
HTTP-request classification in automatic web
application crawling

Anna Lapkina
Faculty of Computational Mathematics and Cybernetics

Lomonosov Moscow State University
Moscow, Russia

amiriya@seclab.cs.msu.ru

Andrew Petukhov
Faculty of Computational Mathematics and Cybernetics

Lomonosov Moscow State University
Moscow, Russia

petand@seclab.cs.msu.su

Abstract—The problem of automatic requests classification, as
well as the problem of determining the routing rules for the
requests on the server side, is directly connected with analysis
of the user interface of dynamic web pages. This problem
can be solved at the browser level, since it contains complete
information about possible requests arising from interaction
interaction between the user and the web application. In this
paper, in order to extract the classification features, using data
from the request execution context in the web client is suggested.
A request context or a request trace is a collection of additional
identification data that can be obtained by observing the web
page JavaScript code execution or the user interface elements
changes as a result of the interface elements activation. Such
data, for example, include the position and the style of the
element that caused the client request, the JavaScript function
call stack, and the changes in the page’s DOM tree after the
request was initialized. In this study the implementation of the
Chrome Developer Tools Protocol is used to solve the problem
at the browser level and to automate the request trace selection.

Index Terms—request classification, application crawling, dy-
namic web application, Chrome DevTools

I. INTRODUCTION

The problem of classifying the requests from a web appli-
cation client to a server and correlating them with application
functions most often arises while analyzing applications using
the black box method [1]. In the case of automated web
application testing, the first step is collecting information about
it. The structure of the application, its functions, input param-
eters, and types of requests are investigated. To collect this
information, it is required to solve the problem of navigating
the web application interface [2] - to find control elements
automatically and activate them in order to cause client-server
interaction.

To make sensible decisions in the navigation process, it is
necessary to determine the results of triggering an action in the
web interface: what HTTP request will be sent to the server,
which function of the application will be executed, and how
the state of the web application will change.

Since modern web interfaces are built with HTML and
JavaScript technologies, the problem of navigating the appli-

cation is reduced to analyzing the web interface (DOM and its
visual presentation) and Javascript code. The latter implements
the logic for the user and the server interaction: it processes
user actions in the web interface, sends requests to the server
and displays the results of their execution.

A particular problem in the process of navigating a web
application is connected with correlating outgoing requests
with the server-side actions of the web application. In tra-
ditional web applications, functions were uniquely addressed
by URLs, so the problem of matching a request to an action
on the server-side was trivial. In modern web applications,
especially in single-page applications that implement the RPC
concept (JSON RPC, XML RPC), URL can be the same for all
server-side actions and the name of the function can be passed
in the request parameters (see “Fig. 1”). In order to correlate
outgoing requests with the functions of the web application, it
is necessary to extract a set of features from outgoing requests
that uniquely identify functions of the web application.

Fig. 1. Example of a POST-request with JSON in the body. The called
function is passed in the action field of the JSON structure.

Modern web applications use the concept of incoming
requests routing [3]. To associate an incoming HTTP-request
with a specific function or class in the application code,
the developer defines the request routing rules: a table with
predicates for HTTP-requests and function names. To process
the next incoming request, the predicate for functions are
calculated and the one that returns true will be called (the table
is looked up from the top to the bottom until the first routing



rule is triggered). The minimum set of request parameters,
which values make the predicate true, will be called the
discriminant for this request. The set of specific values of
the discriminant’s parameters, that allow us to classify the
request explicitly, is considered as the request key. In example
presented on “Fig. 1” “action”: “create” pair is the request
key. For requests with body-parameters in the JSON format,
we will consider the ones with Content-Type: application/x-
www-form-urlencoded and take into account not only the name
of the significant parameters, but also the nesting objects
degree.

In the paper, sites that use ReactJS library and implement a
web interface in accordance with the framework rules specified
in the documentation [4] [5] are investigated. This decision
was made as ReactJS is one of the most popular framework
among sites written with JavaScript.

II. RELATED WORK

The problem of classifying web application requests con-
sists of two main subproblems. The first one is connected with
a strategy for obtaining a set of outgoing requests of the web
application. The second one is connected with determining a
strategy for the inductive extraction of classification features.

The strategy of building a set of outgoing requests deter-
mines the order the application interfaces would be processed,
and the order controls (links, buttons, tabs, scrolling, etc.)
implemented in the graphical interface will be activated. The
problem of automatic construction of the outgoing requests set
can be solved with web crawlers using such methods as depth-
first crawling, breadth-first crawling, or random crawling [6].
However, these strategies are ineffective for modern dynamic
web applications [7] [8].

In modern surveys, the use of dynamic analysis of the web
applications [8] [9], as well as additional properties of the web
pages is used to solve this problem and to improve the quality
of crawling. For example, they consider using the analysis
of the structure of the web page elements and their relative
position, as well as the history of elements crawling [10] or
the user interface segmentation [11].

Traditionally, such request data elements as a method,
target URL, path and GET- or POST-parameters are used as
features for classifying outgoing requests. However, in order
to facilitate the requests classification, some studies consider
additional indicators related to the state of the web application
at the moment the request was initialized. For example, the
state of a hierarchical finite state machine built in the process
of navigating the application [12] or the state of the DOM
model of the page [13] is used as such additional features.

III. GENERAL DESIGN

In this research, the problem of constructing a classifier of
outgoing HTTP requests from a web client to a web applica-
tion, that allows us to restore the routing model on the server-
side of the application as part of automatic website crawling
is solved by developing the algorithm of classification. The
classifier receives a site to crawl as an input. The result of

the tool’s operation is a set of discriminants. Their combined
values are the key to identify the action on the server-side
for each request. Automatic forms filling [14] and navigating
the internal zone of a web application are not considered in
this paper.The lattest means that if the access to the internal
zone of the web application requires authentication [15] is not
considered in this paper.

It was assumed that the context of outgoing requests may
contain parameters that can be used as identification keys of
the actions on the server side. If such parameters are found, it
is suggested to use them as additional features for identifying
the requests. It was also assumed that it is possible to build
an iterative algorithm for classifying outgoing requests based
on the found key parameters from the context. Since the URL
is provided as an input, elements are activated gradually and
the set of requests is formed iteratively. That is the reason it
was decided to select the request features gradually.

In the next sections a description of the approach, imple-
mentation and results of experiments evaluating the validity
of the assumption and the applicability of the approach are
situated.

The task of selecting additional features requires a prelim-
inary analytical study of the relations between user actions
and the parameters of the request context. The research is
performed for applications built on the basis of the ReactJS
library [16]. The unified concept of programs that use this
framework allows extrapolating the results obtained on the
experimental set of sites to other sites based on this technology.

To establish the dependency between the context and the
outgoing requests parameters, it is necessary to mark up some
data manually and analyze the frequency of occurrence of
significant context parameters types. If it turns out that there
are such sets of parameters in the context that will have the
same set of values (key), when two identical actions from
the web interface are triggered, and which values would be
different, when different actions are triggered, then we assume
that there is a dependency between context parameters and
classes of outgoing application requests.

In this paper, such context elements as the DOM state before
the request was sent, the DOM state after the request was
sent, the identifier of the DOM element node to which the
called event handler belongs, the style of this element and the
callframes array (the stack trace or the list of called functions
with script identifiers and function positions) are examined.

The preliminary experimental research consists of several
steps. As a first step the same action A is triggered via two
different interface elements on the selected site performing
interactions A1 and A2. Their traces T1 and T2 with the sets of
parameters DOM before1, DOM after1, node id1, css1,
callframes1 and DOM before2, DOM after2, node id2,
css2, callframes2 are obtained. Then action B with trace T3,
different from actions A is triggered. After that, the values of
the traces T1, T2 and T3 are compared. The next step is to
determine which parameters from the traces T1 and T2 have
coinciding values and which parameters in pairs T1, T3 and
T2, T3 have different values. After that the same comparison



is made for other actions on the selected site and on other sites
from the sites list. If results of the experiment show that there
is a set of context parameters where with a high probability
(more than 90%) the same values are used for the same actions
and where different actions result in different values, then they
will be used as additional classification features.

Site list for experimental research was obtained from the
Built With list [17] and the top sites of Coder Academy [18].
To select significant parameters,sites with different user inter-
face complexity were used: from very complex (airbnb.com,
facebook.com) to simpler ones (bbc.com, bleacherreport.com).
The list also included sites with different routing schemes,
such as routing by URL, routing based on query-parameters
or routing based on body-parameters of the POST-requests.
These requirements were intended to provide better coverage
of various site types used on the Internet.

The experiment of analyzing dependency between signifi-
cant context parameters and user actions was carried out on 20
target sites. The results are presented in Table I and Table II.

TABLE I
PERCENTAGE OF COINCIDENCE BETWEEN ACTIONS AND CONTEXT

PARAMETERS FOR IDENTICAL ACTIONS

DOM before
action

DOM after action node id css callframes

58% 54% 80% 65% 96%

TABLE II
PERCENTAGE OF DIFFERENCE BETWEEN ACTIONS AND CONTEXT

PARAMETERS FOR DIFFERENT ACTIONS

DOM before
action

DOM after action node id css callframes

81% 92% 99% 73% 100%

The experiment results show that the only dependency
that satisfies the specified threshold corresponds to callframes
parameter. In this regard, it was decided to use the callframes
array from the request context to classify requests to the
server in addition to such request’s attributes as its method,
URL, path, query-parameters and body-parameters for POST-
requests.

To validate the suggested approach, a classification algo-
rithm was composed and tested. It receives a site for process-
ing as an input, and produces a set of request’s discriminants
as an output.

IV. CLASSIFICATION ALGORITHM

The request classification algorithm implements the idea of
inductive constructing a set of significant features. An example
of the basic algorithm processing two user events A and B is
presented below.

Data structures used:
VP (valuable parameters): a set of significant request pa-

rameters. Consists of elements in the form (param name :
[val1, val2, val3, ...] Initially V P = �.

HP (hint parameters): a set of possibly significant parame-
ters. Initially HP = �.

NVP (not valuable parameters): a set of non-significant
query parameters. Initially NV P = �.

AP (all parameters): set of all request parameters. Consists
of elements in the form (param name: val 1: counter 1,
val 2: counter 2), where param name is the name of the
parameter, val i is the i-th value of this parameter, counter i
is the number of times that the value of the param name
parameter has been encountered with the value val i. Initially
AP = �

RS (request schemes): A set of application request schemes.
Each request scheme is a structure with fields containing the
method, hostname, path, callframes, and the names of the get
and post parameters. Initially RS = �.

trace, trace2: the trace of the request. Consists of host-
name, path , callframes, query-parameters (if any) and body-
parameters (if any)

P, P2 (parameters): variable to store the parameters of the
current request

counter: requests counter. Initially counter = 0
Used procedures:
CheckScheme (S): Checks the presence of Scheme S in

the RS set. Returns true if schema S is present in RS, false
otherwise. (For more detailes see “Algorithm 2” )

Technical aspects such as extracting custom events from
the web pages for crawling, navigating between application
pages, and triggering custom event handlers, are discussed in
the section ”Implementation”.

The basic logic of the algorithm is presented in “Algo-
rithm 1”.

In a general case, the algorithm sequentially processes
all activated user events for a given site. When the work
is complete, the number of parameters and their values are
recalculated from the set of all application parameters. In this
case, the parameters that had the same value for all processed
requests are moved from the list of significant parameters (if
they were there) to the list of insignificant ones, and are also
removed from the request schemes. (For more detailes see
“Algorithm 3”)

The output of the algorithm is a set of significant request
parameters. In this case, the key from the values of these
discriminants allows the outgoing application request to be
uniquely identified.

To validate that the constructed algorithm is applicable, a
tool was developed that implements the suggested classifier.
It iteratively constructs the set of outgoing requests for the
application and extracts the classification features.

V. IMPLEMENTATION

The constructed tool automatically performs the following
actions in the process of building a set of outgoing requests
in automatic mode:

• collects custom event handlers used on the page;
• activates the handlers obtained in step 1, thus initiating

the HTTP request from the client to the server;



Algorithm 1: Basic classification algorythm
Data: two custom event handlers A, B received from a

given site for crawling
Result: a set of discriminants for custom events A, B

1 trigger event listener A;
2 intercept trace;
3 counter+ = 1;
4 V P ← hostname, path (where hostname, path
∈ trace);

5 P ← query − params, body − params (where
query-params, body-params ∈ trace);

6 for param in P do
7 if ((param in AP) and (param.value =

AP.param name.val i)) then
8 counter i+ = 1
9 else

10 AP ← {param.value : 1}
11 end
12 if param in NVP then
13 remove param from P;
14 end
15 end
16 AP ← P ;
17 S ← hostname, path, callframes, query −

params, body − params
18 (where hostname, path, callframes, query-params,

body-params ∈ trace);
19 if checkScheme (S) = true then
20 trigger event listener B;
21 counter+ = 1;
22 repeat steps 4-41;
23 else
24 HP ← P ;
25 trigger event listener A;
26 intercept trace2;
27 end
28 P2← query − params, body − params (where

query-params, body-params ∈ trace2);
29 V P ← PP2;
30 NV P ← (PP2)/(PP2);
31 for param in NVP do
32 remove param from VP;
33 remove param from S;
34 for scheme in RS do
35 remove param from scheme;
36 end
37 end
38 RS ← S;
39 trigger event listener B;
40 counter+ = 1;
41 repeat steps 4 -41;

Algorithm 2: Procedure CheckScheme
Data: scheme S, set of all schemes RS
Result: boolean value that indicates if S is present in

RS
1 for scheme in RS do
2 if ((hostname in S = hostname in scheme) and

(path in S = path in scheme) and (method in S =
method in scheme) then

3 return true;
4 end
5 if (callframes in S = callframes in scheme) then
6 return true;
7 end
8 if ((query-params in S = query-params in scheme)

and (body-params in S = body-params in
scheme)) then

9 return true;
10 end
11 return false;
12 end

Algorithm 3: Algorithm for recalculating the signifi-
cance of parameters
Data: sets AP, VP, NVP, SR, counter
Result: set of VP discriminants for application

requests
1 for param in AP do
2 if (length(param) = 1) and (counter =

param.counter) then
3 remove param from VP
4 remove param from SR
5 NV P ← param
6 end
7 end

• determines the content of emerging HTTP requests;
• defines the context of emerging requests;
• monitors dynamic changes in the DOM of a web page;
• extracts the discriminants of request taking into account

the requests’ context according to the basic algorithm.

From an architectural point of view, the classifier can be
divided into the following logical components (see “Fig. 2”) :

The core of the classifier is responsible for interacting with
the browser and using the Chrome DevTools protocol. This
protocol is a programmable version of the developer’s toolkit
for Chromium browsers. In the study it is used to navigate a
web application by automatically activating user events on a
web page, as well as to track the state of the browser context
at the time when HTTP-requests are performed.

Debugger is used to get the context of the HTTP request
and extract the callframes for further processing.

An interceptor is used to intercept requests from the client
side of the application, as well as to obtain request elements



Fig. 2. Tool components

such as URL, path, and parameters.
Solver represents the classifier itself. It compares the re-

quest traces received from the debugger and the interceptor.
This part is also responsible for making decisions about the
significance of the received features for the classification. It
selects discriminants of requests and forms a list of parameters
that are not significant for subsequent classification.

Possible complexity of the parameters’ structure must be
considered while examining request elements and their con-
texts. For a more convenient representation of data transmitted
in JSON format in the current study the DeepDiff library was
used. It allows users to represent data as a set of fields and
values, taking into account nested elements (see “Fig. 3” and
“Fig. 5”)

Fig. 3. Data in JSON format

Fig. 4. Same JSON data after DeepDiff processing

VI. EXPERIMENTS

The implemented classifier was firstly tested manually on 10
sites built with ReactJS. For this experiment the activation of
user events was performed manually through interaction with
the web interface of the application. The requests interception,
their contexts selection and subsequent classification were
performed automatically. The analysis of the discriminants ex-
tracted during the classification showed their 100% complete-
ness. In other words, there were no parameters that have been
mistakenly marked as insignificant based on the classification
results. The results of this experiment support the suggested
method of solving the problem and allow proceeding to an
automatic experiment.

To test the classifier in automatic mode, from the con-
structed set of 100 sites built with ReactJS, sites using Captcha
were excluded. As a result, the final set consisted of 96
sites. The subsequent analysis of the received discriminants
of requests also showed their completeness and confirmed the
possibility of classifying the requests of the web application
using their context. Moreover, usage of callframes helped to
classify requests for 73% of the sites crawled. Therefore, the
experiment was considered as successful and the suggested
approach was verified and showed its applicability in case of
sites, written with React. Nevertheless, to expand the research
results to the sites built with other frameworks, additional
experiments are required.

In addition, due to the approach of activating custom events
twice, using their context and removing insignificant request
elements, it was possible to reduce the number of distinguished
request discriminants for 52% in comparison with the total
number of parameters received. This means that the number of
parameters for fuzzing decreased and therefore the process of
the subsequent black box testing may become more efficient.

This notwithstanding, in the left 48% of parameters that
were marked as valuable, there may be some that were falsely
recognized as significant. Nevertheless, the task of identifying
was not considered in this study.

Based on the results of the experiments, the influence of
request parts on routing was also calculated. Their frequency
of occurrence is presented on “Fig. 5”.

Fig. 5. Influence of request elements on routing in percents



VII. CONCLUSION

The paper suggests a method for classifying requests of
web applications with a dynamic interface. The experiments
show that the suggested method, based on the usage of request
context as a source for additional classification features solves
the problem of classifying requests with the same level of
completeness as the naive method that takes into account
only the request content. The constructed classifier helps to
reduce the number of insignificant parameters among the
discriminants of the request, which is a positive achievement
in the case of using a tool for determining the parameters of
application requests for subsequent black box testing.

REFERENCES

[1] J. Bau, E. Bursztein, D. Gupta, and J. Mitchell. State of the art: Auto-
mated black-box web application vulnerability testing. InProceedings of
IEEESymposium on Security and Privacy, 2010.

[2] Reina-Quintero, A. M. (2008) Surveying navigation modelling ap-
proaches. International Journal of Computer Applications in Technology,
33, 327 - 336

[3] Himschoot P. (2019) Single Page Applications and Routing. In: Blazor
Revealed. Apress, Berkeley, CA.

[4] ReactJS official web page. Available: http://www.ReactJs.org
[5] Artemij Fedosejev. React.js Essentials. Packt Publishing Ltd., 2015.

ISBN: 978-1-78355- 162-0.
[6] C. Olston and M. Najork, “Web crawling,” Foundations and Trends in

Information Retrieval, vol. 4, no. 3, pp. 175–246, 2010.
[7] S. Khalid, S. Khusro, and I. Ullah, “Crawling ajax-based web applica-

tions: Evolution and state-of-the-art,”Malaysian Journal of Computer-
Science, vol. 31, no. 1, pp. 35–47, 2018

[8] Noseevich G.M. Petuhov A.A. “Poisk vhodnyh tochek dlja veb-
prilozhenij s dinamicheskim pol’zovatel’skim interfejsom”. Bezopas-
nost’ informacionnyh tehnologij (2013)

[9] Dr. T.Pandikumar, Tseday Eshetu “Detecting Web Application Vulner-
ability using Dynamic Analysis with Penetration Testing”, International
Research Journal of Engineering and Technology, vol. 03. no 10, 2016

[10] Petuhov A.A., Matjunin N.B, Avtomaticheskij obhod veb-prilozhenij s
dinamicheskim pol’zovatel’skim interfejsom, Problemy informacionnoj
bezopasnosti. Komp’juternye sistemy, vol 3, pp 43-49, 2014

[11] Govorkov I. S. Segmentacija stranic dinamicheskih veb-prilozhenij,
postroennyh s ispol’zovaniem sovremennyh JavaScript-bibliotek, 2018

[12] C. H. Liu, C. J. Wu, and H. M. Chen, Testing of AJAX-based Web
applications using hierarchical state model, in IEEE13th Int. Conf. e-
Business Engineering, Macau, China,2016, pp. 250–256.

[13] X. Zhang and H. Wang, ”AJAX Crawling Scheme Based on Document
Object Model,” in Computational and Information Sciences (ICCIS),
2012 Fourth International Conference on, 2012, pp. 1198-1201.

[14] W.-K. Chen, C.-H. Liu, and K.-M. Chen, “A web crawler supporting
interactive and incremental user directives,” in International Conference
on Frontier Computing. Springer, 2017, pp. 64–73

[15] Hafiz Zahid Ullah Khan, (2010) “Comparative Study of Authentication
Techniques”, International Journal of Video Image Processing and
Network Security IJVIPNS Vol: 10 No: 04

[16] Aggarwal, Sanchit. “Modern Web-DevelopmentUsing ReactJS.” Inter-
national Journal of RecentResearch Aspects, vol. 5, no. 1, Mar. 2018,
pp.133–137

[17] Websites using React.
Available: https://trends.builtwith.com/websitelist/React

[18] Top 32 Sites Built With ReactJS. Available:
https://medium.com/@coderacademy/32-sites-built-with-reactjs-
172e3a4bed81

[19] Thends in JavaScript frameworks. Available:
https://trends.google.com/trends/explore?q=vue.js,react,angular


