

Method of Performance Analysis of Time-Critical

Applications Using DB-Nets

Anton Rigin

Faculty of Computer Science

HSE University

Moscow, Russia

amrigin@edu.hse.ru

Sergey Shershakov

Faculty of Computer Science

HSE University

Moscow, Russia

sshershakov@hse.ru

Abstract—These days, most of time-critical business

processes are performed using computer technologies. As an

example, one can consider financial processes including trading

on stock exchanges powered by electronic communication

protocols such as the Financial Information eXchange (FIX)

Protocol. One of the main challenges emerging with such

processes concerns maintaining the best possible performance

since any unspecified delay may cause to a large financial loss or

other damage. Therefore, a performance analysis of time-

critical systems and applications is required. In the current

work, we develop a novel method for a performance analysis of

time-critical applications based on the db-net formalism which

combines the ability of colored Petri nets to model a system

control flow with the ability to model relational database states.

This method allows to conduct a performance analysis for time-

critical applications that work as transactional systems and have

log messages which can be represented in the form of table

records in a relational database. One of such applications is a

FIX protocol-based trading communication system. This system

is used in the work to demonstrate applicability of the proposed

method for time-critical systems performance analysis.

However, there are plenty of similar systems existing for

different domains, and the method can also be applied for a

performance analysis of these systems. The software prototype

is developed for testing and demonstrating abilities of the

method. This software prototype is based on an extension of

Renew software tool, which is a reference net simulator. The

testing input for the software prototype includes a test log with

FIX messages, provided by a software developer of testing

solutions for one of the global stock exchanges. One of possible

applications of the method is presented. The developed method

can be used in the further research in this domain as well as in

testing a performance of real time-critical software systems.

Keywords—performance analysis, time-critical applications,

db-nets, FIX protocol, software modeling, software testing

I. INTRODUCTION

Nowadays, most of time-critical business processes are
performed using computer technologies. Nuclear reactor
control, medical equipment control, spaceship control are
some obvious examples of such processes. However, different
financial processes including trading on stock exchanges also
can demand strict performance requirements.

In the previous century, trading on stock exchanges was
primarily performed through phone calls and with use of
paper-based order books [1]. Working this way did not allow
traders to compete for the best price that is generally offered
during very short period. This was the reason of beginning of
automatization of trading on stock exchanges. In order to
guarantee compatibility of software systems of different
traders, brokers, and exchanges, there were financial protocols
for electronic communication between trading participants
created. Financial Information eXchange (FIX) Protocol
maintained by the FIX Trading Community [2] is one of the

most known and widely used protocols of such type. There
exist different approaches to encode messages transferring
with the FIX protocol. In this paper we focus on the FIX
TagValue Encoding, which is the main standard of encoding
FIX messages [2].

The FIX protocol allows traders, brokers, and exchanges
to create and fill (execute) orders for buying or selling
securities in several milliseconds using electronic
communication channels such as Internet [2]. It is a great
driver for competence in the global stock markets, however it
creates new challenges for financial software vendors. One of
such challenges is maintaining the best possible performance.
Any unspecified delay may cause to a large financial loss for
a trader due to the best price is missed. Such delays may create
unequal and unfair conditions for different participants, lead
to local or global economic problems as well as public
scandals and reputational problems for the exchange or some
traders or brokers.

Financial protocol-based communication systems are
considered in this work to demonstrate applicability of the
proposed method for time-critical systems performance
analysis. However, there are plenty of similar systems existing
for different domains, and the method can also be applied for
a performance analysis of these systems.

Any FIX message consists of a set of tag-value pairs [3].
In fact, it means that we can represent these messages in the
form of records of a table in some relational database.
Therefore, some methods of system modeling, which rely on
relational database states, can be considered here. The same is
valid not only for messages of the FIX protocol, but for any
messages of transactional systems that are represented as sets
of tag-value pairs.

In 2020, we developed a software simulator for the db-net
formalism [4] introduced by Montali and Rivkin in 2017. This
formalism is represented by the layer with modified colored
Petri net modeling a control flow of a process system, and two
inner layers for working with an attached relational database
modeling a persistent storage [5] as shown in Fig. 1. This
simulator is developed as a plugin for Renew (Reference Net
Workshop) software tool which is a Java-based reference net
simulator [6].

Fig. 1. The db-net structure [5].

mailto:amrigin@edu.hse.ru
mailto:sshershakov@hse.ru

Generally, the lowest layer of the db-net (the persistence
layer) is represented by an ordinary relational database [5].
However, it can be replaced with any other information
storage, which is accessible through a custom relational DML
interface that is to be implemented.

One can model a tag-value message sending by using the
“insert” database operation, where tags are represented as
attributes of a relational table and values are represented as
attributes of a record in the table. A tag-value message
receiving can be modeled similarly using the “select” database
operation.

In the current time, there are some performance analysis
research works focused on distributed software systems such
as [7, 8], however a performance analysis using db-nets has its
advantages for transactional systems which send and receive
messages that are representable in the form of records in
relational tables. Firstly, this method allows to apply well-
known approaches used in the relational database domain to
the wide set of transactional systems supporting time-critical
applications. Secondly, it allows to combine performance
analysis of transactional systems with other methods for their
verification and validation, based on Petri nets and their
modifications, especially db-nets (e.g., checking safety,
liveness, fairness, and similar properties).

All the above provides the motivation for the research.

The purpose of the research is development of a method of
performance analysis of time-critical applications using db-
nets.

The objectives of the research are as follows.

1) Developing a method for performance analysis of
time-critical applications using db-nets.

2) Developing a software prototype for performance
analysis of time-critical application logs using db-net
models.

3) Checking the method by testing the developed
software prototype on a test log of FIX messages
provided by a software developer of testing solutions
for one of the global stock exchanges.

The rest of the paper is organized as follows. The Section
II presents the theoretical foundations and concepts of the
work and the developed method. In the Section III, the
developed software prototype and its testing are described.
After this, the main points of the paper are summarized in the
conclusion.

II. PERFORMANCE ANALYSIS USING DB-NETS

A. DB-Nets

The db-net formalism is a modification of the colored Petri
net, which allows to model a system control flow together with
relational database states. The db-net consists of three layers:
(1) the control layer, (2) the data logic layer which connects
the control layer and the persistence layer together, and (3) the
persistence layer [5]. The scheme of db-net structure is shown
in Fig. 1.

The persistence layer allows to store the persistent data and
is formally defined by a relational database schema and
constraints that declare the data consistency rules [5].

The data logic layer is defined by two sets: (1) set of
queries for retrieving records from a database in the
persistence layer and (2) set of actions for insertion and
deletion of records in the persistence layer database. Each
action includes sets of added and deleted facts (records in
relational tables) [5].

The control layer allows to model a system control flow
and is defined by a colored Petri net with the following
modifications [5].

1) Queries defined in the data logic layer are assigned to
places of a colored Petri net in the control layer. Such
places are called view places. View places cannot
contain tokens (resources modeled in a Petri net) such
as other places, but they produce new tokens by
retrieving data from the persistence layer through
assigned queries.

2) Actions defined in the data logic layer are assigned to
transitions of the net in the control layer. When a
transition with the assigned action is fired (executed),
the action is performed on a database in the persistence
layer.

3) In addition to traditional Petri net arcs, there exist read
arcs and rollback arcs in the db-net control layer. The
former is used for connecting view places with
transitions and the latter is used for defining a flow for
a case of rollback of an action due to violation of the
data consistency rules in a database of the persistence
layer after performing the action.

The db-net control layer’s net and persistence layer’s
database schema example for the taxi booking software
system is shown in Fig. 2.

B. Method of Performance Analysis Using DB-Nets

The developed method implies analyzing messages sent or
received by the application or its modeled part (request and
response messages, respectively) and stored in a log of the
application. We analyze those messages for which a
maximum delay between sent message and received response
is restricted. The method utilizes the db-net formalism.

The method consists of two parts: (1) set of requirements
for implementing the method in a software tool and (2)
sequence of stages and steps for using the method after being
implemented.

1) Implementing the Method in a Software Tool
The following set of requirements specifies how the

method of performance analysis using db-nets is to be
implemented as a software tool. These requirements extend
general principles of the db-net behavior, which are described
in [5].

Fig. 2. The control layer’s net and persistence layer’s database schema

example for the taxi booking software system [5].

1) When a request message is inserted in an action
assigned to a db-net transition, it should be stored in
the memory (RAM or persistent storage) for further
retrieving when the corresponding response message is
retrieved.

2) When a response message is retrieved by a "select"
query assigned to a db-net view place and the
connected by a read arc db-net transition contains
parameters for performance analysis as specified in the
step 6 of the stage 1 of the method (the Section
II.B.2.a), the following sequence of steps is to be
executed:

a) The corresponding request message (with the same
id attribute value) is to be retrieved through the
specified query from the memory/storage (as
specified in the item 1 of the current set of
requirements).

b) If there is no stored corresponding request
message, then this sequence is to be stopped and
the token with the response message is to be moved
to the places connected by output arcs.

c) The sending timestamps of the request and
response messages are to be parsed using a
specified pattern or a regular expression.

d) A delay that is a difference (in milliseconds)
between these two sending timestamps is to be
calculated. If it exceeds the specified maximum
acceptable value of a delay, then the validation is
to be considered as failed – information about the
id and message type of the problematic messages is
to be displayed or stored in the report (depending
on the requirements and implementation), for the
first violation or for each violation (also depending
on the requirements and implementation).

3) If there are several response messages for one request
message, only the first response message is considered.

4) If the simulation is finished (no transitions can be fired
– executed) and the validation did not fail, then such
validation is considered as succeeded.

2) Use of the Method

After implementing the software tool, the method is to be

used by following the sequence of steps divided into three
stages, as follows.

a) Stage 1. Modeling a DB-Net

A db-net that matches a system/a modeled part of a system
is to be modeled using the following steps.

1) A scope of the modeled system is to be defined. It
should include considered components of the system
which send request messages (messages sent by the
system or its considered component) and get responses
to them (response messages), and considered types of
request messages and corresponding types of response
messages. From now on, we will call a modeled
system/part of the system a time-critical application
(or just an application).

2) It is necessary to make sure that the application works
as a transactional system and satisfies the ACID
(atomicity, consistency, isolation, durability)

properties [9], and a log with its request and response
messages can be represented in the form of tables in a
relational database. It means that each message
includes a set of tags (attributes) together with their
values. Tags are represented as attributes of a relational
table, messages are represented as records of the table,
and values are represented as attributes of a record in
the table. Types of messages and parts of the
application which do not satisfy these properties, if
any, are to be removed from the scope.

3) A persistence layer of the modeled db-net is to be
defined. To do this, a relational database schema is to
be created and populated with necessary tables. The
table attributes reflect the tags of considered request
and response messages.

4) A data logic layer of the modeled db-net is to be
defined. The "insert" queries, which model insertion of
the request messages into the modeled relational
database, are to be specified. The "select" queries,
which model retrieving the request and response
messages from the modeled relational database, should
similarly be specified.

5) A model of a system control flow (a control layer of
the modeled db-net) is to be defined. After that,
“insert” and “select” queries from the modeled data
logic layer are assigned to transitions and view places,
respectively.

6) For each db-net transition connected by a read arc with
a view place that is assigned with a "select" query for
retrieving the response messages, the following
parameters for conducting a performance analysis are
to be specified:

a) The name of a variable in the control layer that

stores a value of the id attribute of a response

message, which allows to find a corresponding

request message by the same value of the same id

attribute.

b) The name of a variable in the control layer that

stores a value of the sending timestamp attribute of

a response message.

c) An ordering number of the sending timestamp

attribute of a message in results of a "select" query

for retrieving the corresponding request message,

that is mentioned in the item “f” of the current list.

d) A pattern or a regular expression for parsing the

sending timestamp string in a message.

e) An ordering number of the message type attribute

of a message in results of a "select" query for

retrieving the corresponding request message, that

is mentioned in the item “f” of the current list.

f) The name of a declared "select" query for retrieving

the corresponding request message.

g) The maximum acceptable value of a delay between

sending timestamps of corresponding request and

response messages (in milliseconds).

b) Stage 2. Preprocessing the Log

Preparing a log of the application includes the following
steps.

1) It is necessary to make sure that the messages in a log
are represented in a form satisfying properties

described in the step 2 of the stage 1. Any messages
that are not represented in a valid form as well as
broken messages are to be removed.

2) The log should be prepared in a format compatible with
a software tool implementing the method.

c) Stage 3. Conducting a Performance Analysis Using

DB-Nets

A simulation of the modeled db-net is to be run in the
software tool implementing the method.

C. Example of Performance Analysis Using DB-Nets for the

FIX Protocol

The developed method is illustrated by an example
modeling a trading order creation with use of the FIX protocol.
The example includes the analysis of two types of FIX
messages: (1) create_order_single (msg_type = “D”) which
is used for request messages sent from a trader or a broker to
the exchange, to create an order for buying or selling
securities, and (2) execution_report (msg_type = “8”) which
is used for response messages sent from the exchange to the
trader or the broker as a confirmation of the order creation (or
information about the order rejection with clarification of a
reason). For each message, the attributes msg_type, cl_ord_id
and sending_time are considered in the model. The msg_type
attribute defines a type of the message. The corresponding
request/response messages are connected by a key (id), whose
role is played by the cl_ord_id attribute. The sending_time
attribute is a sending timestamp of the message.

The db-net modeling this example is shown in Fig. 3. A
schema of a relational database in the db-net persistence layer
includes a msg relational table for storing FIX messages. The
table contains msg_type, cl_ord_id and sending_time
attributes. The create_order_single action models the “insert”
DML query for insertion of the msg_type, cl_ord_id and
sending_time attributes of the create_order_single FIX
message. The create_order_single and execution_report
queries model the “select” SQL query for retrieving the same
attributes of the create_order_single and execution_report
FIX messages, respectively. The
create_order_single_corr_req query models the “select” SQL
query for retrieving the same attributes of the
create_order_single FIX message by the given cl_ord_id. It
is used for retrieving the corresponding request message for a
previously retrieved response message.

The view place assigned with create_order_single query
(Fig. 3) is responsible for retrieving messages of
create_order_single type. The following transition executes
the create_order_single action, modeling insertion of the
messages into the msg table. Then the transition transfers the
messages to the Processed messages place.

The view place assigned with execution_report query
(Fig. 3) is responsible for retrieving messages of
execution_report type. After retrieving an execution_report
message, the following transition retrieves the corresponding
create_order_single message (with msg_type = “D” and the
same cl_ord_id) using the create_order_single_corr_req
query and calculates a delay between these two messages as a
difference between their sending timestamps (the
sending_time attribute). If the calculated delay exceeds
max_delay (it is 100 ms in the example), then the validation
fails. Otherwise, the execution_report message is transferred
to the Processed messages place. After all messages are

retrieved from the log, and validation did not fail, the
validation of the log is considered succeeded.

We consider two followng FIX messages (these messages
are presented below in the human-readable form, not in the
original FIX tag-value form): (1) create_order_single
(msg_type = “D”, cl_ord_id = “12345”, sending_time =
“20190218-02:14:45.490000”) and (2) execution_report
(msg_type = “8”, cl_ord_id = “12345”, sending_time =
“20190218-02:14:45.492787”). Firstly, the
create_order_single message is retrieved by the view place
assigned with the create_order_single query. The following
transition performs the create_order_single action with the
“insert” DML query for this message and transfers the
message to the Processed messages place. Secondly, the
execution_report message is retrieved by the view place
assigned with the execution_report query. By the cl_ord_id =
“12345” attribute value of the message, the following
transition retrieves the corresponding create_order_single
message (with msg_type = “D” and the same cl_ord_id =
“12345”) using the create_order_single_corr_req query and
calculates a delay between these two messages as a difference
between their sending timestamps (the sending_time
attribute). This delay equals 3 ms (rounding up). A maximum
acceptable delay linked with the transition is defined to 100
ms. The delay does not exceed the maximum acceptable
delay, so the validation does not fail, and the execution_report
message is transferred to the Processed messages place.
However, if the sending_time attribute value of the
execution_report message was, for example, “20190218-
02:14:45.592787”, then the delay would be equal to 103 ms
(rounding up) and the maximum acceptable delay would be
exceeded which would lead the validation to fail.

III. SOFTWARE PROTOTYPE

A. Software Prototype Features and Implementation

For testing and illustrating abilities of the method, the
latter is implemented in the form of a software prototype. For
doing this, we developed the db-net software simulator
(Renew DB-Nets Plugin) in 2020 [4] and then extended it with
features for conducting a performance analysis of time-critical
applications using the proposed method. The simulator has a
form of a plugin for Renew software tool which is a Java-
based reference net simulator [6]. The simulator has a
graphical user interface as shown in the screenshot in Fig. 4.

Fig. 3. Example of a db-net model for a performance analysis of a FIX

protocol-based system.

The prototype allows to (1) model a db-net for a
considered system, (2) specify parameters for conducting a
performance analysis of time-critical applications, as
described in the step 6 of the stage 1 of the described method
(the Section II.B.2.a), (3) conduct a performance analysis of
an application in parallel with a db-net model simulation using
the proposed method and (4) work with a FIX log (raw binary
data of the FIX protocol packages captured as a Wireshark
PCAP file [10] with further filtering) through a relational
DML interface.

An implementation of the developed db-net simulator is
described in [4]. This implementation is based on an
implementation of Renew software tool, a reference Petri net
simulator. The Renew code which was suitable for the db-net
behavior is reused. Other code is overridden by a custom db-
net implementation. Classes representing elements of the db-
net control layer are inherited from Renew classes
representing similar elements of traditional colored Petri nets
and necessary methods are overriden. The prototype is
implemented as a pure plugin for Renew tool, without
modifying existing Renew source code [4]. The plugin code,
UML class diagram and documentation are available in the
project GitHub repository1.

For working with a FIX log through a relational DML
interface, the alternative implementation of the database
connection interface is created. It is used if the JDBC URL in
a db-net model starts from the “fixpcap:” prefix. All messages
that are read from file through this connection are stored in
RAM (in the java.util.HashMap container, where keys, which
are pairs of message type and id, are stored in a hashtable).
When the message is being retrieved through this connection,
it is firstly searched in RAM. If it is found in RAM, it is
returned and removed from RAM. If it is not found in RAM,
then the file is scanned until finding this message (and all
scanned messages are stored in RAM). This approach allows

1 Link: https://github.com/Glost/db_nets_renew_plugin

to scan each line of the file only once and to minimize the
RAM usage.

For goals of a performance analysis, the prototype follows
the set of requirements described in the Section II.B.1. When
the first maximum acceptable delay violation is detected while
simulating a db-net model, the dialog window with an
information message describing this violation is shown and
the corresponding CSV report is created. All maximum
acceptable delay violations that are detected during the
current simulation are written into the created CSV report. The
format of a CSV report is presented in Table I.

B. Testing the Prototype on the FIX Log and Quantitative

Analysis of Maximum Acceptable Delay Violations

The developed software prototype is tested on a log with
FIX protocol messages, which is represented by the raw
binary data extracted from a Wireshark PCAP file with some
FIX protocol messages captured in the testing environment.

Fig. 4. Screenshot of a graphical user interface of the developed software prototype.

TABLE I. COLUMNS OF THE CSV REPORT

Column

Name
Description Type Example

Order number of the row in the
CSV report (starting from 1)

Integer 1

Request

Message

Type

Type of the request message String Da

Message

ID

ID of the request and response

message pair
String 15504

Delay
Difference (in milliseconds)
between request and response

message sending timestamps

Integer 493

Max
Delay

Maximum acceptable delay Integer 100

Diff
Difference between detected delay

and maximum acceptable delay
Integer 393

a. In the FIX Protocol, the D message type is used for the New Order Single messages.

https://github.com/Glost/db_nets_renew_plugin

The file is provided by a software developer of testing
solutions for one of the global stock exchanges.

The screenshot in Fig. 4 shows the db-net model for
performance analysis applied to the FIX protocol messages for
the New Order Single scenario (request message: New Order
Single, message type: "D"; response message: Execution
Report, message type: "8") and the Order Mass Cancel
Request scenario (request message: Order Mass Cancel
Request, message type: "q"; response message: Order Mass
Cancel Report, message type: "r"). The total number of
processed messages in this model equals 321671.

Using this model, the quantitative analysis of maximum
acceptable delay violations is conducted based on the CSV
reports with information about violations. The plots in Fig. 5
show (1) counts of maximum acceptable delay violations and
(2) percentages (ratios) of message pairs with maximum
acceptable delay violations (where 100 % is all processed
message pairs), in the db-net model described above, with a
breakdown to the request message types ("D" is used for the
New Order Single messages and "q" is used for the Order
Mass Cancel Request messages) for maximum acceptable
delay values from 1000 ms to 9000 ms.

The significant decrease in count of violations between
maximum acceptable delay values 3000 ms and 4000 ms is
notable. The plots in Fig. 6 show the same metrics for
maximum acceptable delay values from 3100 ms to 3900 ms.
We can conclude that the most of delays larger than 1 second
are between 3 and 4 seconds.

Such quantitative analysis is an example of possible
applications of the developed method. For instance,
requirements and service level agreements (SLAs) can be
specified and adjusted basing on some statistics on ratio of
message pairs violating each maximum acceptable delay. This
information with a breakdown to the request message types
allows to focus on improving the speed of the most critical
scenarios.

IV. CONCLUSION

In the current work, a novel method of performance
analysis of time-critical applications based on the db-net
formalism is developed. This method allows to apply well-
known approaches used in the relational database domain to
the wide set of transactional systems supporting time-critical
applications. Moreover, the method combines performance
analysis of transactional systems with other approaches for
their verification and validation, based on Petri nets and their
modifications, especially db-nets (e.g., checking safety,
liveness, fairness, and similar properties).

A software prototype implementing the method is
developed. The prototype is checked on a test log with FIX

messages provided by a software developer of testing
solutions for one of the global stock exchanges. The
quantitative analysis of maximum acceptable delay violations
is conducted based on this log. This demonstrates how the
method can be applied for similar analysis.

The developed method can be used in the research in this
domain as well as in testing a performance of real time-critical
software systems. Further steps include extending the method
for use with hierarchical Petri nets and more complex variants
of performance analysis of transactional systems.

ACKNOWLEDGMENT

This work is supported by the Basic Research Program at
the HSE University.

REFERENCES

[1] L. Harris, “Back Office Operations,” in Trading and Exchanges:
Market Microstructure for Practitioners, New York, NY, USA:
Oxford Univ. Press, 2003, ch. 7, sec. 7.2.2, pp. 148 – 149.

[2] “Introduction.” FIX Trading Community.
https://www.fixtrading.org/online-specification/introduction/
(accessed Mar. 28, 2021).

[3] “FIX TagValue Encoding.” FIX Trading Community.
https://www.fixtrading.org/standards/tagvalue-online/ (accessed Mar.
28, 2021).

[4] A. Rigin and S. Shershakov. “Data and Reference Semantic-Based
Simulator of DB-Nets with the Use of Renew Tool,” in Analysis of
Images, Social Networks and Texts (AIST 2020), W. M. P. van der
Aalst et al., Eds., Springer LNCS, vol. 12602, Berlin, Heidelberg,
Germany: Springer, 2021, pp. 453 – 465, doi: 10.1007/978-3-030-
72610-2_34.

[5] M. Montali and A. Rivkin. “DB-Nets: On the Marriage of Colored Petri
Nets and Relational Databases,” in Transactions on Petri Nets and
Other Models of Concurrency XII, M. Koutny, J. Kleijn, W. Penczek,
Eds., Springer LNCS, vol. 10470, Berlin, Heidelberg, Germany:
Springer, 2017, pp. 91 – 118, doi: 10.1007/978-3-662-55862-1_5.

[6] “Renew – The Reference Net Workshop.” Renew.de.
http://www.renew.de/ (accessed Mar. 28, 2021).

[7] J. Vetter, “Performance analysis of distributed applications using
automatic classification of communication inefficiencies,” in
Proceedings of the 14th international conference on Supercomputing
(ICS '00), J. Reynders, A. Veidenbaum, Eds., New York, NY, USA:
Association for Computing Machinery, May 2000, pp. 245 – 254, doi:
10.1145/335231.335255.

[8] M. A. Marsan, A. Bianco, L. Ciminiera, R. Sisto and A. Valenzano, "A
LOTOS extension for the performance analysis of distributed systems,"
in IEEE/ACM Transactions on Networking, vol. 2, no. 2, April 1994,
pp. 151 – 165, doi: 10.1109/90.298433.

[9] T. Haerder and A. Reuter, “Principles of transaction-oriented database
recovery,” in ACM Computing Surveys, vol. 15, no. 4, New York, NY,
USA: Association for Computing Machinery, Dec. 1983, pp. 287 –
317, doi: 10.1145/289.291.

[10] “5.2. Open Capture Files.” Wireshark.org.
https://www.wireshark.org/docs/wsug_html_chunked/ChIOOpenSecti
on.html (accessed Mar. 28, 2021).

Fig. 5. Quantitative analysis of maximum acceptable delay violations

for maximum acceptable delay values from 1000 ms to 9000 ms.

Fig. 6. Quantitative analysis of maximum acceptable delay violations
for maximum acceptable delay values from 3100 ms to 3900 ms.

https://www.fixtrading.org/online-specification/introduction/
https://www.fixtrading.org/standards/tagvalue-online/
http://www.renew.de/
https://www.wireshark.org/docs/wsug_html_chunked/ChIOOpenSection.html
https://www.wireshark.org/docs/wsug_html_chunked/ChIOOpenSection.html

