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Abstract—In this paper, we present an approach to the gener-
ation of Petri nets exhibiting desired structural and behavioral
properties. Given a reference Petri net, we apply a collection
of local refinement transformations, which extends the internal
structure of the reference model. The correctness of applying
these transformations is justified via Petri net morphisms and
by the fact that transformations do not add new deadlocks to
Petri nets. We have designed two Petri net refinement algorithms
supporting the randomized and fixed generation of models. These
algorithms have been implemented and evaluated within the
environment of the Carassius Petri net editor. The proposed
approach can be applied to evaluate and conduct experiments
for algorithms operating with Petri nets.

Index Terms—Petri nets, morphisms, property-preserving
transformations, generation of models

I. INTRODUCTION

Petri nets are widely used to formally represent the behavior
of distributed systems for their precise semantics, which
helps to prove many crucial behavioral properties, including
boundedness, deadlock-freeness, covering by place invariants,
and others [1]. The automated verification of these properties
is supported by different algorithms. For instance, covering
by place invariants can be decided using linear algebraic
techniques [2].

The software implementation of algorithms operating with
Petri nets naturally requires the preparation of model sets that
exhibit the specific structural and behavioral properties. Such
sets of models are then used for the thorough evaluation of
algorithms under development. Firstly, the manual generation
of Petri nets with specific properties is a time-consuming
activity. Moreover, if one has to prepare a particularly large-
scale model, then there arises an additional task to verify the
necessary properties of this model. The computational cost
of such a verification can grow too fast due to the well-
known state-explosion problem of distributed systems, when
the number of reachable states grows exponentially compared
to the size of a system model.

In our paper, we propose an approach to the generation
of Petri nets based on structural transformations. Firstly, a
reference Petri net is constructed. This model has all the
target structural and behavioral properties. Secondly, applying
a collection of local transformations that extend the internal
structure of a reference Petri net, we obtain a refinement
exhibiting the same properties as an initial reference model.
The general scheme of this approach is schematically shown

in Fig. 1, where a refinement is a result of applying k local
transformations to a reference Petri net. Note that a refinement
has the more sophisticated structure than a reference model.
Transformations, considered in our study, are called local,
since they change only the specific part of a model, while the
rest of the model remains untouched. The mathematical frame-
work of these transformations is responsible for preserving the
structural and behavioral properties of a reference Petri net. In
addition, the application of transformations requires only the
local checks of structural constraints.
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Fig. 1. Step-wise generation of a Petri net

We consider two generation schemes: fixed and randomized.
Within the fixed generation of Petri nets, a specific sequence
of transformations is applied to an initial reference model.
Conversely, the randomized generation is a based on a non-
deterministic choice of transformations.

Thus, the main results of our paper are as follows:
1) the algorithms for the fixed and randomized generation

of Petri nets from a given reference model;
2) the software implementation and evaluation of these

algorithms within the environment of the Carassius Petri
net editor [3].

The remainder of this paper is structured as follows. The
next section discusses the related research. In Section III,
we define a class of Petri nets considered in our paper.
Section IV describes the mathematical framework behind a
collection of structural transformations that are used to refine
Petri nets. The algorithms for the fixed and randomized Petri
net generation are presented in Section V. In Section VI, we
describe a software implementation as well as evaluation of
these algorithms, and Section VII concludes the paper.

II. RELATED WORK

Process Log Generator PLG2 [4] is a well-known software
used for the random generation of process models. It supports
different notations, including Petri nets and Business Process
Model and Notation (BPMN). As shown in [5], the specific
classes of BPMN models correspond to Petri nets and vice
versa. PLG2 generates process models based on randomly



generated context-free grammars and parameters such as the
maximum model size, the frequencies of standard behavioral
patterns, and others. Compared to our approach, PLG2 offers
only the fully randomized model generation and guarantees
the behavioral correctness of constructed models. However,
within our approach, a reference model may have, for instance,
deadlocks, which will be preserved in its refinement.

The generation of BPMN process models has also been con-
sidered in [6]. The authors of this approach allow specifying
the parameters such as the size of models, the frequencies
of behavioral patterns, the types of activities. Similar to our
approach, they have also used a collection of initial BPMN
models to generate a set of synthetic models.

PTandLogGenerator [7] is another tool supporting the ran-
domized generation of process models. It produces so-called
process trees, which specify relations among process activities,
for example, sequential, alternative, or concurrent. Process
trees can be converted to Petri nets. The prime objective of
PTandLogGenerator and the previously mentioned PLG2 is to
simulate the behavior of randomly generated process models.

An approach to the generation of benchmarks, using random
step-wise Petri net refinements, has been presented in [8].
Within this approach, the authors have also defined a set of
refinement transformations similar to those used in our study.
Based on the proposed transformations, different Petri net
classes have been identified and studied. It has been shown
what transformations can be used to generate all Petri nets
representing a given class.

Structural transformations of Petri nets have been first
studied in the works [9], [10], [11], describing simple yet
powerful reduction and extension transformations, s.t. liveness,
boundedness, home states, and other behavioral properties are
preserved.

Morphisms on Petri nets provide a formal and natural
framework to express structural property-preserving relations
between Petri nets [12], [13], [14]. Using morphisms, one can
consider more sophisticated problems of property preserva-
tion, including, for instance, bisimulations between Petri nets,
as discussed in [13]. For elementary net systems [15] – a
fundamental class of Petri nets also considered in our paper
– α-morphisms have been introduced in [16]. They help to
formalize structural relations between abstract models and
their refinements. Concerning our approach to the Petri net
generation, a reference Petri net represents an abstract model.
In addition, α-morphisms preserve the behavioral properties
(reachable markings) as well as reflect them under the specific
local requirements.

Since the direct application of α-morphisms is rather diffi-
cult for the sophisticated constraints to be checked, a collection
of local transformations proposed in [17] can be used to
define α-morphisms systematically in a step-by-step way.
These transformations are used in our study to generate Petri
nets, which preserve the properties of an initial reference
model. Correspondingly, the mathematical framework behind
transformations, which provide the property preservation, is
based on α-morphisms.

The existing open-source Petri net editors, among the others,
include Platform Independent Petri Net Editor [18], [19],
PNEditor [20], WoPeD [21], [22], Wolfgang [23], Carassius
[3]. They allow modeling, simulating and analyzing the behav-
ior of Petri nets. The problem of the model generation has not
been considered within these editors. In our study, we will
extend the functionality of the Carassius Petri net editor to
provide the generation of Petri nets with the desired structural
and behavioral properties.

III. ELEMENTARY NET SYSTEMS

In our study, we consider the generation of elementary
net systems (EN-systems). They form the fundamental class
of Petri nets used to model the control-flow of distributed
systems, while other aspects such as data and time are not
considered. The structure of EN-systems is modeled using bi-
partite graphs with two kinds of nodes: places and transitions.
Places in an EN-system can carry at most a single token. Thus,
they can be interpreted as boolean conditions, truth values of
those are changed by transition firings. Below we provide the
formal definitions based on [15] concerning the structural and
behavioral aspects of EN-systems.

Let S be a set. The set of all finite non-empty sequences
over S is denoted by S+, and S∗ = S+ ∪ {ε}, where ε is the
empty sequence.

Definition 1 (Net): A net is a triple N = (P, T, F ), where
P and T are two disjoint sets of places and transitions, and
F ⊆ (P × T ) ∪ (T × P ) is flow relation. For any node x ∈
P ∪ T :

1) •x = {y ∈ X | (y, x) ∈ F} is the preset of x.
2) x• = {y ∈ X|(x, y) ∈ F} is the postset of x.
3) •x• = •x ∪ x• is the neighborhood of x ∈ X

The standard graphical notation is adopted: places are shown
with circles, and transitions are shown with boxes.

In our work, we consider nets without self-loops, i.e.,
∀x ∈ P ∪ T : •x ∩ x• = ∅ and isolated transitions, i.e.,
∀t ∈ T : |•t| ≥ 1 and |t•| ≥ 1.

The •-notation can also be extended to subsets of nodes. Let
N = (P, T, F ) be a net, and Y ⊆ P∪T . Then •Y =

⋃
y∈Y

•y,
Y • =

⋃
y∈Y y

• and •Y • = •Y ∪Y •. N(Y ) denotes the subnet
of N generated by Y , i.e., N(Y ) = (P∩Y, T∩Y, F∩(Y×Y )).

A marking (state) m in a net N = (P, T, F ) is a subset
of its places, i.e., m ⊆ P . Pictorially, markings are depicted
by placing black dots inside corresponding places. A marking
m in a net N = (P, T, F ) has a contact if ∃t ∈ T : •m and
m ∩ t• 6= ∅.

Definition 2 (EN-system): An elementary net system (EN-
system) is a couple (N,m0), where N = (P, T, F ) is a net,
and m0 ⊆ P is the initial marking.

The behavior of EN-system is defined by the firing rule. A
marking m in a net N = (P, T, F ) enables transition t ∈ T ,
denoted m[t〉, iff •t ⊆ m and m∩ t• = ∅. Enabled transitions
may fire. Firing t at m evolves N to a new marking m′ =
(m \ •t) ∪ t•, denoted m[t〉m′.



A sequence w ∈ T ∗ is a firing sequence in an EN-
system N = (P, T, F,m0) if w = t1t2...tn and m0[t1〉m1

[t2〉...mn−1[tn〉mn. Then we write m[w〉mn. The set of all
firing sequence in N is denoted by FS(N).

A marking m in N = (P, T, F,m0) is reachable if ∃w ∈
FS(N) : m0[w〉m. The set of all markings reachable from m
will be denoted [m〉.

A reachable marking m ∈ [m0〉 in N = (P, T, F,m0) is a
deadlock iff it does not enable any transitions. An EN-system
is deadlock-free iff there are no reachable deadlocks.

A state machine is a connected net N = (P, T, F ), where
∀t ∈ T : |•t| = |t•| = 1. A subnet of an EN-system
N = (P, T, F,m0) generated by Y ⊆ P and •Y •, i.e.,
N(Y ∪ •Y •) is a sequential component of N if it it is a
state machine and has a single token in the initial marking.
N is covered by sequential components if every place belongs
to at least one sequential component. In this case, N is state
machine decomposable (SMD). Reachable markings in SMD-
EN systems are free from contacts.

State machine decomposability is a basic feature bridging
the structural and behavioral properties of EN-systems [15].
The example shown in Fig. 2 provides an SMD-EN system
with three sequential components: A (dotted line), B (dashed
line), and C (dash-dotted line). Sequential components A,
B, C have independent parts (concurrent behavior) and syn-
chronous transitions, e.g., transition t4, which will be executed
by A and B simultaneously. Each token of a reachable marking
in an SMD-EN system can be characterized by sequential
components. For instance, a token in p7, shown in Fig. 2,
belongs to two of three sequential components: A and B.
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Fig. 2. SMD-EN system with three sequential components

Further, we work with SMD-EN-systems unless otherwise
stated explicitly. Thus, we omit the SMD abbreviation in their
descriptions.

IV. REFINEMENT OF EN-SYSTEMS

In this section, we discuss the mathematical framework
behind our approach to the generation of EN-systems using
refinement transformations. Firstly, we consider α-morphisms
formalizing relations between abstract and refined EN-systems

[16]. Secondly, we describe a set of local EN-system trans-
formations that induce corresponding α-morphisms and define
them in a step-wise manner [17].

A. Morphisms

A class of α-morphisms has been introduced in [16] to
formalize relations between an abstract EN-system and its
refinement, where subnets in a refined model can substitute
places in an abstract model. Using the example shown in Fig.
3, we briefly discuss the main intuition behind α-moprhisms.

t11 t12

t21 t22

t3 t1

p2

t2

p3t3

p1

N1

N2

Abstract EN-system
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Fig. 3. The α-moprhism ϕ : N1 → N2

An α-morphism ϕ : N1 → N2 is a total surjective map from
the set of nodes of a refined EN-system N1 on the set of nodes
of an abstract EN-system N2. Places in an abstract EN-system
can be refined with acyclic subnets in its refinement. For
example, subnet N1(ϕ

−1(p1)) refines place p1 in N2 shown
in Fig. 3. The refinement of places can also result in a split of
transitions, e.g., transition t1 in N2 is split into two transitions,
t11 and t12, in N1, as shown in Fig. 3.

An α-morphism ϕ : N1 → N2 is defined in terms of
how transitions in N1 are mapped to nodes in N2. If the
image of transition in N1 is also a transition in N2, then
their neighborhoods should correspond as well. For instance,
since the image of transition t11 in N1 shown in Fig. 3 is
transition t1 in N1, the image of •t11• is •t1•. If the image
of transition in N1 is a place in N2, then the image of its
neighborhood is this place as well. For instance, transitions in
subnet N1(ϕ

−1(p1)) are mapped to place p1 in N2 as well as
their neighborhoods.

These constraints combined with several other structural
restrictions imposed on subnets in a refined EN-system, dis-
cussed in detail in [16], assure the main motivation behind
α-morphisms: a refinement should behave “in a similar way”
as an abstract model does. Whenever there is a token in a
place in abstract EN-system, there exists the possibility to fire
a transition that puts a token into a corresponding subnet in
a refined EN-system, s.t. the other input transitions remain
disabled afterwards (see Lemma 1 in [16]).



The direct application of α-morphisms is rather difficult for
their sophisticated structural constraints. An approach based on
the subsequent application of local structural transformations
[17] comes to the aid of this problem. It is discussed in the
following section, where we redefine the refinement notion
through these transformations.

B. Refinement Transformations

The main idea of structural transformations, defined in [17],
lies in a step-by-step construction of a refined model from an
abstract one. These transformations are called local because
they change only a specific subnet in an initial model, while
the rest of the model remains untouched.

As shown in [17], every step of applying a transformation
to an EN-system induces a corresponding α-morphism from a
transformed model to an initial one. Moreover, after a series
of transformations is applied to an EN-system, there will be an
α-morphism from a result EN-system towards an initial EN-
system. Figure 4 shows the main idea of this approach, where
R is a refinement obtained from A by a sequential application
of k transformations, s.t. there is an α-morphism ϕ : R→ A,
and R preserves the behavioral properties of A, especially the
presence or absence of deadlocks.

Abstract 
EN-system

Refinement
transform

A R

Step 1 Step 2 Step k

Fig. 4. Refinement based on transformations and α-morphisms

Structural transformations help us to reconsider the notion
of a refinement without referring to the formal definition of α-
morphisms. In addition, within the framework of our approach
to the Petri net generation, transformations play a crucial role.
A reference model (see Fig. 1) is an abstract EN-system, and
its refinement is a result of applying transformations.

We next briefly consider the key aspects of refinement
transformations, described in [17].

A transformation is a tuple ρ = (L,R, cL, cR), where:
1) L is the left part – a subnet to be transformed.
2) R is the right part – a subnet replacing L.
3) cL – constraints imposed on L.
4) cR – constraints imposed on R.
Constraints cL and cR are structural and marking restric-

tions. They are responsible for corresponding α-morphisms.
The application of a transformation ρ to an EN-system N

involves (1) finding a match for L in N according to cL, i.e.,
subnet N(XL) with XL ⊆ P ∪ T and (2) replacing N(XL)
with R according to cR. The result of applying ρ to N is
denoted by ρ(N,XL). We write N

ρ→ N ′ if N ′ = ρ(N,XL)
and the specification of an affected subnet is not important.

The set of four refinement transformations RT =
{ρ1, ρ2, ρ3, ρ4} is described in Table I, where we provide
their constraints as well. Intuitively, ρ1 adds concurrency,
ρ2 and ρ4 introduce and extend choices, while ρ3 adds a

new transition into an initial model. Then we can define a
refinement as an EN-system that is obtained by applying a
sequence π ∈ RT ∗ of refinement transformations to another
EN-system, as formally given below.

Definition 3 (Refinement): Let Ni = (P1, Ti, Fi,m
i
0) be an

EN-system with i = 1, 2. N1 is a refinement of N2 iff there
is a sequence of transformations 〈ρ1, ρ2, ..., ρk〉 ∈ RT ∗, s.t.
N2

ρ1−→ N ′2
ρ2−→ ...

ρk−→ N1.

TABLE I
REFINEMENT TRANSFORMATIONS

Transformation Constraints

ρ1: Place duplication

p

t1

t2

p1 p2

t2

t1

L R

1. •p1 = •p = •p2;
2. p1• = p• = p2•;
3. (p1 ∈ m′0 and p2 ∈ m′0) iff
p ∈ m0.

ρ2: Transition duplication

t

p1

p2

t1 t2

p2

p1

L R

1. •t1 = •t = •t2;
2. t1• = t• = t2•.

ρ3: Transition introduction

p

t1

t2

t

p1

p2

t1

t2L R

1. •t = {p1}, t• = {p2};
2. p1• = •p2 = {t};
3. •p1 = •p, p2• = p•;
4. p1 ∈ m′0 ⇔ p ∈ m0;

ρ4: Place split
t1 t2

p

t3

p1 p2

t3 t3

t1 t2

L R

1. •p1 ⊂ •p, •p2 ⊂ p;
2. •p1 ∪ •p2 = •p;
3. •p1 ∩ •p2 = ∅;
3. p1•, p2• are two complete
copies of p•;
4. •(pi•) \ {pi} = •(p•);
5. if p ∈ m0, then p1 ∈ m′0 iff
p ∈ m0;

Let us consider the example of applying transformation ρ3
to place p9 in the EN-system shown in Fig. 2. According to
Table I, there are no specific restrictions imposed on a place
in the left part of ρ3. Then, we can replace place p9 with a
subnet, corresponding to the right part of ρ3, as shown in Fig.
5. Since p9 is not marked, added places are also not marked.

As proven in [17], refinement transformations do not in-
troduce new deadlocks, unless they are already present in an
initial EN-system, i.e., the deadlocks in a transformed EN-
system are the inverse images of the deadlocks, present in
an initial EN system (under the corresponding α-morphism).
Thus, the following proposition holds.

Proposition 1: Let Ni = (P1, Ti, Fi,m
i
0) be an EN-system

with i = 1, 2 s.t. N1 is a refinement of N2. If N2 is deadlock-
free, then N1 is deadlock-free as well.
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Fig. 5. Application of ρ3 to the EN-system from Fig. 2

Now we can proceed to the design and implementation of
algorithms, which use the set of refinement transformations to
generate EN-systems.

V. GENERATION ALGORITHMS

In this section, we discuss two algorithms that support
the automated generation of EN-systems, using the structural
transformations, described in Table I, according to Definition
3. The first algorithm corresponds to the generation of an EN-
system by applying a fixed sequence of the refinement transfor-
mations to an initial model. The second algorithm corresponds
to the randomized EN-system generation, parameterized with
the probability of applying each transformation.

A. Fixed Generation of an EN-system

Algorithm 1 corresponds to a direct implementation of Defi-
nition 3. There is a fixed finite sequence, π = 〈ρ1, ρ2, ..., ρn〉 ∈
RT ∗, of refinement transformation to be applied to an EN-
system N = (P, T, F,m0).

Algorithm 1: Fixed generation
Input: EN-system N = (P, T, F,m0)

Transformations RT = {ρ1, ρ2, ρ3, ρ4}
Sequence π = 〈ρ1, ρ2, ..., ρn〉 ∈ RT ∗

Output: EN-system R = (P ′, T ′, F ′,m′0) – a
refinement of N

R← N
i← 1
foreach ρi ∈ π do

if ∃X ′L ∈ P ′ ∪ T ′ and ρi is applicable to subnet
R(X ′L) in R then
R← ρi(R,X

′
L)

end
i← i+ 1

end

If a current transformation ρi can be applied to some subnet
generated by X ′L ∈ P ′∪T ′, then we replace R with a result of
applying ρ to R. If a current transformation ρi can be applied
to different subnets, the choice is made non-deterministically

(it may be determined by the specific implementation of
Algorithm 1). Otherwise, if a current transformation ρi cannot
be applied to a subnet in R, we skip it and pass on to the next
transformation in a sequence π.

The correctness of the fixed generation algorithms follows
from (a) the finitness of π (the algorithm always terminates)
and (b) Proposition 1, i.e., an obtained refinement R preserves
the deadlock-freeness of N .

B. Randomized Generation of an EN-system
Within the randomized generation algorithm, presented in

this paragraph (see Algorithm 2), a sequence of refinement
transformations is not known in advance, as opposed to the
fixed generation. A specific sequence of refinement transfor-
mations is constructed with respect to the parameters defined
by a user.

Algorithm 2: Randomized generation
Input: EN-system N = (P, T, F,m0)

Transformations RT = {ρ1, ρ2, ρ3, ρ4}
Probabilities prob : RT → [0, 1], s.t.
∀ρ ∈ RT :

∑
freq(ρ) = 1

Maximum mumber of nodes maxSize
Maximum number of steps maxSteps

Output: EN-system R = (P ′, T ′, F ′,m′0) – a
refinement of N

R← N
totalSteps← 0

while |P ′ ∪ T ′| < maxSize OR
totalSteps ≤ maxSteps do
AT ← FINDAPPLICABLE(R,RT )
sumProb←

∑
∀ρ∈AT prob(ρ)

foreach ρ ∈ AT do

prob′(ρ) =
prob(ρ)

sumProb
end
order AT in the descending order of prob′;
r ← RANDOMNUMBER(0, 1)
cumulProb← 0
i← 1
while cumulProb < r do

cumulProb← cumulProb+ prob′(ρi)
i← i+ 1

end
R← ρi(R,X

′
L)

totalSteps← totalSteps+ 1
end

The randomized generation parameters include:
1) The maximum size of a refinement – the number of

places and transitions;
2) The maximum number of steps – the number of applied

transformations;
3) The probability of choosing a specific refinement trans-

formation – the value in the interval [0, 1].



Probabilities are set for the four refinement transformations,
s.t. the sum of all four probabilities is equal to 1. Below we
describe how the specific refinement transformation is chosen
at each step of Algorithm 2.

Firstly, we find a set of refinement transformations
AT that can be applied to a given EN-system (function
FINDAPPLICABLE(R,RT )), according to constraints given
in Table I. Secondly, we normalize the probabilities of the
applicable transformations in AT and obtain the values of
prob′ function. Then, by generating a random number r, we
choose the specific refinement transformation ρi. Intuitively,
we divide the interval [0, 1] into sub-intervals, according to
the normalized probabilities of applicable refinement transfor-
mations, and check where the value of r is. We assume to use
the uniform distribution for the random number generation.

The correctness of Algorithm 2 follows from the fact that
(a) the total number of steps (the actual length of an applied
transformation sequence) is bounded by the maximum size of
a refinement and by the maximum number of steps that can be
done; and from (b) Proposition 1, i.e., a constructed refinement
preserves the deadlock-freeness of N .

C. Example: the Fixed Refinement of an EN-System with a
Deadlock

Here we consider an example of applying the fixed genera-
tion algorithm to the EN-system that has a deadlock (see Fig.
6, where N has the deadlock {p2} reachable from its initial
marking {p1, p2}). Let π = 〈ρ4ρ3ρ1ρ3ρ4ρ4ρ2〉 ∈ RT ∗ be a
sequence of refinement transformation to be applied to N .

t1

p3

t2

p4

p1 p2

p5

p1

Fig. 6. EN-system with a deadlock

A possible result of applying π to N is provided in Fig. 7,
where we show transformations affecting disjoint subnets as a
single step. It can be seen that none of the ρ4-elements in π
have been applied to N , since there are no places with two or
more input transitions. That is why they have been skipped in
this example.

What is more important is that the reachable deadlock {p2}
have not been lost in the transformed EN-system. The inverse
image of {p2} (under the corresponding α-morphism, refer to
Fig. 4) in the transformed EN-system is also the reachable
deadlock {s6}, as formally proven in [17]. New deadlocks
have not been introduced into the transformed EN-system.

D. Example: a Step in the Randomized Refinement of a
Deadlock-Free EN-System

In this paragraph, we consider a step of Algorithm 2 in
more detail. Given the EN-system N shown in Fig. 8 and the
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t32

Fig. 7. A result of applying π to the EN-system from Fig. 6

following probabilities: prob(ρ1) = 0.15, prob(ρ2) = 0.10,
prob(ρ3) = 0.05, prob(ρ4) = 0.7, we will show how the
choice of a refinement transformation is performed.

t1

p2

t2

p3t3

p1

Fig. 8. Deadlock-free EN-system

We start with finding the applicable transformations. Here
we have that only ρ1, ρ2, and ρ3 can be applied to the
EN-system from Fig. 8. Their normalized probabilities are:
prob′(ρ1) = 0.50, prob′(ρ2) = 0.33, and prob′(ρ3) = 0.17.

Then we generate a random number r. Let r = 0.73. We
check where the value of r is in the interval [0, 1] concerning
the cumulative normalized probabilities (see Fig. 9).

0 10.5 0.83

0.73

Fig. 9. Checking the placement of the random number r

The value of r is in the interval [0.5, 0.83], corresponding
to the refinement transformation ρ2. Thus, we apply this
transformation to the EN-system from Fig. 8, and a possible
result is shown in Fig. 10, if we choose transition t2 to be
transformed.

Then, according to Algorithm 2, we continue choosing
refinement transformations, according to their probabilities,
until we reach either the limit of the size or the limit of the
total number of applied transformations.
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Fig. 10. Applying the chosen transformation to the EN-system from Fig. 8

VI. SOFTWARE IMPLEMENTATION AND EVALUATION

In this section, we describe details concerning the im-
plementation of the two generation algorithms discussed in
the previous section. We have evaluated the randomized
generation algorithm using Petri net models for interaction
patterns described in [24] as reference models. They provide
a highly abstract view of typical asynchronous agent interac-
tions, whereas a refinement of an interface pattern can be seen
as the model of a specific system implementing this pattern.

A. Carassius Petri Net Editor

The Carassius software tool has been presented in [3]. It
supports various modeling notations, including (communicat-
ing) finite state machines and Petri nets. The Carassius allows
one to simulate Petri nets according to the transition firing
rule, import and export files in different formats, visualize
process behavior. Apart from that, the Carassius has a modular
architecture, and it can be easily extended with new features.
For example, in [25], the authors have described an extension
to the Carassius that supports the simulation of Petri nets with
two special types of arcs: reset and inhibitor. The main window
of the editor is shown in Fig. 11.

Fig. 11. Carassius process model editor

We have introduced the following features into the Carassius
Petri net editor:

1) the internal storage of refinement transformations;
2) the choice and application of a single transformation to

a given EN-system;
3) the generation of an EN-system by applying a fixed

transformation sequence (Algorithm 1);
4) the generation of an EN-system by applying a randomly

constructed transformation sequence (Algorithm 2).

The implementation of the generation algorithms has also
been enriched with the possibility to “roll back” following a
transformation sequence to check intermediate results.

The parameters necessary for the fixed and randomized
generation are configured in the top panel. A fixed transfor-
mation sequence (Algorithm 1 is constructed using a drop-
down menu, where one may choose a transformation and
assign the corresponding number of occurrences to it (see Fig.
12). The configuration of probabilities and other parameters of
Algorithm 2 is shown in Fig. 13.

Fig. 12. Constructing a sequence of transformations

Fig. 13. Parameters of the randomized generation

As described in the following paragraph, we have consid-
ered the application of Algorithm 2 to construct refinements
of so-called interface patterns.

B. Evaluation: Randomized Refinement of Interaction Patterns

Modeling complex information systems is a rather difficult
task due to the coordination of several interacting components.
Service interaction patterns, introduced in the Business Pro-
cess Management (BPM) community [26], provide generic
solutions for designing composite systems with several in-
teracting entities. The patterns give a highly abstract view
of component interactions. The identification of the typical
interface patterns and their modeling using Petri nets have been
considered in [24], where the seven asynchronous interaction
patterns have been discussed. The models of these patterns are
shown in Fig. 14. For instance, IP-4 describes the simple mes-
sage exchange, when the first component sends a message to
the second one, and the latter sends back an acknowledgment.

We have used these interaction patterns to evaluate the
randomized generation algorithm. Given an interface pattern,
we apply Algorithm 2 and obtain a possible refinement of
this pattern. A refinement of an interface pattern inherits
its structural and behavioral properties. Intuitively, such a
refinement represents a possible system model implementing
an interaction pattern.

The results of applying the randomized refinement to the
interaction patterns with different parameters are provided in
Table II, where we show the number of places and transitions



TABLE II
RANDOMIZED REFINEMENT OF INTERACTION PATTERNS

Randomized generation (maxSize=300, maxSteps = 1000)
Reference ρi = 0, 25 ρ1 = 0, 67 ρ2 = 0, 67 ρ3 = 0, 67 ρ4 = 0, 67
|P | |T | |P | |T | |P | |T | |P | |T | |P | |T | |P | |T |

IP-1 5 2 134 166 234 66 76 224 156 144 141 166
IP-2 12 6 147 153 216 84 66 256 155 145 146 154
IP-3 6 4 154 149 212 88 85 215 154 147 156 144
IP-4 8 4 132 168 217 83 71 229 152 148 144 156
IP-5 18 10 139 163 207 94 78 222 156 145 157 143
IP-6 12 8 107 193 218 83 72 232 158 142 158 143
IP-7 11 8 140 161 190 110 59 256 143 158 85 215

in the reference model and the obtained refinements. Corre-
spondingly, we have considered five different cases:
• the randomized refinement with equal probabilities for

each transformation (ρi = 0, 25);
• the four cases when the probability of one transformation

(0, 67) outweighs the equal probabilities of the other three
transformations (0, 11).

s r

N1 N2

(a) IP-1

s1 s2 r1 r2

N1 N2
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s1 s2 r1 r2

N1 N2
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Fig. 14. Interaction patterns: reference models

As it can be seen from Table II, the number of places and
transitions in the constructed refinements is consistent with
transformation application probabilities. Within all transforma-
tions being equally probable, we do not observe notable differ-
ences in the number of places and transitions in the obtained
refinements. However, when the place (transition) duplication
has the highest probability, we have that the number of places

(transitions) significantly outweighs the number of transitions
(places) in the refinement. The predominance of the transition
introduction (ρ3) and place split (ρ4) also does not lead to
substantial differences in the number of places and transitions.
The application of ρ4 requires places with two more input
transitions, which may not be present in the reference model.

In addition, Fig. 15 provides a possible result of applying
ten refinement transformations to the interface pattern IP-1,
where the transformations have equal probabilities.

Fig. 15. Refinement of IP-1: 10 steps, equal probabilities

VII. CONCLUSION

In this paper, we have presented an approach to the genera-
tion of Petri nets using structural property-preserving transfor-
mations. We have considered the generation of elementary net
systems, which form the basic class of Petri nets. Elementary
net systems reflect the control-flow of a process, while data
and time aspects are ignored. Given a reference model, we
apply a sequence of refinement transformations to obtain a
Petri net with similar structural and behavioral properties
valid for the reference Petri net. Refinement transformations
extend a reference model by adding new places and tran-
sitions, i.e., make the structure of a reference model more
sophisticated. The proposed approach can be applied for a
complex evaluation of algorithms operating with Petri nets
requiring the preparation of model sets containing Petri nets
with the specific structural and behavioral properties. The
correctness of applying these transformations is based on two



observations. Firstly, the transformations induce morphisms
between reference and transformed Petri nets. Secondly, the
transformations do not introduce new deadlocks, unless they
are already present in reference models.

We have designed two algorithms supporting the automated
generation of Petri nets with the help of structural property-
preserving transformations. The fixed generation corresponds
to the direct application of a fixed sequence of refinement
transformations. Within the randomized generation, a user
chooses the maximum size of a target model and sets the prob-
ability of applying each transformation. We have conducted
a series of experiments to evaluate the developed algorithms
using Petri net models of service interaction patterns. The
experimental results confirm the consistency of the randomized
generation algorithm, according to changes in the number
of places and transitions with respect to probability values.
These algorithms have also been implemented in the existing
Carassius Petri net editor.

The main limitation to the proposed approach, based on
transformations, is that it is impossible to generate a cyclic
Petri net from a reference model without cycles. In the future,
we plan to relax these constraints and to extend the collection
of property-preserving transformations correspondingly. In this
light, we also plan to develop a “designer” of structural
Petri net transformations that will allow us to construct new
transformations. Another direction for the future research is
the development of property-preserving transformations for
different extensions of Petri nets, including, e.g., colored Petri
nets, where tokens can carry data, or timed Petri nets, where
transitions are assigned firing time intervals. Note that certain
extensions of Petri nets can also be “unfolded” to elementary
net systems.
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