
A Method for the Stateful Data Plane Algorithm
State Synchronization in the Network Processing

Unit
Yaroslav Kuzmin

Lomonosov Moscow State University
Moscow, Russia

yaroslav konst@lvk.cs.msu.ru

Dmitry Volkanov
Lomonosov Moscow State University

Moscow, Russia
volkanov@asvk.cs.msu.ru

Yulia Skobtsova
Lomonosov Moscow State University

Moscow, Russia
xenerizes@lvk.cs.msu.ru

Abstract—This work presents a network processing unit based
on specialized computational cores that is used for packet
processing in network devices (e.g. in network switches).

Nowadays stateful data-plane algorithms are developing in
software-defined networks. The idea of stateful data-plane algo-
rithms is to move a part of control information from control plane
to data plane. But these algorithms require hardware support
because they need resources for state handling.

This work presents the network processing unit architecture
modifications that allow to use stateful data-plane algorithms
that require state synchronization between the NPU processing
pipelines.

Index Terms—software-defined networks, network processing
unit, stateful packet processing, network protocols.

I. INTRODUCTION

Nowadays software-defined networks (SDN) are being de-
veloped [7]. The main principle of SDN technology is placing
conrol functions in separate server called controller. Control
functions are moved from network devices to the controller.

The main functional element of a network device is the net-
work processing unit (NPU). NPU is a specialized integrated
curcuit that is used for packet processing in network devices.

Nowadays programmable NPU are being developed. NPU
of this type allow to load new packet processing programs and
define new data transfer protocols [1].

Packet processing in programmable NPU is done according
to the packet processing program that implements data-plane
algorithm. One class of such algorithms is a class of stateful
data-plane algorithms. Stateful data-plane algorithms are used
in data processing centers’ networks and in telecommunication
providers’ networks [3]. The state of data-plane algorithm is
a set of changeable variables, keeping their values on moving
to next packet processing. The examples of such algorithms
are load balancing with consistency [5], port knocking algo-
tithm [2], failure recovery algorithm [5]. The main feature of
stateful data-plane algorithm is the ability to introduce depen-
dency of the process of packet processing on the properties of
packets, processed by this NPU before. With the development
of SDN and programmable NPU the task of implementing
stateful data-plane algorithms on programmable NPU appears.

If NPU does not have state handling support, the state will
be stored on the controller. But the state can change depending
on the properties of packets, processed by the NPU. If the
controller stores the state, the network device will access the
controller for every packet that will lead to network device
perfomance reduction, packet loss and network services work
failures. So, implementing the hardware support mechanism
for stateful data-plane algorithm state storage in NPU becomes
actual.

The architecture of the considered NPU RuNPU does not
support stateful data-plane algorithms. Thus, this work pro-
poses the RuNPU architecture modifications that allow to use
stateful data-plane algorithms with synchronization between
the ports of the network device.

II. FORMULATION OF THE PROBLEM

It is necessary to propose the RuNPU architecture modifica-
tions that will allow to support stateful data-plane algorithms
with state synchronization between NPU ports.

RuNPU architecture has the following features:
1) Each NPU port has its processing pipeline.
2) Processing pipelines are not connected to each other and

operate in parallel.
3) Packet processing time on one pipeline stage is limited

to 250 ticks.
Data-plane algorithm state is represented as a set of vari-

ables. The following symbols are introduced:
1) n is a number of pipelines in the NPU.
2) l is a number of stages in each pipeline.
3) q is a number of state variables available for each

pipeline stage.
4) P = {P1, . . . , Pn} is a set of the NPU’s pipelines.
5) Dij is a j-th stage of i-th pipeline.
6) Sijk(t) is a value of k-th state variable of the stage Dij

in the time moment t.
7) Sij(t) = {Sij1(t), . . . , Sijq(t)} is a state of the stage

Dij in the time moment t.
8) Si(t) = {Si1(t), . . . , Sil(t)} is a state of the i-th pipeline

stage in the time moment t.



Fig. 1. NPU pipeline scheme.

Time moments tm,m = 0, 1, 2, . . . are considered. They
correspond to the moment of the next instruction execution
beginning. The following situation is considered: during the
instruction i − 1 execution the state of the x-th pipeline has
changed. It means that ∃y,∃k : Sxyk(ti−1) 6= Sxyk(ti). It is
necessary to propose state synchronization system that will
allow other pipelines to have an access to an updated state
variable ∃a ∈ N ∪ {0} : ∀p ∈ {1, 2, . . . , n} ⇒ Spyk(ti+a) =
Sxyk(ti) with minimum a. And the proposed modifications
must take into consideraton the RuNPU architecture features
and limits.

III. RUNPU ARCHITECTURE DESCRIPTION

During the processing the packet header and metadata are
moving through every stage of the pipeline (Fig. 1). Every
stage processes the packet header for fixed number of ticks.
Now this value is equal to 250 ticks. The stage consists of
RISC processing core and memory device containing packet
processing program. Packet header processing on every stage
runs according to the following scheme. First of all, the
packet header and metadata are loaded into the pipeline stage
memory. After it, the program loaded into the stage memory
device is executed. When the program finishes its work, the
packet header and metadata are transferred to the next pipeline
stage and new packet header and metadata are loaded into the
current pipeline stage memory.

This architecture has two aspects that do not allow to
use stateful data-plane algorithms. Firstly, pipelines do not
have memory devices for the algorithm state. Pipeline stage
memory device contains only program microcode, packet
header and metadata. Secondly, NPU architecture contains a
set of pipelines that work in parallel and do not have any
connections to each other. It means that stages of different
pipelines can not exchange data to update state in all pipelines.
So, this NPU architecture does not allow to use stateful data-
plane algorithms.

IV. RELATED WORK

The analysis of existing methods of memory synchroniza-
tion in multicore systems was done. The overview is carried
out according to the following criteria:

1) Synchronization delay, ticks (the paramerer a value).
2) Memory access time, ticks.
3) A possibility of long-time blocking.

A. Flexible Multiprocessor Locking Protocol

Flexible multiprocessor locking protocol (FMLP) is a mutex
based synchronization algorithm for real time systems [4]. In
this approach shared memory resources are protected using
mutexes.

System operation time is divided into two phases: reading
phase and writing phase. To get an access to a shared memory
the process must acquire the appropriate mutex for reading or
for writing depending on the access type. All memory reading
operations start in the beginning of the phase and the phase is
not changed until all requests in the current phase are done.
Writing operations are done in the writing phase in FIFO order.

B. Combining Mechanism

The work [6] proposes the following approach: the memory
is a set of memory devices. Devices and processing units are
connected using a layered packet switched network.

The network has the following properties:
1) The network is nonovertaking. It means that if two

messages are sent from one node in some order and
arrive later at some other node then they arrive in the
same order as they were sent.

2) A reply message is sent back using the same path as the
request message.

The memory requests are Read-Modify-Write (RMW) op-
erations. An RMW operation is equivalent to the execution of
the following function:

function RMW(X, f)
begin
temp := X;
X := f(X);
return temp;
end

This operation applies the transformation f to the value X
stored in memory and returns the old X value to the processing
unit.

The combining mechanism is an approach to handle parallel
requests to the same memory location. A memory request has
the form (id, addr, f), where id as a unique request identifier,
addr is an address of the memory location and f is an
identifier of the transformation function. When two requests
to the seme address are received on the same network switch
they are combined into single request.

It is done in the following way: the messages are
(id1, addr, f) and (id2, addr, g). They have the same memory
address and conflict. Combining them into single request is
done according to the following steps:

1) The switch saves id1, id2 and f and forwards the
message (id1, addr, f ◦ g).

2) When a reply message (id1, val) reaches the switch, the
saved information is retrieved by matching the ids. The
message (id1, val) is forwarded as a reply to to the first
request and a message (id2, f(val) is forwarded as a
reply to the second request.



TABLE I
ALGORITHM OVERVIEW RESULT

Algorithm a value Memory access time (read /
write), ticks

Possibility of long-time block-
ing

FMLP Depends on the blocking
duration

1 / 1 +

Combining mechanism 1 Number of switches on the
route to memory device

-

Write-update algorithm 1 1 / 2 -

C. Write-update algorithm

In the work [8] various cache coherent algorithms are
overviewed. One of them is write-update cache coherence
policy. According to this policy, if some processing unit writes
data to the memory it is updated in the same cache blocks in
other processing units’ cache.

It can be applied to the NPU in the following way: each
processing unit has its memory device for the packet process-
ing algorithm state. Memory devices located at pipeline stages
with equal depths are connected with a shared bus. When a
processing unit reads data from the state memory the value is
taken from the local memory device. When some processing
unit writes data to the state memory it is written to the local
memory device and updated in all other memory devices using
the bus.

D. Result

The problem of the FMLP algorithm is that phases do not
have fixed length, so this approach can lead to request locking
for an unestimated period of time what can lead to pipeline
errors because it has only 250 ticks to process a packet header.
Two other approaches do not allow such behavior, so their
applicability and exact properties will be evaluated during the
experimental research. The overview results are shown in the
table I.

V. PROPOSED NPU ARCHITECTURE MODIFICATIONS

A. Memory synchronization via the shared bus

In this approach the following modifications are proposed:
memory devices containing the algorithm state are added to
each pipeline stage. Memory devices on pipeline stages with
equal depths are connected using a shared bus. The bus is used
to synchronize data in the memory devices. When a memory
cell in some memory device is updated, the new value and
memory cell address are sent to other memory devices via the
bus.

There are two operations available for the processing unit:
read a value from a memory cell and write a value to a memory
cell. When the value is read it is taken from the memory device
that is on the same pipeline stage. When the value is written
to the memory it is written to the memory device on the same
pipeline stages and then is sent to appropriate memory devices
in other pipelines.

B. Combibing mechanism

In this approach memory devices and processing units
are connected using a packet switched network-on-chip with
special switches that allow to combine memory requests.
Memory requests have a Read-Modify-Write form. Memory
request has a form of a tuple (id, addr, f) where id is a unique
request identifier, addr is a memory cell address and f is
a memory operation identifier. The response consists of two
values: request identifier and the value that was in the memory
cell before the memory operation was done.

This approach requires memory cells and network switches
to have specialized arithmetic units to perform memory oper-
ations and memory request combinations.

VI. RUNPU SIMULATION MODEL

The RuNPU simulation model is used for the experimental
research. It is written in Python programming language and
allows to evaluate various NPU parameters such as pipeline
throughput and power consumption. The simulation model
input consists of two parts: pcap files with test packets and the
packet processing program written in the assembly language.
Each ingress port has separate pcap file with a sequence of
packets. The output consists of the statistics and pcap files
with packets that were sent via the NPU egress ports.

The simulation model consists of a number of the modules
that are responsible for NPU modules work simulation. These
modules are:

1) Main application module. This module is responsible for
other modules initialization and configuration.

2) Pipeline module performs pipeline initialization and
controls all pipeline components. There are 24 pipelines
in the RuNPU simulation model.

3) InFIFO module reads the network packets from the pcap
file that corresponds to the NPU ingress port.

4) OutFIFO module writes processed packets to the pcap
file that correponds to the NPU egress port.

5) DE (Decision Engine) module represents the NPU
pipeline stage and is responsible for packet header
processing according to the packet processing program.

6) PacketMem module stores the packet bodies while
packet headers are being processed in the pipelines.

For each proposed approach the simulation model was
modified. For the synchronization method based on shared bus
the following modules were added: memory devices for the
data-plane algorithm state and the shared bus modules. For



Fig. 2. Shared bus approach evaluation results.

the the combining mechanism approach the network module,
network switch modules and memory devices for the algorithm
state were added to the simulation model.

VII. EXPERIMENTAL RESEARCH

For the experimental research a program that implements
flowlet switching algorithm was written. This algorithm is used
to balance packet flows on transport layer and requires state
synchronization between the NPU pipelines. Pcap files with
test packets were generated. Test packet sequences contain a
number of packet groups. Each group consists of packets that
belong to a single transport flow.

During the experimnetal research the test packets were
processed by the simulation model and the required statistics
was collected. The experimental research consists of a series
of the NPU simulation model runs with a different number
of pipelines working with the state. It allows to evaluate how
the number of pipelines actively working with state affects the
time required to process a packet header.

The experimental research results for the shared bus ap-
proach was finished (Fig. 2). It shows that the number of ticks
required to process a packet header does not exceed 250 ticks.

VIII. FUTURE WORK

In the future it is planned to finish an experimental research
for the combining mechanism approach and determine what
approaches are applicable.

IX. CONCLUSION

This work proposes the RuNPU architecture modifications
that allow to synchronize stateful data-plane algorithm state
between the NPU processing pipelines. An overview of the
existing methods was done and two approaches were selected
for further implementation and experimental research. A sim-
ulation model and test data for the experimental research were
prepared.

X. ACKNOWLEDGEMENTS

This work is partilly supported by the Russian Foundation
for Basic Research under grant 19-07-01076.

REFERENCES

[1] Bezzubtsev S.O., Vasin V.V., Volkanov D.Yu., Zhailauova S.R., Mirosh-
nik V.A., Skobtsova Y.A., Smeliansky R.L. ”An Approach to the
Construction of a Network Processing Unit.” Modeling and Analysis
of Information Systems 26.1 (2019): 39-62. (In Russ.)

[2] Bianchi, Giuseppe, et al. ”OpenState: programming platform-
independent stateful openflow applications inside the switch.” ACM
SIGCOMM Computer Communication Review 44.2 (2014): 44-51.

[3] Bifulco, Roberto, and Gábor Rétvári. ”A survey on the programmable
data plane: Abstractions, architectures, and open problems.” 2018 IEEE
19th International Conference on High Performance Switching and
Routing (HPSR). IEEE, 2018.

[4] Brandenburg, Björn B., and James H. Anderson. ”Reader-writer syn-
chronization for shared-memory multiprocessor real-time systems.” 2009
21st Euromicro Conference on Real-Time Systems. IEEE, 2009.

[5] Cascone, Carmelo, et al. ”Traffic management applications for stateful
SDN data plane.” 2015 Fourth European Workshop on Software Defined
Networks. IEEE, 2015.

[6] Kruskal, Clyde P., Larry Rudolph, and Marc Snir. ”Efficient synchro-
nization of multiprocessors with shared memory.” ACM Transactions on
Programming Languages and Systems (TOPLAS) 10.4 (1988): 579-601.

[7] Smeliansky, R. L. ”Software-defined networks.” Open systems 9 (2012):
15-26. (In Russ.)

[8] Stenstrom, Per. ”A survey of cache coherence schemes for multiproces-
sors.” Computer 23.6 (1990): 12-24.


