application: The Full Work-
flow

We describe now the application workflow along with the
explanation of the main processes and GUI models developed



Fig. 2: Collaborative development lifecycle in an IME: agile iterative phases, roles of Historians and Computer Scientists
(CS).

for the application. The Model-Driven Development (MDD)
of DBDIrl starts with listing and developing process models,
the data model and identifying user roles. Fig. 3 illustrates
the feature-level abstract architecture of DBDIrl’s data entry
web application in terms of Processes, GUIs, Actions and
Event Handlers (as indicated by the respective stereotypes
<<Process>>, <<Action>> etc.) along with the connec-
tions among them.

The application homepage2 is a GUI model where users can
login. Its action Login calls the process IsSupervisorGuard,
that checks the login credentials and establishes the user role:
Supervisor or Student.

In the Student role, a successful login directly links to the
EntryTable page, a GUI model where the student sees all the
entries recorded by him/her. Action AddNewEntry leads the
user to the EntryForm page, a GUI model which calls the
CreateEntry process shown in Fig. 4.

On the EntryForm page, users enter the data of all the
records from the .TIFF file of the death record register page,
by filling up field by field the record’s properties in the
corresponding fields on the web page.

2The Historian App is available at https://civilreg.dbdirl.com/home, it is
accessible to predefined, verified users.

CreateEntry is a big process: it receives the data entered
by the user and to do so in an error-free way it calls other
processes that provide support functions. For example, it
uses the GetPrePopulation process for reading pre-populated
data from a file, GetSuggestions to provide pre-populated
options in the Web form as drop-down menu for certain data
attributes, CreateAddress to create a new (complex) address
object with the individual attributes city, county, district and
street. Similarly, CreateTimeDuration creates a duration object
from various time properties. The GetPrePopulation process
receives the group id of a death record provided by the user,
and it reads name, age, superintendent’s district and .TIFF
file path from the .csv files we received from the GRO.
It also auto-fills the corresponding fields of the EntryForm.
The GetSuggestions process reads large lists of pre-populated,
validated values for a number of properties. It displays those
options as a drop-down menu in the form, to ease the input of
attributes like cause of death, registrar name, assistant name,
rank profession and street names of Ireland from 1864 to 1922.
These data collections are pre-validated, as the Historians col-
lected them from 18’s Ireland records. CreateEntry performs
all the individual operations needed to successfully save an
entry with all its values entered by the user (either by hand or
by selecting pre-populated fields), property by property. Event



Fig. 3: Model-driven abstract architecture of DBDIrl’s data entry web application - Feature level

listeners on CreateEntry process help check data validity and
show alert messages in case of a wrong entry (incorrect value
or format). Finally, the action SaveEntry from the EntryForm
successfully saves an entry and sends the user back to the
EntryTable, to process the next record.

Fig. 5 shows the entry table as it is displayed on the
Historian App web page, with the corresponding GUI model
in DIME. We see here that the structure and look and feel
are very recognizable. The data flow is explicitly modelled,
and we recognize buttons (like the CreateEntry button) and
other elements like fields filled from the database and status
indicators that are color coded (orange, green and blue).

From the EntryTable, selecting an entry leads the users to
the EntryDetails GUI: there they can (re)view the entered
entry details and choose to edit the entry (this brings them
back to the EntryForm, filled with all the previously entered
data), or submit the entry for review. The Entry Delete option
is only available to the Supervisor role, who can delete an
entry from the database.

In the Supervisor role, a successful login directly links to
the EntryTable GUI. The supervisor is displayed the user’s

entries and also has other options, like seeing all submitted
and approved entries individually. The Supervisors have a
validation and approval function: they can see the details of
all the entries stored by Student users, and have actions to
perform edits, approve, as well as remove each entry.

Fig. 6 shows the ShowEntry process, with flows for the App-
rove, Submit for Review, Edit, Remove, Close entry operations.
Selecting ManageUser leads the supervisor to a UserTable
page that includes the AllUser GUI (displaying all the users)
and the AddNewUser action. AddNewUser calls the UserForm
GUI, containing all the fields required to creating an user.

Similar to CreateEntry, the CreateUser process performs
all the operations necessary to create a user. It also includes
an event listener that alerts the supervisor in case wrong or
ill-formatted information is provided. After saving a user, the
action EditUser calls the UserForm again with the previously
provided data to edit, while DeleteUser calls the RemoveUser
process to delete the user. Supervisor can also import and
export data to and from the application. An event listener
is used to check issues regarding import/export operations,
together with the processes ExportEntry and ImportData that



Fig. 4: Create Entry process of Historian DIME app including all other processes that successfully stores a death record with
all its attributes and event listeners.

export and import data, respectively.

Altogether, Fig. 3 presents an overview of how the Historian
App is organized, and shows the interplay among all the
Processes, GUIs, (GUI)Actions and Event Handlers.

V. MODEL TYPES AND CONCRETE MODELS

We describe now the main model types, model elements
and models of the Historian App.

A. Data Model

Fig. 7 shows the data model of the application, representing
both the concrete and abstract data. It contains both unidi-
rectional and bidirectional relations such as association and
inheritance. In our finer granular representation of a record,
every Entry has 27 individual properties. Some properties
like Sex, Address, Age include sub properties, which are
at the elementary granularity needed for data analysis. The
decision of moving to these 27 properties from the original
11 properties of Fig 1 is an example of the design choices

for the Historian App stemming from the co-design practice.
As shown in Fig. 7, every concrete user can have base user
who as act as creator (only students) or approver of an entry.
The Entry itself is a concrete type data at DIME (green
data objects at Fig. 7). Most of the attributes of entry are
stored as text or number i.e. primitive attributes of DIME
(small yellow components at Fig. 7). Some are Enum type
attributes e.g. Civil Status with some optional values (brown
data objects at Fig. 7). Some properties may not be present in
the original record: the corresponding cases are captured by the
FieldStatus. Some attributes e.g. Registrar Name are created
as concrete type object so that they can receive list of data
options and presented as drop-down menu to the application
and user can choose the correct information from provides
options. Duration and Address are also concrete type objects
with required values.

B. Graphical User Interface Models

In DIME, the GUI model type represents the structure
(layout and contents) of the Historian app’s individual web



Fig. 5: The Entry Table of the Historian App: Web page (Left) and its corresponding GUI model (Right).

pages. A collection of GUI models defined, therefore the
abstract and concrete “look” of the presentation layer of a
DIME application. We see in Fig. 3 that the created GUI
models connect the GUI and Process Models. Every GUI
models of Historian DIME app is created using components
from DIME palette. The GUI models call process models to
execute an operation. These GUI models are also reusable,
for example we use EntryForm at Fig. 3 for both create and
update operation of each entry.

C. Native DSLs

In DIME, the actions and services are collected in domain
specific palettes that are basically a service or component
oriented DSL. The DSL elements correspond to (calls to) in-
dividual functionalities that are either directly implemented or
provided by an external service provider, like e.g. the database.
The individual functionalities are modelled as special native
types called SIBs, for service-independent building blocks,
where service-independent means that they are widely reusable
across applications. These Native SIBs enable interoperability
on a structural level. Within the Historian app, besides the
pre-existing DIME SIBs we create Native SIBs for different
operations such as data pre-population, CSV file import and
export and to get field suggestions etc.

D. Data-flow

In DIME data flow is explicitly modelled within the process
models. The input/output ports of SIBs can either be connected
directly with each other or used to read and write from/to

variables placed in a dedicated container representing the data
context [9]. Fig. 3 shows the data flow connections of the
proposed application using arrows. All other figures of the
Historian DIME app shows data flow connection.

E. Process models

Process models express the business logic in a fashion
roughly similar to Activity Diagrams, but with a clean formal
semantics. There are several process types: basic, interactable
and interaction processes. Each process type follows certain
rules regarding which kind of SIBs they contain and the
kind of tasks they express. The graphical syntax and general
handling are the same for all the types of SIBs and processes.
Fig. 3 shows the process models that are created for the His-
torian application. The collection of process models together
with the connected GUI, actions and data flow expresses the
behaviour of the application in terms of its operation. Fig. 4
shows the actual process model CreateEntry of Historian app (
also presented in Fig. 3) that performs all necessary operations
and successfully stores an entry to the database.

Process models can also be of different type such as
a) Basic Processes: : Basic Processes consist of native

SIBs and built-in SIBs, and express the smallest processes
of the application’s business logic. In the Historian app, basic
processes models are the CRUD (i.e., create, read, update, and
delete) operations and data operations. In Fig. 3 CreateUser
and RemoveEntry are two examples of basic processes.



Fig. 6: Entry table management process of Historian app, with flows for the Approve, Submit for Review, Edit, Remove,
Close entry operations.

b) Interactable Processes: : Interactable Processes work
as interfaces between the front-end layer and the backend of
the application. They are similar to Basic processes, but are
restricted to non-native type. The StartUp process is the only
interactable process in the Historian app. This process includes
operation of successful login of user with different role.

c) Interaction Processes: : Interaction Processes are used
to define the immediate interaction between user and applica-
tion, accordingly they can be seen as a sitemap [9]. Where
interactable SIBs communicate with the backend, interaction
SIBs establish a new hierarchy level with the frontend. As
the Historian app is essentially a sophisticated daTa entry app,
most of its processes are developed as interaction process, like
GetPrePopulation, GetSuggestions, CreateAddress etc.

d) Security Processes: : Security Processes realize the
(role based) access control with a predefined interface. The
IsSupervisorGuard and ExportFileGuard processes are two
examples of security processes in the Historian application. In
IsSupervisorGuard the start node must include the currently
signed-in user (i.e., the Supervisor) as an input, and all

following nodes are restricted to be labelled with “granted”.

VI. CHALLENGES AND SOLUTIONS

A. Defining the major context parameters

In a context-dependent application, a DSL should enable
modelling the different context situations that may occur
during user interface usage. This DSL will eventually help de-
velopers to separately specify context-specific services to mon-
itor various parameters and react accordingly. For example,
the application’s abstract GUI rules cover various adaptation
dimensions: layout, navigation, reusability. Accordingly, mod-
elling, adaptation, transformation and execution of processes
and GUIs take into consideration the context management and
the corresponding adaptation. In particular, the processes and
functionalities are associated with responsive GUIs.

B. User interface adaptation at runtime

To achieve a responsive web application, the integrated ex-
ecution environment must be equipped to generate adaptation
services in dependence of the context. For this, the generated



Fig. 7: Data model of Irish civil registration in DIME.

adaptation processes need to be coupled with generated code
that enables an automatic dynamic reaction of the runtime UI
to the context-of-use. In the Historian App, the data entered
by the user is the predominant part of the dynamic context
to which the app reacts. The reaction manifests itself in a
validation of the entry or an error message if problems are
detected. To address various run-time errors, we introduced
‘Alert’ models with the event handler. To this aim, we in-
troduced native SIBs for several condition checks, detecting
e.g., whether an unintentional special character is entered,
or a date entered in an incorrect format, a required field

is left unattended, the ID not unique etc. Process events
are connected with those detections, and respective event-
listeners are introduced at the corresponding GUI models,
enabling this was a run time error handling. Fig. 8(a) shows
an event and corresponding event listener model connected
with respective alert that warns the user that ‘Name can’t have
special character’ (Fig. 8(b)). We also proposed a rule-based
classifier [31] for overall data monitoring and error detection.
The integration of the classifier with the DIME application is
currently ongoing.



(a) Detection: Event Listener in the CreateEntry Pro-
cess.

(b) Handling: Event with corresponding alert in the
EntryForm GUI.

Fig. 8: Handling a run-time error in DIME: unexpected special
character in the name field.

C. Data Entry with minimum error

In 2020 we conducted a pilot Transcribathon using the
Historian application version 1, which was not a responsive
application with built-in data checks. Examining the resulting
data entry, it emerged that most of the wrong entries occurred
at the fields Cause of death, Address, Age/Duration and at the
Registrar names. The date format also posed problems.

As a solution, we worked together to create drop-down lists
of cause of death, registrar name and street name which can
be used to provide a predefined list of suggestions, thereby
eliminating the free text entry, and reducing error rate. For
registrar name prediction, it is possible to create a registrar
names list for the period and location of interest. Using the
method employed by 18 we ordered the geographical data
like street, city and county names of Ireland, which occur
in various address fields. All these lists are added to the
application, by augmenting it with native SIBs and adequate
GUI and process elements. Fig. 9 shows an example. The
Web page screenshot of Fig. 9b shows the Registrar data
entry page, and in particular the pre-populated data field for
the registrar name of a death record. This drop-down menu
or combo-box lists all the registrar names collected from the
early 1900s Dublin Street Directory. Once the historians found
and verified the names of the registrars who registered the
death records relevant to this specific time and place, the IT
specialists created the GetSuggestion process shown in Fig. 9a.
This process shows the list as a drop-down menu in the right
location of the application page. Thus, instead of inputting a
free string that needs to be validated, in version 2 for this field
users can select the correct option from this menu, avoiding
errors instead of repairing them.

(a) GetSuggestions process.

(b) Registrar name field with suggestions.

Fig. 9: Data entry error handling in the Historian App by
providing suggestions.

VII. CONCLUSIONS

In this paper, we presented the first MDD based application
developed in the DBDIrl project to support the correct and
reliable data entry of Civil registration records. As this project
deals with a large dataset, we need a reliable application
that prevents as much as possible errors. To this aim, we
co-developed with the Historians a model-driven application
using XMDD as an agile version of MDD and the DIME
integrated modelling environment. We briefly introduced the
various model types and showed how they are used in con-
junction to create a coherent data, process, GUI and role-
based access model. The main advantage of these choices
is the ability to quickly react to the findings, exemplified
here by the evolution from the V1 to V2 of the App. In



particular, the V2 greatly improves the achieved data quality
by making the Application reactive to context-specific events,
and equipping most of the data entry fields with pre-populated
lists of plausible options, as for addresses causes of death
and registrar names, and with context-specific rule checks,
as for date and age formats. The main lesson learned is that
such an application is necessarily long lived, due to the sheer
enormous amount of data to be digitized over time, by many
groups of volunteers, and never really “finished”. In such a
context of continuous improvement, the ability to collaborate
with the Historians on the basis of models rather than code
is an essential asset, producing successive versions of the app
that improve or customise specific aspects of the functionality
and the presentation.

The work currently in progress concerns on the one side
the inclusion of rule-based classifiers in the application, and
on the other side the development in the same paradigm
of a data analytics application. The Analysis App needs to
be as flexible and customizable as this one, because it will
serve the certainly diverse and specialized analysis needs of
a growing community of researchers working on big data
archival systems in the digital humanities.

ACKNOWLEDGMENT

We are grateful for the full cooperation of the Registrar
General of Ireland for permission to use these data for research
purposes. This research is funded by the Irish Research Coun-
cil Laureate Award 2017/32 and by Science Foundation Ireland
through the grants 13/RC/2094 to Lero - the Irish Software
Research Centre (www.lero.ie).

REFERENCES

[1] J. Schnapp, L. Peter, and T. Presner, “Digital humanities manifesto,”
2008.

[2] M. Grieves and J. Vickers, “Digital twin: Mitigating unpredictable, un-
desirable emergent behavior in complex systems,” in Transdisciplinary
perspectives on complex systems, pp. 85–113, Springer, 2017.

[3] Y. Lu, C. Liu, I. Kevin, K. Wang, H. Huang, and X. Xu, “Digital twin-
driven smart manufacturing: Connotation, reference model, applications
and research issues,” Robotics and Computer-Integrated Manufacturing,
vol. 61, p. 101837, 2020.

[4] M. Dalibor, J. Michael, B. Rumpe, S. Varga, and A. Wortmann, “To-
wards a model-driven architecture for interactive digital twin cockpits,”
in International Conference on Conceptual Modeling, pp. 377–387,
Springer, 2020.

[5] T. Margaria and B. Steffen, “extreme model-driven development (xmdd)
technologies as a hands-on approach to software development without
coding,” Encyclopedia of Education and Information Technologies,
pp. 732–750, 2020.

[6] R. France and B. Rumpe, “Model-driven development of complex
software: A research roadmap,” in Future of Software Engineering
(FOSE’07), pp. 37–54, IEEE, 2007.

[7] C. Breathnach, N. M. Ibrahim, S. Clancy, and T. Margaria, “Towards
model checking product lines in the digital humanities: An application
to historical data,” in From Software Engineering to Formal Methods
and Tools, and Back, vol. 11865 of LNCS, pp. 338–364, Springer, 2019.

[8] M. D. Wilkinson, M. Dumontier, I. J. Aalbersberg, G. Appleton,
M. Axton, A. Baak, N. Blomberg, J.-W. Boiten, L. B. da Silva Santos,
P. E. Bourne, et al., “Addendum: The fair guiding principles for scientific
data management and stewardship,” Scientific data 6(1), pp. 1–2, 2019.

[9] S. Boßelmann, M. Frohme, D. Kopetzki, M. Lybecait, S. Naujokat,
J. Neubauer, D. Wirkner, P. Zweihoff, and B. Steffen, “DIME: A
Programming-Less Modeling Environment for Web Applications,” in
ISoLA 2016, vol. 9953 of LNCS, pp. 809–832, Springer, 2016.

[10] B. Steffen, T. Margaria, A. Claßen, and V. Braun, “The metaframe’95
environment,” in International Conference on Computer Aided Verifica-
tion, pp. 450–453, Springer, 1996.

[11] B. Steffen, T. Margaria, A. Claß en, V. Braun, and M. Reitenspieß, “An
environment for the creation of intelligent network services,” in IN/AIN
Technologies, Operations, Services, and Applications ”A Comprehensive
Report” Int. Engineering Consortium, Chicago IL, Citeseer, 1996.

[12] P. Fraternali, S. Comai, A. Bozzon, and G. T. Carughi, “Engineering rich
internet applications with a model-driven approach,” ACM Transactions
on the Web (TWEB), vol. 4, no. 2, pp. 1–47, 2010.

[13] T. Margaria, “Web services-based tool-integration in the eti platform,”
Software & Systems Modeling, vol. 4, no. 2, pp. 141–156, 2005.

[14] T. Margaria, C. Kubczak, M. Njoku, and B. Steffen, “Model-based
design of distributed collaborative bioinformatics processes in the jabc,”
in ICECCS’06, pp. 8–pp, IEEE, 2006.

[15] A.-L. Lamprecht, T. Margaria, B. Steffen, A. Sczyrba, S. Hartmeier,
and R. Giegerich, “Genefisher-p: variations of genefisher as processes
in bio-jeti,” BMC bioinformatics, vol. 9, no. 4, pp. 1–15, 2008.

[16] D. Withers, E. Kawas, L. McCarthy, B. Vandervalk, and M. Wilkinson,
“Semantically-guided workflow construction in Taverna: the SADI and
BioMoby plug-ins,” in ISoLA 2010, vol. 6416 of LNCS, pp. 301–312,
Springer, Oct. 2010.

[17] A. R. Da Silva, “Model-driven engineering: A survey supported by the
unified conceptual model,” Computer Languages, Systems & Structures,
vol. 43, pp. 139–155, 2015.

[18] J. G. Mengerink, A. Serebrenik, R. R. Schiffelers, and M. G. van den
Brand, “Automated analyses of model-driven artifacts: obtaining insights
into industrial application of mde,” in Proc. 27th Int. Worksh. on
Software Measurement and 12th Int. Conf. on Software Process and
Product Measurement, pp. 116–121, 2017.

[19] S. Jörges, C. Kubczak, F. Pageau, and T. Margaria, “Model Driven
Design of Reliable Robot Control Programs Using the jABC,” in
Proceedings of 4th IEEE Int. Worksh. on Engineering of Autonomic
and Autonomous Systems (EASe 2007), pp. 137–148, 2007.

[20] T. Margaria and A. Schieweck, “The digital thread in industry 4.0,”
in IFM 2019, International Conference on Integrated Formal Methods,
LNCS 11918, pp. 3–24, LNCS Springer, 2019.

[21] B. Steffen, T. Margaria, A. Claß en, V. Braun, R. Nisius, and M. Reit-
enspieß, “A constraint-oriented service creation environment,” in Proc.
TACAS’96, vol. 1055 of LNCS, pp. 418–421, Springer, 1996.

[22] P. Mikulecky, “Formal models for ambient intelligence,” in 2010 Sixth
International Conference on Intelligent Environments, pp. 370–371,
IEEE, 2010.

[23] G. Savić, M. Segedinac, D. Milenković, T. Hrin, and M. Segedinac, “A
model-driven approach to e-course management,” Australasian Journal
of Educational Technology, vol. 34, no. 1, 2018.

[24] A. Hernandez-Mendez, N. Scholz, and F. Matthes, “A model-driven ap-
proach for generating restful web services in single-page applications.,”
in MODELSWARD, pp. 480–487, 2018.

[25] D. Breuker, “Towards model-driven engineering for big data analytics–
an exploratory analysis of domain-specific languages for machine learn-
ing,” in HICSS 2014, pp. 758–767, IEEE, 2014.

[26] M. Golfarelli and S. Rizzi, “A model-driven approach to automate data
visualization in big data analytics,” Information Visualization, vol. 19,
no. 1, pp. 24–47, 2020.

[27] C. Castellanos, B. Pérez, D. Correal, and C. A. Varela, “A model-driven
architectural design method for big data analytics applications,” in ICSA-
C, pp. 89–94, IEEE, 2020.

[28] T. Margaria and B. Steffen, “Agile IT: Thinking in User-Centric Mod-
els,” in ISoLA 2008, vol. 17 of CCIS, pp. 490–502, Springer, 2009.

[29] S. Boßelmann, D. Kühn, and T. Margaria, “A fully model-based ap-
proach to the design of the secube™ community web app,” in DTIS
2017, pp. 1–7, IEEE, 2017.

[30] S. Jörges, A.-L. Lamprecht, T. Margaria, I. Schaefer, and B. Steffen,
“A Constraint-based Variability Modeling Framework,” International
Journal on Software Tools for Technology Transfer (STTT), vol. 14, no. 5,
pp. 511–530, 2012.

[31] E. O’Shea, R. Khan, C. Breathnach, and T. Margaria, “Towards au-
tomatic data cleansing and classification of valid historical data an
incremental approach based on mdd,” in IEEE Int. Conf. on Big Data,
Big Data 2020, pp. 1914–1923, IEEE, 2020.


