
Mechanized Theory of Event Structures:
A Case of Parallel Register Machine

Vladimir Gladstein
Saint Petersburg State University,

14 line of V.O., 29B,
St. Petersburg, 199178, Russia

vovaglad00@gmail.com

Dmitrii Mikhailovskii
Saint Petersburg State University,

14 line of V.O., 29B,
St. Petersburg, 199178, Russia

mikhaylovskiy.dmitriy@gmail.com

Evgenii Moiseenko
Saint Petersburg State University

JetBrains Research
Kantemirovskaya st. 2, room 422
Saint Petersburg, 197342, Russia

e.moiseenko@2012.spbu.ru

Anton Trunov
Zilliqa Research

anton@zilliqa.com

Abstract—The true concurrency models, and event structures,
in particular, have been introduced in the 1980s as an alternative
to operational interleaving semantics of concurrency, and nowa-
days they are regaining popularity. Event structures represent the
causal dependency and conflict between the individual atomic
actions of the system directly. This property leads to a more
compact and concise representation of semantics.

In this work-in-progress report, we present a theory of
event structures mechanised in the COQ proof assistant and
demonstrate how it can be applied to define certified executable
semantics of a simple parallel register machine with shared
memory.

I. INTRODUCTION

Event structures is a mathematical formalism introduced by
Winskel [1] as a semantic domain of concurrent programs. In
recent years there has been renewed interest in event structures,
with the applications of the theory ranging from relaxed
memory models [2]–[4] to model-based mutation testing [5].

The main advantage of event structures compared to tradi-
tional interleaving semantics is that they give a more compact
and concise representation of programs’ behaviours. For ex-
ample, consider the following code snippet of a simple parallel
program.

x := 1 x := 2 x := 3

r := x

W(x, 1)

W(x, 2)

W(x, 3)

R(x, 3)

W(x, 1)

W(x, 3)

W(x, 2)

R(x, 2)

W(x, 2)

W(x, 1)

W(x, 3)

R(x, 3)

W(x, 2)

W(x, 3)

W(x, 1)

R(x, 1)

W(x, 3)

W(x, 1)

W(x, 2)

R(x, 2)

W(x, 3)

W(x, 2)

W(x, 1)

R(x, 1)

Fig. 1

Under the interleaving semantics, it has 3! = 6 traces
with each trace consisting of 4 events, as depicted in fig. 1.
Events themselves represent atomic side-effects produced by
instruction executions. In our case, an event is either a write

of a value a to a shared variable x denoted as W(x, a), or a
read of a value a from a shared variable x denoted as R(x, a).

The same information can be encoded in a single event
structure containing 6 events in total (see fig. 2). In the event
structure, there are two types of edges between the events. The
grey arrows e1→e2 represent the causality relation, a partial
order reflecting the causal relationship between the atomic
events of computation. The red edges e1!e2 represent the
conflict relation which is a symmetric and irreflexive relation
encoding mutually exclusive events. Each particular trace can
be extracted from the event structure as a linearisation of some
configuration, that is a causally-closed and conflict-free subset
of events, which additionally should satisfy the constraint that
each read is preceded by a matching write.

W(x, 1) W(x, 2) W(x, 3)

R(x, 1)

R(x, 2)

R(x, 3)

Fig. 2

The programming languages theory and formal semantics
research communities are moving to increase the usage of
proof assistants like COQ [6], AGDA [7], ISABELLE/HOL [8],
AREND [9], and others, to complement theoretical studies with
their mechanisation, as this process increases the reliability
and reproducibility of scientific results. Yet, to the best of our
knowledge, there is little work on mechanisation of the theory
of event structures. The present report aims to close the gap.

We have chosen COQ as the proof assistant because it’s a
mature formal proof management tool with a rich ecosystem
of libraries, plugins, documentation, and existing applications
including the certification of properties of programming lan-
guages: the verified C compiler CompCert [10], the Verified
Software Toolchain [11] for verification of C programs, and
the Iris framework [12] for concurrent separation logic, to
name a few.



Our end goal is to develop a COQ library containing a
comprehensive set of common definitions, lemmas, and tactics
that would allow researchers to utilise the theory of event
structures for the needs of their domain.

In this work-in-progress report, we sketch the common de-
sign principles behind our library and give a concrete example
of its usage by developing a formal mechanised semantics of
a simple register machine with shared memory.

Our library together with the examples of its usage is avail-
able online at https://github.com/event-structures/event-struct.

II. RELATED WORK

Event structures were introduced by Winskel to study the
semantics of the calculus of communicating systems [1], [13].
Several modifications of event structures [14], [15] were later
proposed to tackle similar problems.

More recently, event structures were applied in the context
of relaxed memory models [2]–[4], [16]. Among this line
of work, we are aware of only one paper [16] that was
accompanied by a mechanisation in a proof assistant. The
authors formalised the WEAKESTMO [4] memory model in
COQ. However, this memory model uses a custom variant
of event structures, that does not obey the axioms of any
conventional class of event structures [13]–[15]. This fact
makes it harder to reuse and adapt it to other applications
of the theory.

III. BACKGROUND

There exist several modifications of event structures. Cur-
rently, we have implemented only the prime event struc-
tures [1] in our library. We give some background on this
class of event structures below.

Definition 3.1: A prime event structure (PES) is a triple
(E,6,#), where
• E is a set of events
• 6 is a causality relation on E such that

– (E,6) is a partial order;
– for every e ∈ E its causality prefix
dee := {e′ : e′ 6 e} is finite, i.e., every event
is caused by a finite set of events.

• # is a conflict relation on E such that:
– # is irreflexive and symmetric;
– it satisfies the hereditary condition:

∀e1, e2, e3 ∈ E. e1#e2 ∧ e2 6 e3 ⇒ e1#e3

That is, if two events are in conflict, then all their
causal successors are necessarily in conflict.

A single prime event structure can encode multiple runs
of a program. Each individual run can be extracted as a
configuration. In other words, configurations are used to model
a history of computation up to a certain point.

Definition 3.2: A configuration of PES (E,6,#) is a set
of events X ⊆ E such that
• it is causally closed

∀e1, e2 ∈ E. e2 ∈ X ∧ e1 6 e2 ⇒ e1 ∈ X

• and conflict-free

∀e1, e2 ∈ X.¬(e1#e2)

IV. OVERVIEW OF OUR LIBRARY

In this section, we sketch the design principles of our library.
We build our mechanisation on top of the MATHCOMP [17]

library which is an extensive and coherent repository of
formalized mathematical theories, whose implementation is
based on the SSREFLECT [18] extension of the COQ system.
By using MATHCOMP, we draw on the large corpus of already
formalised algorithms and mathematical results: its core mod-
ules feature support for a range of useful data structures, e.g.
numbers, sequences, finite graphs, and also interfaces: types
with decidable equality, subtypes, finite types, and so on.

We also use the small-scale reflection methodology [18],
[19], a key ingredient of SSREFLECT.

The small-scale reflection approach is based on the perva-
sive use of symbolic representations intermixed with logical
ones within the confines of the same proof goal, as opposed
to large-scale reflection which does not allow such mixing.
Symbolic representations are connected to the corresponding
logical ones via user-defined reflect predicates. The symbolic
representation can be manipulated by the computational engine
of the language, allowing the user to automate low-level
routine proof management by using various decision and
simplification procedures. Whenever the user needs to guide
the proof they can switch to the logical representation and
perform some proof steps manually.

To achieve better automation and e.g. get proof irrelevance
for free, one is encouraged to use decision procedures when-
ever possible. For example, in the context of our library, we
encode the binary relations of the event structures as decidable
bool-valued relations, i.e., 6,# : E → E → bool, as
opposed to propositional relations of type E → E → Prop.

Encoding computable relations in COQ, especially their
(computable) transitive closures, can be quite challenging
since COQ is a total language and its termination checker
only understands termination patterns going slightly beyond
simple structural recursion. To make it easier, we employ the
EQUATIONS function definition plugin [20] which provides
both notations for writing programs by dependent pattern-
matching and good support for well-founded recursion.

In fact, binary relations are omnipresent in our formaliza-
tion. This quickly manifested in a substantial amount of proof
overhead and we seeked for tools to automate our proofs. Since
binary relations form a Kleene Algebra with Tests (KAT) [21],
we have chosen to use the RELATION-ALGEBRA1 [22] package
which provides a number of tactics to solve goals using
decision procedures for a number of theories, such as partially
ordered monoids, lattices, residuated Kleene allegories and
KATs.

We also favour the computational encoding of semantics.
Similar to the recent related works on mechanisation of
operational semantics [23]–[25], we encode the semantics

1https://github.com/damien-pous/relation-algebra

https://github.com/event-structures/event-struct
https://github.com/damien-pous/relation-algebra


as monadic interpreters. This allows us to extract [26] the
semantics as a functional program and run it. We believe that
the possibility to run the semantics is a very useful feature, as
it allows to debug the formal semantics and helps to develop
better intuition about it.

To facilitate computable semantics, we define a subclass
of finitely supported event structures as a finite sequence of
events combined with a finitely supported function which
enhances events with additional information, such as their
labels, causality predecessors, etc. Encoding finitely supported
functions is not a trivial endeavor in a proof assistant and for
this task we use the FINMAP 2 library which is an extension
of MATHCOMP providing finite sets and finite maps on types
with a choice operator (rather than on finite types).

Finally, to encode the algebraic hierarchy of various classes
of event structures we use yet another feature of MATH-
COMP — packed classes [27], which is a design pattern
providing multiple inheritance, maximal sharing of notations
and theories, and automated structure inference.

V. CASE STUDY

In this section, we provide a case study demonstrating an
application of our mechanised theory of event structures. We
show how it can be used to encode the semantics of a parallel
register machine equipped with shared memory.

A. Register Machine

For our case study, we use a simple idealised model of
a register machine, which consists of a finite sequence of
instructions, an instruction pointer, and an infinite set of
registers. The syntax of the machine’s language is shown
in fig. 3.

P ∈ Prog ::= i1; . . . ; in program
I ∈ Instr ::= instruction

| r := v assign to register
| r1 := r2 ⊗ r3 apply binary operation
| if r jump i conditional jump
| exit exit
| r := x read from memory
| x := v write to memory

r ∈ Reg thread-local register
x ∈ Loc shared memory

location
v ∈ Z value
⊗ ∈ BinOp binary operation
i ∈ N instruction label

Fig. 3: Syntax of the register machine

We first present the semantics of a single-threaded program.
Under this semantics, memory access instructions do not
operate on shared memory but rather produce a label denoting
the side-effect of the operation (see fig. 4). This encoding

2https://github.com/math-comp/finmap

allows us to decouple the semantics of the register machine
from a memory model.

` ∈ Lab ::=
| R(x, v) read of value v from location x
| W(x, v) write of value v to location x

Fig. 4: Syntax of Labels

The semantics is given in the form of a labelled transition
system: 3 P ` s l−→ s′, where P is a program, l is a label, s and
s′ are states of the machine. The state of the machine itself
consists of an instruction pointer i and a map from registers to
their values σ, as shown in fig. 5. The rules of the semantics
are standard (see fig. 6).

s ∈ ThrdState ::= 〈i, σ〉
i ∈ N instruction pointer
σ ∈ Reg→ Z register mapping

Fig. 5: Thread state of register machine

B. Event Structure of Register Machine

In this section we present operational semantics which
constructs a prime event structure encoding a set of possible
behaviours of the register machine.

The event structure is constructed incrementally in a step-
by-step fashion by adding a single event on each step. In order
to generate a new event on each step, we require that events
behave as identifiers.

Definition 5.1: We say that a set E together with strict
partial order ≺ form an identifier set if:
• there exists a distinguished initial identifier e0 ∈ E;
• there exists a function fresh : E → E which generates a

new fresh identifier, s.t.

∀e ∈ E. e ≺ fresh(e)

We will encode the event structure as a tuple
〈E , lab, fpo, frf〉 and explain below the meaning of each
component, and how they form a prime event structure
together.

The first component E is a sequence of events e1 � . . . � en
in reverse order w.r.t the order in which events get added to
the structure. The second component is a labelling function
lab : E → Lab, assigning a label to each event.

Next, following the theory of axiomatic weak memory
models [28], we define the causality relation of the register
machine’s event structure as the reflexive transitive closure of
the union of two relations — program order and reads-from,
denoted as po and rf correspondingly.

3As we have mentioned, in our COQ development we actually use the
monadic encoding of the operational semantics. The labelled transition system
can be derived from this encoding.

https://github.com/math-comp/finmap


P [i] = r := v
Assign

P ` 〈i, σ〉 ε−→ 〈i+ 1, σ[r 7→ v]〉

P [i] = x := v
Store

P ` 〈i, σ〉 W(x,v)−−−−→ 〈i+ 1, σ〉

P [i] = r := x
Load

P ` 〈i, σ〉 R(x,v)−−−−→ 〈i+ 1, σ[r 7→ v]〉

P [i] = r1 := r2 ⊗ r3 v = σ(r2)⊗ σ(r3)
Binop

P ` 〈i, σ〉 ε−→ 〈i+ 1, σ[r1 7→ v]〉

P [i] = exit len(P ) = n
Exit

P ` 〈i, σ〉 ε−→ 〈n, σ〉

P [i] = if r jump j σ(r) = 0
CJumpz

P ` 〈i, σ〉 ε−→ 〈i+ 1, σ〉

P [i] = if r jump j σ(r) 6= 0
CJumpnz

P ` 〈i, σ〉 ε−→ 〈j, σ〉
Fig. 6: Semantics of register machine

6 , (po ∪ rf)∗

The program order relation tracks precedence of events
within a single thread. The reads-from relation captures the
flow of values from write events to read events, and ensures
that values do not appear out of thin air [28], [29].

In order to construct po and rf incrementally we represent
them via their inverse covering functions fpo and frf.

Definition 5.2 (Covering): Let 6 be a partial order. Then
l is covering relation w.r.t. 6 whenever x l y is true if and
only if x < y and there is no z s.t. x < z and z < y. A (non-
deterministic) function f from A to the set of finite subsets
of A is a covering function if its corresponding relation, i.e.,
f↑ , {〈x, y〉 | y ∈ f(x)}, is a covering relation.

We use the inverse covering function because it is more
convenient in our setting. Indeed, the semantics adds a new
event at each step. Then it is convenient to require that, in
addition, the small-step relation is provided with the po and
rf predecessors of a new event.

lpo , f↑po
−1 lrf , f↑rf

−1

po , l+
po rf , lrf

We define the conflict relation in two steps. First, we
define the primitive conflict relation ∼# which is generated
by the fpo function. The two events are considered to be in
primitive conflict if they are not equal and have a common po

predecessor. For this definition to work properly, we also need
to assume that each thread has a special initial event labelled
by a distinguished thread start label TS.

e1 ∼# e2 ⇐⇒ e1 6= e2 ∧ fpo(e1) = fpo(e2)

Second, we extend the primitive conflict along the causality
relation:

e1#e2 ⇐⇒ ∃e′1, e′2 ∈ E. e′1 ∼# e′2 ∧ e′1 6 e1 ∧ e′2 6 e2

We also need a way to reconcile the event structure with the
states of the machine’s threads. To do so, we use a function
Σ : E → ThrdState which maps an event to a thread state

obtained as the result of the execution of the event’s side-
effect.

Let us consider an example. Given the program below, our
semantics builds the corresponding event structure as shown
in fig. 7.

1 : x := 1 2 : r := x 3 : x := 2

TS TS TS
〈1,⊥〉 〈2,⊥〉 〈3,⊥〉

 

TS TS TS
〈1,⊥〉 〈2,⊥〉 〈3,⊥〉

W(x, 1)

〈4,⊥〉

 

TS TS TS
〈1,⊥〉 〈2,⊥〉 〈3,⊥〉

W(x, 1)

〈4,⊥〉
W(x, 2)

〈4,⊥〉

 

TS TS TS
〈1,⊥〉 〈2,⊥〉 〈3,⊥〉

W(x, 1)

〈4,⊥〉
W(x, 2)

〈4,⊥〉
R(x, 1)

〈4, r 7→ 1〉

 

TS TS TS
〈1,⊥〉 〈2,⊥〉 〈3,⊥〉

W(x, 1)

〈4,⊥〉
W(x, 2)

〈4,⊥〉
R(x, 1)

〈4, r 7→ 1〉
R(x, 2)

〈4, r 7→ 2〉

Fig. 7: Example of the event structure construction



e = fresh(first(E)) epo ∈ E erf ∈ E
(Add Event)

〈E , lab, fpo, frf〉
〈e,`,epo,erf〉
↪−−−−−−−→ 〈e :: E , lab[e 7→ `], fpo[e 7→ epo], frf[e 7→ erf]〉

e ∈ S.E s = Σ(e) P ` s ε−→ s′
(Idle)

P ` 〈S,Σ〉 ε
=⇒ 〈S,Σ[e 7→ s′]〉

s = Σ(epo) P ` s `−→ s′ S
〈e,`,epo,⊥〉
↪−−−−−−→ S′ l = W(x, v)

(Store)
P ` 〈S,Σ〉

〈e,`,epo,⊥〉
======⇒ 〈S′,Σ[e 7→ s′]〉

s = Σ(epo) P ` s `−→ s′ S
〈e,`,epo,erf〉
↪−−−−−−−→ S′ ¬(e#erf)

l = R(x, v)

lab(erf) = W(x, v)
(Load)

P ` 〈S,Σ〉
〈e,`,epo,erf〉
=======⇒ 〈S′,Σ[e 7→ s′]〉

s = Σ(epo) P ` s `−→ s′ S
〈e,`,epo,⊥〉
↪−−−−−−→ S′ l = R(x,⊥)

(Load-Bottom)
P ` 〈S,Σ〉

〈e,`,epo,⊥〉
======⇒ 〈S′,Σ[e 7→ s′]〉

Fig. 8: Semantics of register machine event structure

The construction starts from an initial event structure con-
taining, for each thread, an event labelled by TS. We depict
the corresponding thread state below each label. Initially,
each event is mapped to an initial thread state consisting of
an instruction pointer pointing to the first instruction to be
executed and an initial mapping of registers denoted as ⊥.
The first step executes the store instruction from the leftmost
thread and exits the program, since the execution of this thread
terminates (we omit the exit instructions at the end of each
thread for brevity). Next, the store from the rightmost thread
is executed and the corresponding write event gets added to
the structure. After that, the load instruction from the middle
thread is executed. Since there are two matching write events
in the event structure, two conflicting reads are conjoined
to the event structure. Note that the events can be added
non-deterministically in any order respecting causality. We
could have first executed the rightmost thread and added write
W(x, 2) before W(x, 1), or we could have added the read with
label R(x, 2) before another read R(x, 1).

The rules of operational semantics constructing the event
structure are presented in fig. 8. The first auxiliary rule
(Add Event) adds a new event, sets its label, po and rf

predecessors. The (Idle) handles the case when a thread of
the register machine performs an internal step without any
side effect. It chooses an event e together with the thread
state s corresponding to it and performs one step reduction
to a new state s′. It then updates the mapping of events
to thread states. The last three rules (Store), (Load), and
(Load-Bottom) correspond to store and load performed by
some thread. Similarly to (Idle), an event epo is selected and
one reduction is performed from the corresponding thread
state s. Unlike the (Idle) case, however, a new event e is also
generated. In the case of (Load), additionally, an event erf is

selected, such that it has a write label matching the read label
of the new event. The rule (Load-Bottom) corresponds to a
case when load is performed “too early”, before any write to
the given location is available.

The following theorem asserts that the event structure built
this way indeed satisfies the axioms of the prime event
structure.

Theorem 1: The tuple 〈E,6,#〉, where6 and # are defined
as described above, forms prime event structure.

We sketch the proof below4.
First, we need to show that 6 , (po ∪ rf)∗ is a partial

order. Reflexivity and transitivity follows immediately from
the definition of the reflexive-transitive closure. To show
antisymmetry note that lpo ⊆≺ and lrf ⊆≺ by construction.
Therefore 6 is a subset of the reflexive closure of ≺. Since ≺
is a partial order, it is antisymmetric, and thus 6 should also
be antisymmetric. The axiom of finite cause, i.e., dee is finite
for every event e, follows from the fact that at each step of
the construction the set of possible predecessors of the new
event can be over-approximated by the finite sequence E .

Second, we need to show that the conflict relation # defined
as described above obeys the laws of the conflict relation.
Trivially, this relation is symmetric, and obeys the hereditary
property. The side condition ¬(e#erf) of the rule (Load)
ensures that the conflict relation is irreflexive.

In fig. 9 one can see the prime event structure obtained as
a result of the incremental construction depicted in fig. 7.

Once the event structure is constructed, one can extract
the configurations corresponding to the particular runs of
the parallel register machine, and further filter them via the
consistency predicate defining the memory consistency model.

4One can also find its mechanized proof in our COQ development.



TS TS TS
〈1,⊥〉 〈2,⊥〉 〈3,⊥〉

W(x, 1)

〈4,⊥〉
W(x, 2)

〈4,⊥〉
R(x, 1)

〈4, r 7→ 1〉
R(x, 2)

〈4, r 7→ 2〉

Fig. 9: Example of the prime event structure

Our construction of event structures allows to encode a wide
class of so-called po∪rf acyclic relaxed memory models [28].

For example, a predicate corresponding to sequential con-
sistency [30] requires that the causality order can be extended
to a total order on all events of the configuration, such that
for each read event the last preceding write event to the same
location has the same value as the read.

VI. FUTURE WORK

There are several directions for future work.
First, we plan to apply our library to a wider range

of problems. We are going to develop a mechanised se-
mantics of some long-established languages used to model
concurrency, in particular, the calculus of communicating
systems (CCS) [31] and π-calculus [32]. We also plan to
continue our work on expressing various relaxed models of
shared memory [28], [33], [34] in terms of event structures.

Second, we want to cover other classes of event structures
in our library, in particular, bundle [14], flow [15], and sta-
ble [1], [13] event structures. We plan to use them to develop
mechanised denotational semantics of concurrent languages
and relaxed shared memory models [35].

Finally, we plan to mechanise in COQ classical results that
connect various classes of event structures [15], [36]. It would
allow us to easily establish the connection between operational
and denotational semantics of concurrent languages.

REFERENCES

[1] G. Winskel, “Event structures,” in Advanced Course on Petri Nets,
pp. 325–392, Springer, 1986.

[2] A. Jeffrey and J. Riely, “On thin air reads: Towards an event structures
model of relaxed memory,” in LICS 2016, IEEE, 2016.

[3] J. Pichon-Pharabod and P. Sewell, “A concurrency semantics for relaxed
atomics that permits optimisation and avoids thin-air executions,” in
POPL 2016, pp. 622–633, ACM, 2016.

[4] S. Chakraborty and V. Vafeiadis, “Grounding thin-air reads with event
structures,” Proceedings of the ACM on Programming Languages, vol. 3,
no. POPL, pp. 1–28, 2019.

[5] A. Fellner, T. Tarrach, and G. Weissenbacher, “Language inclusion for fi-
nite prime event structures,” in International Conference on Verification,
Model Checking, and Abstract Interpretation, pp. 314–336, Springer,
2020.

[6] The Coq Development Team, “The Coq Proof Assistant,” Jan. 2021.
[7] “Agda language reference.” Available at https://agda.readthedocs.io/

[Online; accessed 7-May-2021].
[8] T. Nipkow, L. C. Paulson, and M. Wenzel, Isabelle/HOL: a proof

assistant for higher-order logic, vol. 2283. Springer Science & Business
Media, 2002.

[9] “Arend theorem prover.” Available at https://arend-lang.github.io/ [On-
line; accessed 7-May-2021].

[10] X. Leroy, “Formal verification of a realistic compiler,” Communications
of the ACM, vol. 52, no. 7, pp. 107–115, 2009.

[11] A. W. Appel, “Verified software toolchain,” in Proceedings of the
20th European Conference on Programming Languages and Systems,
ESOP’11/ETAPS’11, (Berlin, Heidelberg), p. 1–17, Springer-Verlag,
2011.

[12] R. Jung, R. Krebbers, J.-H. Jourdan, A. Bizjak, L. Birkedal, and
D. Dreyer, “Iris from the ground up: A modular foundation for higher-
order concurrent separation logic,” Journal of Functional Programming,
vol. 28, p. e20, 2018.

[13] G. Winskel, “Event structure semantics for CCS and related languages,”
in International Colloquium on Automata, Languages, and Program-
ming, pp. 561–576, Springer, 1982.

[14] R. Langerak, “Bundle event structures: a non-interleaving semantics
for LOTOS,” in 5th International Conference on Formal Description
Techniques for Distributed Systems and Communications Protocols,
FORTE 1992, pp. 331–346, North-Holland Publishing Company, 1991.

[15] G. Boudol and I. Castellani, Flow models of distributed computations:
event structures and nets. PhD thesis, INRIA, 1991.

[16] E. Moiseenko, A. Podkopaev, O. Lahav, O. Melkonian, and V. Vafeiadis,
“Reconciling event structures with modern multiprocessors,” in 34th
European Conference on Object-Oriented Programming, 2020.

[17] A. Mahboubi and E. Tassi, “Mathematical components,” 2017.
[18] G. Gonthier, A. Mahboubi, and E. Tassi, “A small scale reflection

extension for the Coq system,” 2016.
[19] G. Gonthier and A. Mahboubi, “An introduction to small scale reflection

in Coq,” Journal of formalized reasoning, vol. 3, no. 2, pp. 95–152, 2010.
[20] M. Sozeau and C. Mangin, “Equations reloaded: High-level

dependently-typed functional programming and proving in Coq,”
Proc. ACM Program. Lang., vol. 3, July 2019.

[21] D. Kozen, “Kleene algebra with tests,” ACM Transactions on Program-
ming Languages and Systems (TOPLAS), vol. 19, no. 3, pp. 427–443,
1997.

[22] D. Pous, “Kleene algebra with tests and Coq tools for while programs,”
in International Conference on Interactive Theorem Proving, pp. 180–
196, Springer, 2013.

[23] L.-y. Xia, Y. Zakowski, P. He, C.-K. Hur, G. Malecha, B. C. Pierce,
and S. Zdancewic, “Interaction trees: representing recursive and impure
programs in Coq,” Proceedings of the ACM on Programming Languages,
vol. 4, no. POPL, pp. 1–32, 2019.

[24] T. Letan and Y. Régis-Gianas, “Freespec: specifying, verifying, and
executing impure computations in Coq,” in Proceedings of the 9th ACM
SIGPLAN International Conference on Certified Programs and Proofs,
pp. 32–46, 2020.

[25] R. Affeldt, D. Nowak, and T. Saikawa, “A hierarchy of monadic effects
for program verification using equational reasoning,” in International
Conference on Mathematics of Program Construction, pp. 226–254,
Springer, 2019.

[26] P. Letouzey, “Extraction in Coq: An overview,” in Conference on
Computability in Europe, pp. 359–369, Springer, 2008.

[27] F. Garillot, G. Gonthier, A. Mahboubi, and L. Rideau, “Packaging math-
ematical structures,” in International Conference on Theorem Proving in
Higher Order Logics, pp. 327–342, Springer, 2009.

[28] O. Lahav, V. Vafeiadis, J. Kang, C.-K. Hur, and D. Dreyer, “Repairing
sequential consistency in C/C++11,” in PLDI 2017, ACM, 2017.

[29] H.-J. Boehm and B. Demsky, “Outlawing ghosts: Avoiding out-of-thin-
air results,” in MSPC 2014, pp. 7:1–7:6, ACM, 2014.

[30] L. Lamport, “How to make a multiprocessor computer that correctly
executes multiprocess programs,” IEEE Trans. Computers, vol. 28, no. 9,
pp. 690–691, 1979.

[31] R. Milner, “A calculus of communicating systems,” 1980.
[32] R. Milner, Communicating and mobile systems: the pi calculus. Cam-

bridge university press, 1999.
[33] O. Lahav, N. Giannarakis, and V. Vafeiadis, “Taming release-acquire

consistency,” ACM SIGPLAN Notices, vol. 51, no. 1, pp. 649–662, 2016.
[34] A. Podkopaev, O. Lahav, and V. Vafeiadis, “Bridging the gap between

programming languages and hardware weak memory models,” Proceed-
ings of the ACM on Programming Languages, vol. 3, no. POPL, pp. 1–
31, 2019.

[35] M. Dodds, M. Batty, and A. Gotsman, “Compositional verification of
compiler optimisations on relaxed memory,” in European Symposium on
Programming, pp. 1027–1055, Springer, 2018.

[36] M. Nielsen, G. Plotkin, and G. Winskel, “Petri nets, event structures and
domains, part I,” Theoretical Computer Science, vol. 13, no. 1, pp. 85–
108, 1981.

https://agda.readthedocs.io/
https://arend-lang.github.io/

	Introduction
	Related Work
	Background
	Overview of Our Library
	Case Study
	Register Machine
	Event Structure of Register Machine

	Future Work
	References

