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Abstract. Visual modeling is widely used nowadays, but the 

existing modeling platforms cannot meet all the user 

requirements. Visual languages are usually based on graph 

models, but the graph types used have significant restrictions. A 

new graph model, called HP-graph, whose main element is a set 

of poles, the subsets of which are combined into vertices and 

edges, has been previously presented to solve the problem of 

insufficient expressiveness of the existing graph models. 

Transformations and many other operations on visual models 

face a problem of subgraph matching, which slows down their 

execution. A multilayer approach to subgraph matching can be 

a solution for this problem if a modeling system is based on the 

HP-graph. In this case, the search is started on the higher level 

of the graph model, where vertices and hyperedges are 

compared without revealing their structures, and only when a 

candidate is found, it moves to the level of poles, where the 

comparison of the decomposed structures is performed. The 

description of the idea of the multilayer approach is given. A 

backtracking algorithm based on this approach is presented. 

The Ullmann algorithm and VF2 are adapted to this approach 

and are analyzed for complexity. The proposed approach 

incrementally decreases the search field of the backtracking 

algorithm and helps to decrease its overall complexity. The 

paper proves that the existing subgraph matching algorithms 

except ones that modify a graph pattern can be successfully 

adapted to the proposed approach. 

Keywords: DSM platform; visual model; subgraph matching; 

isomorphism; graph model; HP-graph; algorithms on graphs. 

I. INTRODUCTION 

The study of any objects and processes, as well as their 
design, can barely be done without modeling; that is why 
software tools that allow specialists to build various models 
and formalize descriptions of objects and processes, or use 
modeling as a method of analysis, are becoming more popular. 
Models are described and built with the help of a visual 
modeling language, which is a fixed set of graphical symbols 
and rules for constructing visual models by using these 
symbols [1]. Visual languages can be represented as various 
types of graphs, including oriented graphs [2], hypergraphs 
[3], hi-graphs [4], meta-graphs [5] and P-graphs [6]. 

Previously, a new graph model, called HP-graph, was 
proposed as a formalism for representing visual languages [7]. 
This model unites expressive possibilities of all the mentioned 
graph types and, thus, it can be used for building more 
complicated models than those which can be built with the 
help of the other graph models. The paper [7] proved that this 
graph model allows the creation of a flexible visual model 
editor based on it. 

This model is proposed as a basis for domain-specific 
modeling, one of the key aspects of which is model 

transformations. Such transformations allow users to move 
from one level of abstraction to another (a vertical 
transformation) or from one modeling language to another (a 
horizontal transformation) [5]. Different approaches can be 
used to transform visual models, but the current standard is the 
algebraic approach which is based on the graph grammars [9]. 
Based on this approach, a transformation r = (L, R) includes 
the left and the right part, where L is a subgraph to be found 
in a source graph, and R is a subgraph replacing L in the source 
graph. 

As for the HP-graph, only main operations, including 
operations of adding and removing graph elements and 
operations of decomposition, were described for this model, 
and no algorithm were proposed to perform an isomorphic 
subgraph search operation. The structural complexity of the 
model requires modifying the existing algorithms to adapt 
them to this model. The HP-graph has a multilayer structure 
which consists of the layer of vertices and hyperedges and the 
layer of poles and links, sets of which are combined into the 
elements of the former layer. The multilayer structure of the 
graph model allows to reduce time complexity of search 
algorithms. The number of operations can be decreased due to 
the fact that the first search and matching is performed on the 
layer of vertices and hyperedges, and only after finding a 
subgraph with the desired characteristics, the algorithm moves 
to a more detailed level, where the already selected sets of 
corresponding poles and ordinary edges are compared. 

In practice, a task of finding an isomorphic subgraph has a 
wide range of applications, including chemical compound 
search [10], social network analysis [11], pattern recognition 
[12], and protein interaction analysis [13]. However, subgraph 
matching is a bottleneck in the overall performance for most 
of these applications due to the fact that this task is NP-hard 
[14]. For instance, nodes count for protein structure analysis 
can reach up to tens of thousands [15]; that is why active 
efforts are currently being made to find an optimal algorithm 
for subgraph matching. 

In visual modeling the problem is the same. The thesis [5] 
proposes to represent all the models in the form of a single 
graph, which allows users to maintain links between the 
models and automatically propagate changes from the source 
model to the target ones associated with it. For instance, a 
change in the metamodel of the subject area should be 
propagated to all the models built on this metamodel. 
However, storing all the models as a single graph increases the 
computational complexity of the algorithms on this graph, 
which requires developing an efficient subgraph search 
algorithm for the graph model used. 



The contributions of these paper are: 

1) a new multilayer approach to decrease complexity of 
subgraph matching algorithms, 

2) a backtracking algorithm based on this approach, 

3) applications of this approach in several existing 
subgraph matching algorithms. 

The paper is organized as follows. Section II discusses 
related work and the main algorithms for finding subgraph 
isomorphism. Section III presents the proposed graph model, 
definitions of the HP-subgraph and isomorphism of the HP-
graphs, and the multilayer approach to subgraph matching. 
Section IV introduces a backtracking algorithm based on this 
approach. Section V presents several applications of the 
approach in the existing subgraph matching algorithms. 
Section VI describes the obtained results. Section VII 
concludes the paper. 

II. RELATED WORK 

The problem of subgraph matching has been investigated 
for many years. The works of many scientists, such as 
[16]-[18], are dedicated to exploring applicability, time 
complexity and limitations of the existing subgraph matching 
algorithms. These algorithms are generally divided into two 
classes: 

• Algorithms that observe many graphs {G1, …, Gn} and 
retrieve those which contain a query graph Q. 

• Algorithms that observe a single graph G and retrieve 
all its subgraphs which are isomorphic to a query graph 
Q. 

In both of these approaches, algorithms can either return a 
correct and complete answer (having an exponential time 
complexity) or return an approximate answer (having a 
polynomial time complexity). While the complete answers 
describe all subgraphs exactly isomorphic to a pattern, the 
approximate answers are generally obtained using specific 
similarity measures and, thus, may also contain false positive 
subgraphs. 

This work belongs to the second class of the algorithms. 
Most of these algorithms use backtracking to move through 
the built search tree and find appropriate combination of 
corresponding vertices of the source graph and the graph-
pattern. Algorithms in this class include Ullmann algorithm 
[19], VF2 [20] (and also VF2 Plus [21] and VF3 [22]), 
TurboISO [23], CFL-Match [24], QuickSI [25], SPath [26] 
and others. These algorithms implement various techniques to 
decrease time needed for the matching process. 

Exploiting Pruning Rules. The Ullmann algorithm uses 
refining procedure on each step of the algorithm by 
comparing degrees of corresponding neighbors of the added 
pair of vertices. VF2 [20] provides feasibility rules that are 
checked before a vertex is added to a graph-candidate. There 
rules check consistency of graph-candidates with this vertex 
and check for a sufficient number of vertices-neighbors of 
these graph-candidates. SPath [26] uses neighborhood 
signature for each vertex to store information about the 
surrounding vertices. These signatures are compared with the 
corresponding signatures of the query graph and are used for 
search space pruning before subgraph matching. TurboISO 
[23] compares quantity of neighborhood labels of 
corresponding vertices and prune out unpromising ones. 

CFL-Match [24] proposes a compact-path-index (CPI) 
structure presented as a tree which is built from the source 
graph vertices with the same labels as query graph vertices and 
then refined by exploiting matching operations. 

Graph Pattern Modification. The Ullmann algorithm 
and VF2 [20] do not modify graph pattern and search its 
embeddings in the source graph. SPath [26] changes the way 
of graph query processing from vertex-at-a-time to path-at-a-
time, which tends to be more cost-effective than traditional 
graph matching methods. TurboISO [23] presents a NEC-tree 
structure which merges similar vertices together and present a 
query graph as a tree. CFL-Match [24] transform a query into 
a set of dense subgraphs, forests, and leaves. The source graph 
in this algorithm is only probed for non-tree edge validation, 
whereas other query parts are checked in the CPI structure. 

Optimizing Matching Order. The Ullmann algorithm 
[19] does not specify the matching order of the vertices, 
whereas VF2 [20] starts from a random query vertex and then 
recursively adds those vertices that are connected with the 
already matched ones. QuickSI [25] exploits an order which 
is based on the vertex label frequency, and the algorithm starts 
a process of matching from the least frequent ones. TurboISO 
[23] implements a concept of candidate region exploration and 
produces a matching order for every region where a NEC-tree 
was found. CFL-Match [24] present all candidates as a CPI-
structure, where all the pattern embeddings are filtered and 
validated by traversing this tree structure. 

The most of theoretical research of this problem was 
conducted specifically for ordinary graphs [18]; that is why 
the approaches of these algorithms have to be adapted to an 
HP-graph model. In particular, this paper presents an 
adaptation of a standard backtracking algorithm for subgraph 
matching, the Ullmann algorithm [19] and the VF2 algorithm 
[20], which are optimized for the multilayer structure of this 
graph model. 

III. GRAPH-MATCHING APPROACH FOR HP-GRAPHS 

Let Pol be a set of all poles of the graph, including external 
poles and internal poles of vertices and hyperedges. Then, an 
HP-graph is an ordered triple G = (P, V, W), where 

P = {π1,…,πn is a set of external poles, V = {v1,…,vm} is a 
non-empty set of vertices, W = {w1,…,wl} is a set of 
hyperedges [7]. An example of the graph model is 
demonstrated on Fig. 1. 

 

Fig. 1. Example of an HP-graph 

In this figure external poles are represented by a set 
P = {π1, π2}, hyperedges by a set W = {w1,…,w5}, and vertices 



by a set V = {v1,…,v5}. A set Pol includes of the poles of the 

graph and is presented as {p1,…,p12}{π1, π2}. 

 Every hyperedge w of the HP-graph G can be presented by 
ordinary links, which are defined as a set Ew = {e1,…,en}, 

where every link (e  Ew) is a pair of connected poles (p, r), 
where p is a source pole and r is a target pole of a link. An 
example of this decomposition is presented in Fig. 2. The 
hyperedge w2 defines a set Ew2 = {(p4, p8), (p4, p6), (p6, p8)}. 

 

Fig. 2. Decomposition of the hyperedge w2 

Every vertex and hyperedge can also be decomposed by a 
new HP-graph, which is described in detail in [7]. 

A. Definitions of a Subgraph and Isomorphism 

To determine subgraph matching operations, it is needed 
to give a definition to a subgraph of the HP-graph. An HP-
graph G' = (P', V', W') is a subgraph of an HP-graph 
G = (P, V, W) iff G’ is a part of the graph 

G (P' ⸦ P & (v'V' v  V: [v' ⸦ v]) & W' ⸦ W) and meets 
the condition (1) to make transformation operations possible 
[7]. A subgraph can contain vertices called incomplete whose 
sets of poles are only part of the sets of poles of the vertices of 
the original graph. 

 wW(v V'\V'partial  ([Pol(w)Pol(v)≠])→wW'), () 

the set V'partial is a set of the incomplete vertices in the graph, 
where V'partial ⸦ V'. 

To define the isomorphism mapping, it is necessary to 
establish one-to-one correspondences between the same type 
elements of graphs that preserve the incident relations. This, 
two HP-graphs G = (P,V,W) and G' = (P',V',W') are 

isomorphic iff there exists a bijection f: 2Pol(G)→2Pol(G') such 

that for t2Pol(G): 

(tWf(t)W')&(tVf(t)V')&(tPf(t)P'). 

B. A Multilayer Approach to Graph Matching 

As the graph model is proposed to store all the models 
together, search algorithms for this formalism have to be 
optimized for this task. A possible solution to this problem is 
to divide the HP-graph into two main levels: the level of 
vertices and hyperedges, and the level of poles and ordinary 
links between them. In this case, the search is started on the 
higher level, and when a candidate is found, it moves to the 
lower level, where a more detailed comparison of graph 
elements is performed. 

Fig. 3(a) illustrates an example of a query graph Q, which 
is a pattern for subgraph matching for a data G from Fig. 1. As 
is seen, it contains 4 vertices, 2 hyperedges and 4 poles. Its 
higher (or first) level is presented in Fig. 3(b). It contains only 

4 vertices and 2 hyperedges, whereas all the poles are 
eliminated. This layer is compared with the first layer of the 
graph G (Fig 4), and when a potential subgraph is found, the 
matrix of vertex correspondence is built. 

 

Fig. 3. Query graph Q and its first level 

 

Fig. 4. First level of the graph G 

The found correspondences between vertices of Q and G 
can be presented as a set {(v1', v2), (v3', v3), (v2', v4), 
(v4', v5)}. If a subgraph is found, the algorithm moves to the 
next level, where the corresponding hyperedges and their 
poles are compared. 

All the candidate hyperedges are grouped by their 
incidence with each other depending on the poles which they 
consist of. For instance, hyperedges w1' and w2' are presented 
as a single group because of the pole p3' which both of them 
own. Thus, a corresponding pair (w3, w4) is also presented as 
a single group. All these groups are compared for exact 
isomorphism on the layer of poles and ordinary links. Fig. 5 
demonstrates this layer for a pair of candidate groups 
(w1', w2') and (w3, w4). All these hyperedges are decomposed 
and only their poles and links are considered on this stage. As 
these graphs are identical, the found correspondences between 
poles of incident hyperedges of graph Q and G. can be 
presented as a set {(p3', p9), (p4', p11), (p2', p7), (p1', p4)}. 

 

Fig. 5. Comparison of hyperedges (w3, w4) and (w1', w2') 



If a validation on this hyperedge group is succeeded, the 
algorithm moves to the next group of hyperedges and validate 
them, until all the hyperedges are traversed. If a validation 
fails, the algorithm moves to the upper level and tries to find 
new pairs of vertices and hyperedges and validate them. 

Lastly, the algorithm verifies that for every pole of the 
pattern graph only one pole of the source graph has been 
found. Otherwise, the found subgraph is considered as not 
isomorphic and the search continues. 

IV. BACKTRACKING GRAPH-MATCHING ALGORITHM BASED 

ON THE MULTILAYER APPROACH 

The algorithm presented in this section uses as a basis a 
backtracking algorithm presented in [19]. This algorithm 
traverses a search tree using DFS until an isomorphic 
subgraph is found. If a pair of corresponding elements cannot 
be found at a certain step, a transition to an earlier step is 
carried out. 

Considering the division of the subgraph matching into 
several levels, the search algorithm should be modified to 
perform the isomorphism search operation separately at the 
vertex level, separately at the hyperedge level, and separately 
at the level of poles and links. 

Let CompElems define a set of compared elements: 
vertices, hyperedges or poles. Then, an algorithm for 
matching the corresponding sets of graph elements can be 
presented as follows: 

Algorithm 1. Function FindIsomorphism(G, Q, CompElems, args) 

M0, M, H, F, k, d = InitializeValues(G, Q, CompElems, args); 

do: 

k = GetNextNonVisitedColumn(M, F, k); 

if (k == −1): 

if (d == 1): 

return null; 

else: 

MakeStepBack(F, d, M, k) 

continue; 

M = ChangeRowElementsToZerosExceptChosen(M, d, k); 

MakeStepForward(k, d, F, H, M) 

while (d|CompElems(Q)|); 

return ValidateIsomorph(M’, CompElems(G), CompElems(Q)) 

This algorithm at the beginning initializes a matrix M0 
which defines possible candidates between corresponding 
elements of graphs. If m0

ij = 1 then the i-th element of the first 
graph is a candidate for isomorphism for the j-th element of 
the second graph. Otherwise, they cannot form a pair of 
corresponding elements. At each step, the modification of this 
matrix is used to determine appropriate pairs of elements. 
Thus, it is needed to define rules for building this matrix for 
each set of HP-graph elements. 

For vertices matching, external poles and vertices can be 
combined into one set and named as vertices (for 

simplification). Thus, the matrix M0 = |QVQP|×|GVGP| is 
filled according to the rule (2). If this condition is not met, 
m0

ij = 0. 

 m0
ij = {1| Deg(vGj)≥Deg(vQi) & Count(vGj)≥Count(vQi)}, () 

Deg(v) is a number of hyperedges incident to the vertex v, 
Count(v) is a number of the vertex poles. 

For hyperedges matching, the matrix M0 = |QW|×|GW| is 
filled according to the rule (3). 

 m0
ij = {1| Vertices(wGj)  Vertices(wQi)}, () 

Vertices(w) is a set of vertices incident to the hyperedge w. 

For poles matching, the matrix M0 is created for each pair 
of grouped hyperedges; thus M0 = |Pol(WQl)|×|Pol(WGm)|. The 
matrix is filled according to the rule (4), considering that 
graphs G and Q on this stage only contain those hyperedges 
that are presented in the current groups. 

 m0
ij = {1| vertex(pGj)vertex(pQi) & deg(pGj)≥deg(pQi) & 

 & edge(pQi) edge(pGj) [edge(pGj)  edge(pQi)] & (4) 

 & edge(pGj) edge(pQi) [edge(pGj)  edge(pQi)] }, 

vertex(p) is a vertex which contains a pole p, edge(p) is an 
edge which is incident to a pole p, deg(p) is a degree of a pole 
(a number of ordinary links incident to a pole). 

Algorithm 2 illustrates how an isomorphic subgraph for 
the proposed graph structure can be found. Vectors VCorr, 
WCorr and PolCorr contain pairs of corresponding elements 
of the graphs. FindIsomorphism method is presented above 
and is assumed to have a possibility to continue the search 
from the position where the last candidate was found. For this 
purpose, the last argument for vertices and hyperedges 
isomorphism search is given to the algorithm (VCorr and 
WCorr respectively). GroupByIncidence combines the given 
hyperedges into groups, which represent incident edges. 

Algorithm 2. Function FindHPGraphIsomorphism(G, Q) 

VCorr = [|V(Q)P(Q)|], WCorr = [|W(Q)|]; PolCorr = [|Pol(Q)|]; 

do: 

VCorr = FindIsomorphism(G, Q, V(Q)P(Q), VCorr); 

if (VCorr == ): 

continue; 

do: 

WCorr = FindIsomorphism(G, Q, W(Q), VCorr, WCorr); 

if (WCorr ==  & |W(Q)| > 0): 

break; 

incidentHyperedges = GroupByIncidence(WCorr, G, Q); 

for (W’Q, W’G)  incidentHyperedges: 

polWCorr = FindIsomorphism(G, Q, Pol(W’Q), VCorr, WCorr); 

if (!PolCorr.TryAppend(polWCorr)): 

PolCorr = ; 

break; 

if (PolCorr !=  or |W(Q)| == 0): 

unlinkedCorr = MatchUnlinked(G, Q, PolCorr, VCorr, WCorr); 

GenerateAnswer(PolCorr, unlinkedCorr, VCorr, WCorr); 

while (PolCorr == ); 

while (VCorr !=  & PolCorr == ) 

The main idea of this algorithm is to incrementally shorten 
the search field. While the search for vertices traverses all the 
vertices of the original graph, the search for hyperedges only 
moves through those edges that are connected with the already 
chosen vertices and utilizes information about their 
correspondence with the vertices of the query graph. Pole 
matching is performed for each group of incident hyperedges, 
where a sufficient quantity of combinations is pruned out by 
exploiting information about the corresponding vertices and 
hyperedges. The algorithm also checks and matches the 
unlinked poles if they exist, which can be done in linear or 



close to linear time as all the corresponding vertices are 
already found. For simplicity, the algorithm is given for 
searching for the first isomorphic subgraph but can be 
transformed to searching for all embeddings of a pattern. 

V. EXPLOITING PRUNING TECHNIQUES OF THE EXISTING 

ALGORITHMS 

To optimize algorithms certain existing techniques can be 
used. Adaptation of the main techniques of the existing 
algorithms to the proposed graph model can prove the 
possibility of adapting these algorithms as a whole and 
improve the efficiency of the algorithm presented above. 

A. Ullmann algorithm 

Ullmann algorithm [19] is one of the first algorithms for 
subgraph matching. This algorithm uses a backtracking 
algorithm presented above and at each step it performs a 
refinement procedure to prune out unpromising pairs. 

This algorithm is performed at each node of the search 
tree. It traverses the matrix M and converts a certain part of 
values from ones to zeros. The condition for preserving 1 is 
that if a vertex j of the original graph is a candidate of a vertex 
i of the pattern graph, then each neighbor of the vertex i must 
have at least one candidate among the neighbors of the vertex 
j. Otherwise, j cannot be a candidate for a vertex i. 

This algorithm can be implemented for both vertex 
matching and pole matching to eliminate unpromising 
element pairs. The refining algorithm for vertices can be 
presented as follows: 

Algorithm 3. Function RefineV(G, Q, M) 

do: 

anyChanges = false; 

for i  Range(|V(Q)|): 

if (¬j: [Mij = 1]): 

return false; 

for j  Range(|V(G)|): 

for x  V(Q)\{vQi} where wW(Q) [wvQi ≠&wx≠]: 

  if (¬yV(G)\{vGj}  

   where wW(G) [wvGj ≠&wy≠]& Mxy = 1): 

  Mij = 0; 

anyChanges = true; 

while (anyChanges); 

return true; 

The algorithm goes through all the neighbors of the current 
query vertex, which have at least one common hyperedge with 
this vertex, and checks whether a source graph contains a 
corresponding neighbor-vertex. The algorithm for poles looks 
similarly but poles and ordinary links are used instead of 
vertices and hyperedges. 

B. VF2 algorithm 

VF2 [20] has been proposed for performing subgraph 
matching on large graphs. Effective representation of data 
structures and the usage of feasibility rules significantly 
reduces both the average time complexity of the search and 
the amount of memory used. 

The idea of the algorithm is to use special rules, called 
feasibility rules, at each node of the search tree to evaluate the 
feasibility of further progress on this branch of the tree before 
adding a pair of vertices to graph-candidates. There rules 
check consistency of graph-candidates and sufficiency of 

vertices-neighbors quantity of the graph-candidate. If all the 
checks are passed, the algorithm can move to the next level of 
the tree. 

An approach of checking the feasibility rules can be 
applied on both vertex and pole layers. As a pole layer is 
presented as an ordinary graph, the feasibility rules from [20] 
can be used without any significant modifications. However, 
feasibility rules for a vertex layer have to be defined. 

The first rule checks the consistency of the existent 
candidate graphs by checking correctness of connections with 
the already added vertices. Let coreG be a list of found pair 
vertices for the graph G and coreQ be a list of found pair 
vertices for the graph Q. Accordingly, let connG be a list of 
vertices which already have a pair or have a connection to the 
current graph-candidate G' and connQ be a similar list for the 
graph-candidate Q'. Then, the first rule can be presented as 
follows: 

n'[coreG[n']≠ & n'Conn(G', n)]:  

m'[m'Conn(Q', m) & coreQ[m'] = n'] & 

& m'[coreQ[m']≠ & m'Conn(Q', m)]:  

n'[n'Conn(G', n) & coreG[n'] = m']. 

Conn(G, v) is a set of vertices of the candidate-graph G, which 
are connected to the vertex v. 

Let PC define a set of vertices that can be connected to the 
vertex u, but the graph G does not include them; then it can be 
represented as follows: 

PC(G, u)={v | vConn(G, u) & coreG[v]= & connG[v]≠}. 

Thus, a new rule, which compares numbers of newly 
added connections to graphs, appears: 

|PC(G', n)| ≥ |PC(Q', m)|. 

The last rule performs a two-look-ahead in the searching 
process. Let N be a set of vertices which are connected to the 
target vertex but are not connected to the graph-candidate: 

N(G, u) = {v| v Conn(G, u) & connG[v] = }. 

Then, the last rule is presented by the condition: 

N(G', u)| > |N(Q', u)|. 

The algorithm for traversing vertices can be presented as 
follows: 

Algorithm 4. Procedure RecurseV(G, Q, vectors) 

if (items  vectors.coreQ[item≠]): 

polesQ = RecurseW(vectors.coreG, vectors.coreQ, , G, Q) 

if (polesQ != ): 

GenerateAnswer(polesQ); 

else: 

vectors = RestoreVectors(vectors); 

else: 

P = GetAllCandidatePairs(vectors); 

for p  P: 

if (CheckVFisibilityRules(p, vectors, G, Q): 

vectors = UpdateVectors(vectors, G, Q); 

RecurseV(G, Q, vectors); 

vectors = RestoreVectors(vectors); 



C. Graph Pattern Modification Algorithms 

The usage of algorithms such as TurboISO [23], CFL-
Match [24] and other ones, that change a graph pattern, is 
complicated in the presented multilayer approach because 
these algorithms are made specifically for ordinary graphs. 
Their usage on the layer of vertices and hyperedges is a subject 
for the future research as it requires reformulation of their 
main aspects and ideas. Nevertheless, all these algorithms can 
be successfully used on the layer of poles and links and can 
find an isomorphic subgraph in the single-layer approach. 

VI. COMPLEXITY OF THE ALGORITHMS 

The presented algorithms can decrease the complexity of 
subgraph search by implementing matching on different graph 
layers. The search field shortens at each stage whereas the 
usage of pruning rules can also eliminate unpromising 
combinations of elements. Table I shows computational 
complexity of the backtracking algorithm at its main stages. 

TABLE I.  COMPLEXITY OF THE BACKTRACKING ALGORITHMS 

Algorithm Best Case Worst Case 

Isomorphic Vertices Matching O(N2) O(N×N!) 

Isomorphic Hyperedges Matching O(N2) O(N×N!) 

Isomorphic Poles Matching O(N2) O(N×N!) 

The evaluation of the backtracking algorithms based on 
the Ullmann refinement is presented in Table II. As the 
algorithm of hyperedge matching does not implement this 
technique, its complexity stays the same. 

TABLE II.  COMPLEXITY OF THE ULLMANN ALGORITHM 

Algorithm Best Case Worst Case 

Isomorphic Vertices Matching O(N3) O(N3×N!) 

Isomorphic Hyperedges Matching O(N2) O(N×N!) 

Isomorphic Poles Matching O(N3) O(N3×N!) 

The evaluation of the algorithms based on the VF2 
approach is demonstrated in Table III. The modification of the 
GetAllCandidatePairs procedure slightly increases the worst-
case complexity from N×N! to N2×N! and the best-case 
complexity from N2 to N3. 

TABLE III.  COMPLEXITY OF THE VF2 ALGORITHM 

Algorithm Best Case Worst Case 

Isomorphic Vertices Matching O(N3) O(N2×N!) 

Isomorphic Hyperedges Matching O(N3) O(N2×N!) 

Isomorphic Poles Matching O(N3) O(N2×N!) 

VII. CONCLUSION 

This paper proposed a solution to the problem of 
identifying isomorphic subgraphs in HP-graphs. The 
proposed approach is based on implementing matching on 
different graph layers of the graph model and incrementally 
shortening the search field at each layer. 

The designed algorithms for subgraph matching based on 
the multilayer approach and evaluations of their complexity 
are presented above. The proposed approach incrementally 
decreases the search field of the algorithm and helps to 
decrease its overall complexity. The usage of pruning rules of 
the existing algorithms can eliminate unpromising candidates 

at each stage of the proposed algorithm and thus, significantly 
shorten the size of the search tree. 

It is planned to evaluate actual time complexity of these 
algorithms on various data sets and develop a visual modeling 
system using the proposed approach to subgraph matching. 
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