
A Multilayer Approach to Subgraph Matching

in HP-graphs

Nikolai M. Suvorov
Department of Business Informatics

National Research University

Higher School of Economics

Perm, Russian Federation

E-mail: SuvorovNM@gmail.com

Lyudmila N. Lyadova
Department of Business Informatics

National Research University

Higher School of Economics

Perm, Russian Federation

E-mail: LNLyadova@gmail.com

Abstract. Visual modeling is widely used nowadays, but the

existing modeling platforms cannot meet all the user

requirements. Visual languages are usually based on graph

models, but the graph types used have significant restrictions. A

new graph model, called HP-graph, whose main element is a set

of poles, the subsets of which are combined into vertices and

edges, has been previously presented to solve the problem of

insufficient expressiveness of the existing graph models.

Transformations and many other operations on visual models

face a problem of subgraph matching, which slows down their

execution. A multilayer approach to subgraph matching can be

a solution for this problem if a modeling system is based on the

HP-graph. In this case, the search is started on the higher level

of the graph model, where vertices and hyperedges are

compared without revealing their structures, and only when a

candidate is found, it moves to the level of poles, where the

comparison of the decomposed structures is performed. The

description of the idea of the multilayer approach is given. A

backtracking algorithm based on this approach is presented.

The Ullmann algorithm and VF2 are adapted to this approach

and are analyzed for complexity. The proposed approach

incrementally decreases the search field of the backtracking

algorithm and helps to decrease its overall complexity. The

paper proves that the existing subgraph matching algorithms

except ones that modify a graph pattern can be successfully

adapted to the proposed approach.

Keywords: DSM platform; visual model; subgraph matching;

isomorphism; graph model; HP-graph; algorithms on graphs.

I. INTRODUCTION

The study of any objects and processes, as well as their
design, can barely be done without modeling; that is why
software tools that allow specialists to build various models
and formalize descriptions of objects and processes, or use
modeling as a method of analysis, are becoming more popular.
Models are described and built with the help of a visual
modeling language, which is a fixed set of graphical symbols
and rules for constructing visual models by using these
symbols [1]. Visual languages can be represented as various
types of graphs, including oriented graphs [2], hypergraphs
[3], hi-graphs [4], meta-graphs [5] and P-graphs [6].

Previously, a new graph model, called HP-graph, was
proposed as a formalism for representing visual languages [7].
This model unites expressive possibilities of all the mentioned
graph types and, thus, it can be used for building more
complicated models than those which can be built with the
help of the other graph models. The paper [7] proved that this
graph model allows the creation of a flexible visual model
editor based on it.

This model is proposed as a basis for domain-specific
modeling, one of the key aspects of which is model

transformations. Such transformations allow users to move
from one level of abstraction to another (a vertical
transformation) or from one modeling language to another (a
horizontal transformation) [5]. Different approaches can be
used to transform visual models, but the current standard is the
algebraic approach which is based on the graph grammars [9].
Based on this approach, a transformation r = (L, R) includes
the left and the right part, where L is a subgraph to be found
in a source graph, and R is a subgraph replacing L in the source
graph.

As for the HP-graph, only main operations, including
operations of adding and removing graph elements and
operations of decomposition, were described for this model,
and no algorithm were proposed to perform an isomorphic
subgraph search operation. The structural complexity of the
model requires modifying the existing algorithms to adapt
them to this model. The HP-graph has a multilayer structure
which consists of the layer of vertices and hyperedges and the
layer of poles and links, sets of which are combined into the
elements of the former layer. The multilayer structure of the
graph model allows to reduce time complexity of search
algorithms. The number of operations can be decreased due to
the fact that the first search and matching is performed on the
layer of vertices and hyperedges, and only after finding a
subgraph with the desired characteristics, the algorithm moves
to a more detailed level, where the already selected sets of
corresponding poles and ordinary edges are compared.

In practice, a task of finding an isomorphic subgraph has a
wide range of applications, including chemical compound
search [10], social network analysis [11], pattern recognition
[12], and protein interaction analysis [13]. However, subgraph
matching is a bottleneck in the overall performance for most
of these applications due to the fact that this task is NP-hard
[14]. For instance, nodes count for protein structure analysis
can reach up to tens of thousands [15]; that is why active
efforts are currently being made to find an optimal algorithm
for subgraph matching.

In visual modeling the problem is the same. The thesis [5]
proposes to represent all the models in the form of a single
graph, which allows users to maintain links between the
models and automatically propagate changes from the source
model to the target ones associated with it. For instance, a
change in the metamodel of the subject area should be
propagated to all the models built on this metamodel.
However, storing all the models as a single graph increases the
computational complexity of the algorithms on this graph,
which requires developing an efficient subgraph search
algorithm for the graph model used.

The contributions of these paper are:

1) a new multilayer approach to decrease complexity of
subgraph matching algorithms,

2) a backtracking algorithm based on this approach,

3) applications of this approach in several existing
subgraph matching algorithms.

The paper is organized as follows. Section II discusses
related work and the main algorithms for finding subgraph
isomorphism. Section III presents the proposed graph model,
definitions of the HP-subgraph and isomorphism of the HP-
graphs, and the multilayer approach to subgraph matching.
Section IV introduces a backtracking algorithm based on this
approach. Section V presents several applications of the
approach in the existing subgraph matching algorithms.
Section VI describes the obtained results. Section VII
concludes the paper.

II. RELATED WORK

The problem of subgraph matching has been investigated
for many years. The works of many scientists, such as
[16]-[18], are dedicated to exploring applicability, time
complexity and limitations of the existing subgraph matching
algorithms. These algorithms are generally divided into two
classes:

• Algorithms that observe many graphs {G1, …, Gn} and
retrieve those which contain a query graph Q.

• Algorithms that observe a single graph G and retrieve
all its subgraphs which are isomorphic to a query graph
Q.

In both of these approaches, algorithms can either return a
correct and complete answer (having an exponential time
complexity) or return an approximate answer (having a
polynomial time complexity). While the complete answers
describe all subgraphs exactly isomorphic to a pattern, the
approximate answers are generally obtained using specific
similarity measures and, thus, may also contain false positive
subgraphs.

This work belongs to the second class of the algorithms.
Most of these algorithms use backtracking to move through
the built search tree and find appropriate combination of
corresponding vertices of the source graph and the graph-
pattern. Algorithms in this class include Ullmann algorithm
[19], VF2 [20] (and also VF2 Plus [21] and VF3 [22]),
TurboISO [23], CFL-Match [24], QuickSI [25], SPath [26]
and others. These algorithms implement various techniques to
decrease time needed for the matching process.

Exploiting Pruning Rules. The Ullmann algorithm uses
refining procedure on each step of the algorithm by
comparing degrees of corresponding neighbors of the added
pair of vertices. VF2 [20] provides feasibility rules that are
checked before a vertex is added to a graph-candidate. There
rules check consistency of graph-candidates with this vertex
and check for a sufficient number of vertices-neighbors of
these graph-candidates. SPath [26] uses neighborhood
signature for each vertex to store information about the
surrounding vertices. These signatures are compared with the
corresponding signatures of the query graph and are used for
search space pruning before subgraph matching. TurboISO
[23] compares quantity of neighborhood labels of
corresponding vertices and prune out unpromising ones.

CFL-Match [24] proposes a compact-path-index (CPI)
structure presented as a tree which is built from the source
graph vertices with the same labels as query graph vertices and
then refined by exploiting matching operations.

Graph Pattern Modification. The Ullmann algorithm
and VF2 [20] do not modify graph pattern and search its
embeddings in the source graph. SPath [26] changes the way
of graph query processing from vertex-at-a-time to path-at-a-
time, which tends to be more cost-effective than traditional
graph matching methods. TurboISO [23] presents a NEC-tree
structure which merges similar vertices together and present a
query graph as a tree. CFL-Match [24] transform a query into
a set of dense subgraphs, forests, and leaves. The source graph
in this algorithm is only probed for non-tree edge validation,
whereas other query parts are checked in the CPI structure.

Optimizing Matching Order. The Ullmann algorithm
[19] does not specify the matching order of the vertices,
whereas VF2 [20] starts from a random query vertex and then
recursively adds those vertices that are connected with the
already matched ones. QuickSI [25] exploits an order which
is based on the vertex label frequency, and the algorithm starts
a process of matching from the least frequent ones. TurboISO
[23] implements a concept of candidate region exploration and
produces a matching order for every region where a NEC-tree
was found. CFL-Match [24] present all candidates as a CPI-
structure, where all the pattern embeddings are filtered and
validated by traversing this tree structure.

The most of theoretical research of this problem was
conducted specifically for ordinary graphs [18]; that is why
the approaches of these algorithms have to be adapted to an
HP-graph model. In particular, this paper presents an
adaptation of a standard backtracking algorithm for subgraph
matching, the Ullmann algorithm [19] and the VF2 algorithm
[20], which are optimized for the multilayer structure of this
graph model.

III. GRAPH-MATCHING APPROACH FOR HP-GRAPHS

Let Pol be a set of all poles of the graph, including external
poles and internal poles of vertices and hyperedges. Then, an
HP-graph is an ordered triple G = (P, V, W), where

P = {π1,…,πn is a set of external poles, V = {v1,…,vm} is a
non-empty set of vertices, W = {w1,…,wl} is a set of
hyperedges [7]. An example of the graph model is
demonstrated on Fig. 1.

Fig. 1. Example of an HP-graph

In this figure external poles are represented by a set
P = {π1, π2}, hyperedges by a set W = {w1,…,w5}, and vertices

by a set V = {v1,…,v5}. A set Pol includes of the poles of the

graph and is presented as {p1,…,p12}{π1, π2}.

 Every hyperedge w of the HP-graph G can be presented by
ordinary links, which are defined as a set Ew = {e1,…,en},

where every link (e  Ew) is a pair of connected poles (p, r),
where p is a source pole and r is a target pole of a link. An
example of this decomposition is presented in Fig. 2. The
hyperedge w2 defines a set Ew2 = {(p4, p8), (p4, p6), (p6, p8)}.

Fig. 2. Decomposition of the hyperedge w2

Every vertex and hyperedge can also be decomposed by a
new HP-graph, which is described in detail in [7].

A. Definitions of a Subgraph and Isomorphism

To determine subgraph matching operations, it is needed
to give a definition to a subgraph of the HP-graph. An HP-
graph G' = (P', V', W') is a subgraph of an HP-graph
G = (P, V, W) iff G’ is a part of the graph

G (P' ⸦ P & (v'V' v  V: [v' ⸦ v]) & W' ⸦ W) and meets
the condition (1) to make transformation operations possible
[7]. A subgraph can contain vertices called incomplete whose
sets of poles are only part of the sets of poles of the vertices of
the original graph.

 wW(v V'\V'partial ([Pol(w)Pol(v)≠])→wW'), ()

the set V'partial is a set of the incomplete vertices in the graph,
where V'partial ⸦ V'.

To define the isomorphism mapping, it is necessary to
establish one-to-one correspondences between the same type
elements of graphs that preserve the incident relations. This,
two HP-graphs G = (P,V,W) and G' = (P',V',W') are

isomorphic iff there exists a bijection f: 2Pol(G)→2Pol(G') such

that for t2Pol(G):

(tWf(t)W')&(tVf(t)V')&(tPf(t)P').

B. A Multilayer Approach to Graph Matching

As the graph model is proposed to store all the models
together, search algorithms for this formalism have to be
optimized for this task. A possible solution to this problem is
to divide the HP-graph into two main levels: the level of
vertices and hyperedges, and the level of poles and ordinary
links between them. In this case, the search is started on the
higher level, and when a candidate is found, it moves to the
lower level, where a more detailed comparison of graph
elements is performed.

Fig. 3(a) illustrates an example of a query graph Q, which
is a pattern for subgraph matching for a data G from Fig. 1. As
is seen, it contains 4 vertices, 2 hyperedges and 4 poles. Its
higher (or first) level is presented in Fig. 3(b). It contains only

4 vertices and 2 hyperedges, whereas all the poles are
eliminated. This layer is compared with the first layer of the
graph G (Fig 4), and when a potential subgraph is found, the
matrix of vertex correspondence is built.

Fig. 3. Query graph Q and its first level

Fig. 4. First level of the graph G

The found correspondences between vertices of Q and G
can be presented as a set {(v1', v2), (v3', v3), (v2', v4),
(v4', v5)}. If a subgraph is found, the algorithm moves to the
next level, where the corresponding hyperedges and their
poles are compared.

All the candidate hyperedges are grouped by their
incidence with each other depending on the poles which they
consist of. For instance, hyperedges w1' and w2' are presented
as a single group because of the pole p3' which both of them
own. Thus, a corresponding pair (w3, w4) is also presented as
a single group. All these groups are compared for exact
isomorphism on the layer of poles and ordinary links. Fig. 5
demonstrates this layer for a pair of candidate groups
(w1', w2') and (w3, w4). All these hyperedges are decomposed
and only their poles and links are considered on this stage. As
these graphs are identical, the found correspondences between
poles of incident hyperedges of graph Q and G. can be
presented as a set {(p3', p9), (p4', p11), (p2', p7), (p1', p4)}.

Fig. 5. Comparison of hyperedges (w3, w4) and (w1', w2')

If a validation on this hyperedge group is succeeded, the
algorithm moves to the next group of hyperedges and validate
them, until all the hyperedges are traversed. If a validation
fails, the algorithm moves to the upper level and tries to find
new pairs of vertices and hyperedges and validate them.

Lastly, the algorithm verifies that for every pole of the
pattern graph only one pole of the source graph has been
found. Otherwise, the found subgraph is considered as not
isomorphic and the search continues.

IV. BACKTRACKING GRAPH-MATCHING ALGORITHM BASED

ON THE MULTILAYER APPROACH

The algorithm presented in this section uses as a basis a
backtracking algorithm presented in [19]. This algorithm
traverses a search tree using DFS until an isomorphic
subgraph is found. If a pair of corresponding elements cannot
be found at a certain step, a transition to an earlier step is
carried out.

Considering the division of the subgraph matching into
several levels, the search algorithm should be modified to
perform the isomorphism search operation separately at the
vertex level, separately at the hyperedge level, and separately
at the level of poles and links.

Let CompElems define a set of compared elements:
vertices, hyperedges or poles. Then, an algorithm for
matching the corresponding sets of graph elements can be
presented as follows:

Algorithm 1. Function FindIsomorphism(G, Q, CompElems, args)

M0, M, H, F, k, d = InitializeValues(G, Q, CompElems, args);

do:

k = GetNextNonVisitedColumn(M, F, k);

if (k == −1):

if (d == 1):

return null;

else:

MakeStepBack(F, d, M, k)

continue;

M = ChangeRowElementsToZerosExceptChosen(M, d, k);

MakeStepForward(k, d, F, H, M)

while (d|CompElems(Q)|);

return ValidateIsomorph(M’, CompElems(G), CompElems(Q))

This algorithm at the beginning initializes a matrix M0
which defines possible candidates between corresponding
elements of graphs. If m0

ij = 1 then the i-th element of the first
graph is a candidate for isomorphism for the j-th element of
the second graph. Otherwise, they cannot form a pair of
corresponding elements. At each step, the modification of this
matrix is used to determine appropriate pairs of elements.
Thus, it is needed to define rules for building this matrix for
each set of HP-graph elements.

For vertices matching, external poles and vertices can be
combined into one set and named as vertices (for

simplification). Thus, the matrix M0 = |QVQP|×|GVGP| is
filled according to the rule (2). If this condition is not met,
m0

ij = 0.

 m0
ij = {1| Deg(vGj)≥Deg(vQi) & Count(vGj)≥Count(vQi)}, ()

Deg(v) is a number of hyperedges incident to the vertex v,
Count(v) is a number of the vertex poles.

For hyperedges matching, the matrix M0 = |QW|×|GW| is
filled according to the rule (3).

 m0
ij = {1| Vertices(wGj)  Vertices(wQi)}, ()

Vertices(w) is a set of vertices incident to the hyperedge w.

For poles matching, the matrix M0 is created for each pair
of grouped hyperedges; thus M0 = |Pol(WQl)|×|Pol(WGm)|. The
matrix is filled according to the rule (4), considering that
graphs G and Q on this stage only contain those hyperedges
that are presented in the current groups.

 m0
ij = {1| vertex(pGj)vertex(pQi) & deg(pGj)≥deg(pQi) &

 & edge(pQi) edge(pGj) [edge(pGj)  edge(pQi)] & (4)

 & edge(pGj) edge(pQi) [edge(pGj)  edge(pQi)] },

vertex(p) is a vertex which contains a pole p, edge(p) is an
edge which is incident to a pole p, deg(p) is a degree of a pole
(a number of ordinary links incident to a pole).

Algorithm 2 illustrates how an isomorphic subgraph for
the proposed graph structure can be found. Vectors VCorr,
WCorr and PolCorr contain pairs of corresponding elements
of the graphs. FindIsomorphism method is presented above
and is assumed to have a possibility to continue the search
from the position where the last candidate was found. For this
purpose, the last argument for vertices and hyperedges
isomorphism search is given to the algorithm (VCorr and
WCorr respectively). GroupByIncidence combines the given
hyperedges into groups, which represent incident edges.

Algorithm 2. Function FindHPGraphIsomorphism(G, Q)

VCorr = [|V(Q)P(Q)|], WCorr = [|W(Q)|]; PolCorr = [|Pol(Q)|];

do:

VCorr = FindIsomorphism(G, Q, V(Q)P(Q), VCorr);

if (VCorr == ):

continue;

do:

WCorr = FindIsomorphism(G, Q, W(Q), VCorr, WCorr);

if (WCorr ==  & |W(Q)| > 0):

break;

incidentHyperedges = GroupByIncidence(WCorr, G, Q);

for (W’Q, W’G)  incidentHyperedges:

polWCorr = FindIsomorphism(G, Q, Pol(W’Q), VCorr, WCorr);

if (!PolCorr.TryAppend(polWCorr)):

PolCorr = ;

break;

if (PolCorr !=  or |W(Q)| == 0):

unlinkedCorr = MatchUnlinked(G, Q, PolCorr, VCorr, WCorr);

GenerateAnswer(PolCorr, unlinkedCorr, VCorr, WCorr);

while (PolCorr == );

while (VCorr !=  & PolCorr == )

The main idea of this algorithm is to incrementally shorten
the search field. While the search for vertices traverses all the
vertices of the original graph, the search for hyperedges only
moves through those edges that are connected with the already
chosen vertices and utilizes information about their
correspondence with the vertices of the query graph. Pole
matching is performed for each group of incident hyperedges,
where a sufficient quantity of combinations is pruned out by
exploiting information about the corresponding vertices and
hyperedges. The algorithm also checks and matches the
unlinked poles if they exist, which can be done in linear or

close to linear time as all the corresponding vertices are
already found. For simplicity, the algorithm is given for
searching for the first isomorphic subgraph but can be
transformed to searching for all embeddings of a pattern.

V. EXPLOITING PRUNING TECHNIQUES OF THE EXISTING

ALGORITHMS

To optimize algorithms certain existing techniques can be
used. Adaptation of the main techniques of the existing
algorithms to the proposed graph model can prove the
possibility of adapting these algorithms as a whole and
improve the efficiency of the algorithm presented above.

A. Ullmann algorithm

Ullmann algorithm [19] is one of the first algorithms for
subgraph matching. This algorithm uses a backtracking
algorithm presented above and at each step it performs a
refinement procedure to prune out unpromising pairs.

This algorithm is performed at each node of the search
tree. It traverses the matrix M and converts a certain part of
values from ones to zeros. The condition for preserving 1 is
that if a vertex j of the original graph is a candidate of a vertex
i of the pattern graph, then each neighbor of the vertex i must
have at least one candidate among the neighbors of the vertex
j. Otherwise, j cannot be a candidate for a vertex i.

This algorithm can be implemented for both vertex
matching and pole matching to eliminate unpromising
element pairs. The refining algorithm for vertices can be
presented as follows:

Algorithm 3. Function RefineV(G, Q, M)

do:

anyChanges = false;

for i  Range(|V(Q)|):

if (¬j: [Mij = 1]):

return false;

for j  Range(|V(G)|):

for x  V(Q)\{vQi} where wW(Q) [wvQi ≠&wx≠]:

 if (¬yV(G)\{vGj}

 where wW(G) [wvGj ≠&wy≠]& Mxy = 1):

 Mij = 0;

anyChanges = true;

while (anyChanges);

return true;

The algorithm goes through all the neighbors of the current
query vertex, which have at least one common hyperedge with
this vertex, and checks whether a source graph contains a
corresponding neighbor-vertex. The algorithm for poles looks
similarly but poles and ordinary links are used instead of
vertices and hyperedges.

B. VF2 algorithm

VF2 [20] has been proposed for performing subgraph
matching on large graphs. Effective representation of data
structures and the usage of feasibility rules significantly
reduces both the average time complexity of the search and
the amount of memory used.

The idea of the algorithm is to use special rules, called
feasibility rules, at each node of the search tree to evaluate the
feasibility of further progress on this branch of the tree before
adding a pair of vertices to graph-candidates. There rules
check consistency of graph-candidates and sufficiency of

vertices-neighbors quantity of the graph-candidate. If all the
checks are passed, the algorithm can move to the next level of
the tree.

An approach of checking the feasibility rules can be
applied on both vertex and pole layers. As a pole layer is
presented as an ordinary graph, the feasibility rules from [20]
can be used without any significant modifications. However,
feasibility rules for a vertex layer have to be defined.

The first rule checks the consistency of the existent
candidate graphs by checking correctness of connections with
the already added vertices. Let coreG be a list of found pair
vertices for the graph G and coreQ be a list of found pair
vertices for the graph Q. Accordingly, let connG be a list of
vertices which already have a pair or have a connection to the
current graph-candidate G' and connQ be a similar list for the
graph-candidate Q'. Then, the first rule can be presented as
follows:

n'[coreG[n']≠ & n'Conn(G', n)]:

m'[m'Conn(Q', m) & coreQ[m'] = n'] &

& m'[coreQ[m']≠ & m'Conn(Q', m)]:

n'[n'Conn(G', n) & coreG[n'] = m'].

Conn(G, v) is a set of vertices of the candidate-graph G, which
are connected to the vertex v.

Let PC define a set of vertices that can be connected to the
vertex u, but the graph G does not include them; then it can be
represented as follows:

PC(G, u)={v | vConn(G, u) & coreG[v]= & connG[v]≠}.

Thus, a new rule, which compares numbers of newly
added connections to graphs, appears:

|PC(G', n)| ≥ |PC(Q', m)|.

The last rule performs a two-look-ahead in the searching
process. Let N be a set of vertices which are connected to the
target vertex but are not connected to the graph-candidate:

N(G, u) = {v| v Conn(G, u) & connG[v] = }.

Then, the last rule is presented by the condition:

N(G', u)| > |N(Q', u)|.

The algorithm for traversing vertices can be presented as
follows:

Algorithm 4. Procedure RecurseV(G, Q, vectors)

if (items  vectors.coreQ[item≠]):

polesQ = RecurseW(vectors.coreG, vectors.coreQ, , G, Q)

if (polesQ != ):

GenerateAnswer(polesQ);

else:

vectors = RestoreVectors(vectors);

else:

P = GetAllCandidatePairs(vectors);

for p  P:

if (CheckVFisibilityRules(p, vectors, G, Q):

vectors = UpdateVectors(vectors, G, Q);

RecurseV(G, Q, vectors);

vectors = RestoreVectors(vectors);

C. Graph Pattern Modification Algorithms

The usage of algorithms such as TurboISO [23], CFL-
Match [24] and other ones, that change a graph pattern, is
complicated in the presented multilayer approach because
these algorithms are made specifically for ordinary graphs.
Their usage on the layer of vertices and hyperedges is a subject
for the future research as it requires reformulation of their
main aspects and ideas. Nevertheless, all these algorithms can
be successfully used on the layer of poles and links and can
find an isomorphic subgraph in the single-layer approach.

VI. COMPLEXITY OF THE ALGORITHMS

The presented algorithms can decrease the complexity of
subgraph search by implementing matching on different graph
layers. The search field shortens at each stage whereas the
usage of pruning rules can also eliminate unpromising
combinations of elements. Table I shows computational
complexity of the backtracking algorithm at its main stages.

TABLE I. COMPLEXITY OF THE BACKTRACKING ALGORITHMS

Algorithm Best Case Worst Case

Isomorphic Vertices Matching O(N2) O(N×N!)

Isomorphic Hyperedges Matching O(N2) O(N×N!)

Isomorphic Poles Matching O(N2) O(N×N!)

The evaluation of the backtracking algorithms based on
the Ullmann refinement is presented in Table II. As the
algorithm of hyperedge matching does not implement this
technique, its complexity stays the same.

TABLE II. COMPLEXITY OF THE ULLMANN ALGORITHM

Algorithm Best Case Worst Case

Isomorphic Vertices Matching O(N3) O(N3×N!)

Isomorphic Hyperedges Matching O(N2) O(N×N!)

Isomorphic Poles Matching O(N3) O(N3×N!)

The evaluation of the algorithms based on the VF2
approach is demonstrated in Table III. The modification of the
GetAllCandidatePairs procedure slightly increases the worst-
case complexity from N×N! to N2×N! and the best-case
complexity from N2 to N3.

TABLE III. COMPLEXITY OF THE VF2 ALGORITHM

Algorithm Best Case Worst Case

Isomorphic Vertices Matching O(N3) O(N2×N!)

Isomorphic Hyperedges Matching O(N3) O(N2×N!)

Isomorphic Poles Matching O(N3) O(N2×N!)

VII. CONCLUSION

This paper proposed a solution to the problem of
identifying isomorphic subgraphs in HP-graphs. The
proposed approach is based on implementing matching on
different graph layers of the graph model and incrementally
shortening the search field at each layer.

The designed algorithms for subgraph matching based on
the multilayer approach and evaluations of their complexity
are presented above. The proposed approach incrementally
decreases the search field of the algorithm and helps to
decrease its overall complexity. The usage of pruning rules of
the existing algorithms can eliminate unpromising candidates

at each stage of the proposed algorithm and thus, significantly
shorten the size of the search tree.

It is planned to evaluate actual time complexity of these
algorithms on various data sets and develop a visual modeling
system using the proposed approach to subgraph matching.

REFERENCES

[1] Koznov D.V. Metodologija i instrumentarij predmetno-
orientirovannogo modelirovanija [Methodology and tools for domain-
specific modeling]. Doctor Degree thesis, Saint-Petersburg, 2016,
430 p. (in Russian).

[2] Struchkov I.V. Formalizm dlja opisanija programmnyh sistem i
vychislitel'nyh processov ciklicheskoj parallel'noj obrabotki dannyh
real'nogo vremeni [A formalism for describing software systems and
computational processes for cyclic parallel processing of real time
data]. Informacionno-upravljajushhie sistemy [Information and
control systems], 2006, no. 2, pp. 8-13.

[3] Courcelle B. Recognizable Sets of Graphs, Hypergraphs and Relational
Structures: A Survey. In: Developments in Language Theory. Lecture
Notes in Computer Science, 2005, vol. 3340, pp. 1-11.

[4] Power J., Tourlas K. Abstraction in Reasoning about Higraph-Based
Systems. In: Foundations of Software Science and Computation
Structures. Lecture Notes in Computer Science, 2003, vol. 2620, pp.
392-408.

[5] Sukhov A.O. Razrabotka instrumental'nyh sredstv sozdanija vizual'nyh
predmetno-orientirovannyh jazykov [Development of tools for creating
visual subject-oriented languages]. PhD thesis, Moscow, 2013, 256 p.
(in Russian).

[6] Mikov A.I. Performance evaluation: textbook, 2013, 89 p.

[7] Suvorov N.M., Lyadova L.N. HP-Graph as a Basis of a DSM Platform
Visual Model Editor. In: Proceedings of the Institute for System
Programming of the RAS, 2020, vol. 32, no. 2, pp. 149-160.

[8] Parra F. Dean T. Survey of Graph Rewriting applied to Model
Transformations. In: Proceedings of the 2nd International Conference
on Model-Driven Engineering and Software Development, 2014, pp.
431-441.

[9] Ehrig H., Ehrig K., Prange U., Taentzer G. Fundamentals of Algebraic
Graph Transformation, 2006, 388 p.

[10] Yan X., Yu P.S., Han J. Graph Indexing: A Frequent Structurebased
Approach. In: Proceedings of SIGMOD, 2004, pp. 335-346.

[11] Fan W. Graph pattern matching revised for social network analysis. In:
Proceedings ICDT, 2012, pp. 8-21.

[12] Liu C., Lio B., Kropatsch W. Advances in Graph-based Pattern
Recognition. Pattern Recognition Letters, 2017, vol. 87, 230 p.

[13] Pržulj N., Corneil D.G., Jurisica I. Efficient Estimation of Graphlet
Frequency Distributions in Protein–protein Interaction Networks.
Bioinformatics, 2006, vol. 22, no. 8, pp. 974-980.

[14] Han M., Kim H., Gu G., Park K., Han W. Efficient Subgraph Matching:
Harmonizing Dynamic Programming, Adaptive Matching Order, and
Failing Set Together. In: Proceedings of SIGMOD, 2019,
pp. 1429-1446.

[15] Carletti V., Foggia P., Saggese A., Vento M. Challenging the Time
Complexity of Exact Subgraph Isomorphism for Huge and Dense
Graphs with VF3. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2018, vol. 40, no. 4, pp. 804-818.

[16] Ren X., Wang J. Exploiting Vertex Relationships in Speending up
Subgraph Isomorphism over Large Graphs. In: Proceedings of the
VLDB Endowment, 2015, vol. 8, no. 5, pp. 617-628.

[17] Lee J., Han W., Kasperovics R., Lee J. An In-depth Comparison of
Subgraph Isomorphism Algorithms in Graph Databases. In:
Proceedings if the VLDB Endowment, 2012, vol. 6, no. 2, pp. 133-144.

[18] Seryi A.P., Lyadova L.N. An Approach to Graph Matching in the
Component of Model Transformations. In: Proceedings of the
SYRCoSE 2013. Kazan : 2013, pp. 41-46.

[19] Ullmann J.R. An Algorithm for Subgraph Isomorphism. In: Journal of
the ACM, 1976, vol. 23, no. 1, pp. 31-42.

[20] Cordella L.P., Foggia P., Sansone C., Vento M. Performance
evaluation of the VF graph matching algorithm. In: Proceedings of 10th
International Conference on Image Analysis and Processing, 1999,
pp. 1172-1177.

[21] Carletti V., Foggia P., Vento M. VF2 Plus: An Improved version of
VF2 for Biological Graphs. In: Graph-Based Representations in
Pattern Recognition 2015. Lecture Notes in Computer Science, 2015,
vol. 9069, pp. 168-177.

[22] Carletti V., Foggia P., Saggese A., Vento M. Challenging the time
complexity of exact subgraph isomorphism for huge and dense graphs
with VF3. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2018, vol. 40, no. 4, pp. 804-818.

[23] Han W., TurboISO: Towards UltraFast and Robust Subgraph
Isomorphism Search in Large Graph Databases. In: Proceedings of
SIGMOD, 2013, pp. 337-348.

[24] Bi F., Chang L., Lin X., Qin L., Zhang W. Efficient Subgraph Matching
by Postponing Cartesian Products. In: Proceedings of SIGMOD, 2016,
pp. 1199-1214.

[25] Shang H., Zhang Y., Lin X., Yu J.X. Taming verification hardness: an
efficient algorithm for testing subgraph isomorphism. In: Proceedings
if the VLDB Endowment, 2008, vol. 1, no. 1, pp. 364-375.

[26] Zhao P., Han J. On graph query optimization in large networks. In:
Proceedings if the VLDB Endowment, 2010, vol. 3, pp. 340-351

