

High performance distributed web-scraper

Denis Eyzenakh

Institute of Computer Science and

Technology

Peter the Great St.Petersburg

Polytechnic University

Saint – Petersburg, Russian Federation

eisenachdenis@gmail.com

Anton Rameykov

Institute of Computer Science and

Technology

Peter the Great St.Petersburg

Polytechnic University

Saint – Petersburg, Russian Federation

arcane561@gmail.com

Igor Nikiforov

Institute of Computer Science and

Technology

Peter the Great St.Petersburg

Polytechnic University

Saint – Petersburg, Russian Federation

igor.nikiforovv@gmail.com

Abstract—Over the past decade, the Internet has become the

gigantic and richest source of data. The data is used for the

extraction of knowledge by performing machine leaning analysis.

In order to perform data mining of the web-information, the data

should be extracted from the source and placed on analytical

storage. This is the ETL-process. Different web-sources have

different ways to access their data: either API over HTTP protocol

or HTML source code parsing. The article is devoted to the

approach of high-performance data extraction from sources that

do not provide an API to access the data. Distinctive features of

the proposed approach are: load balancing, two levels of data

storage, and separating the process of downloading files from the

process of scraping. The approach is implemented in the solution

with the following technologies: Docker, Kubernetes, Scrapy,

Python, MongoDB, Redis Cluster, and СephFS. The results of

solution testing are described in this article as well.

Keywords — web-scraping, web-crawling, distributed data

collection, distributed data analysis

I. INTRODUCTION

Due to the rapid development of the network, the World
Wide Web has become a carrier of a large amount of
information. The data extraction and use of information has
become a huge challenge nowadays. Traditional access to the
information through browsers like Chrome, Firefox, etc. can
provide a comfortable user experience with web pages. Web
sites have a lot of information and sometimes haven’t got any
instruments to access over the API and preserve it in analytical
storage. The manual collection of data for further analysis can
take a lot of time and in the case of semi-structured or
unstructured data types the collection and analyzing of data
can become even more difficult and time-consuming. The
person who manually collects data can make mistakes
(duplication, typos in the text, etc.) as far as the process is
error-prone.

Web-scraping is the technique which is focused on solving
the issue of the manual data processing approach [1]. Web
scraping is the part of ETL-process and is broadly used in
web-indexing, web-mining, web data integration and data
mining. However, many existing solutions do not support
parallel computing on multiple machines. This significantly
reduces performance, limiting the system's ability to collect
large amounts of data. A distributed approach allows you to
create a horizontally scalable system performance of which
can be increased depending on the user's needs.

The article proposes an approach to organize distributed,
horizontally scalable scraping and distributed data storage.
Using an orchestration system greatly simplifies the
interaction with the system, and the support of automatic load
balancing avoids overloading individual nodes.

II. EXISTING WEB SCRAPING TECHNIQUES

Typically, web scraping applications imitate a regular web

user. They follow the links and search for the information

they need. The classic web scraper can be classified into two

types: web-crawlers and data extractors “Fig. 1”.

Fig. 1 Web-scraper structure

A web-crawler (or called a spider, spiderbot) is the first

type of data web-scraping. The crawler is a web robot also

known as an Internet bot that scans the World Wide Web

typically operated by search engines for the purpose of Web

indexing [2]. The crawling procedure starts with the list of

seed URLs. The program identifies all the links that exist on

seed pages and stores them. After that, the list of all links is

recursively visited. This process continues until all URLs will

be visited. There are several types of web-crawlers, but all of

them can be divided into a common crawler and focused

crawler.

Focused crawler searches for the most suitable pages

according to the topic that is defined by the user. This goal is

achieved by using algorithms of intelligent text analysis. It

ensures that web pages can only be crawled for information

related to the specific topic. In the server’s perspective, there

are single machine crawlers or distribution crawlers. The

information crawling can be achieved by dividing into several

nodes and their cooperation, which improves the efficiency

and performance of the crawler.

The second type of web scraper is a data extractor [3]. The

website contains a large amount of information and the

analyst cannot spend a lot of time manually collecting and

converting this data into the desired format. Besides that, a

web page can contain a lot of unstructured data that means it

can contain noise or redundant data. Data extractors can

easily extract large and unstructured data and convert them

into a comprehensive and structured format. The extraction

process starts with indexing or crawling. In the crawling

process, the crawler finds a list of the relevant URLs that the

data extractor will process. In these web pages a lot of junk

mailto:igor.nikiforovv@gmail.com

and useful data is mixed. The data extractor extracts the

needed information from the web-pages. Data extractor

contains a lot of techniques [4] for extraction data from

HTML pages.

III. COMPARISON ANALYSIS OF SYSTEMS

Here is an overview and comparison of web scraping

frameworks for fast scanning any kind of data, distributed

scraping systems for increasing the performance, and

orchestration systems.

A. Scraping tools

There are various tools for working with web scrapers.

They can be divided into three categories: libraries,

frameworks, and desktop or web-based environments.

1) Libraries

Modern web resources may contain various information.

Due to this circumstance, certain flexibility is required for

configuring and implementing web scraping tools. The

libraries guarantee access to the web resource. Most of the

library implement the client side of the http protocol, then the

resulting web page is parsed and the data is retrieved using

string functions such as regular expressions, splitting and

trimming, etc. [5]. Also, third-party libraries can help with

implementing more complex analysis, for example, building

an html-tree and XPATH mappings.

One of the most popular site access libraries is “libcurl”.

It supports the major features of the HTTP protocol, including

SSL certificates, HTTP POST, HTTP PUT, FTP uploading,

HTTP form-based upload, proxies, cookies and HTTP

authentication. Moreover, it can work with many

programming languages. In Java, the Apache HttpClient

package emulates HTTP main features, i.e., all request

methods, cookies, SSL and HTTP authentication, and can be

combined with HTML parsing libraries. Java also supports

XPath and provides several HTML cleaning libraries, such as

“jsoup”. Programs like “curl” (libcurl) and “wget” implement

the HTTP client layer, while utilities such as “grep”, “awk”,

“sed”,“cut” and “paste” can be used to parse and transform

contents conveniently.

2) Desktop or web application

Desktop applications are implementations of web

scrapers that are designed for noncoding professionals. This

kind of web scraper contains a graphical shell that makes it

easier to create and support web robots. Typically, these

applications include an embedded web browser, where the

user can navigate to a target web resource and interactively

select page elements to extract them, avoiding any kind of

“regex”, “XPath” queries, or other technical details. In

addition, modules are capable of generating several kinds of

outputs, such as CSV, Excel and XML files, and queries that

are inserted into databases. The main disadvantages of

desktop solutions are commercial distribution and limited

API access, which make it difficult to embed these web

scrapers into other programs.

TABLE I. COMPARISON OF SCRAPING FRAMEWORKS

Feature/

Framework
Scrapy PySpider NodeCralwer Apify SDK Selenium

Built in Data

Storage Supports
Customizable

CSV,

JSON

CSV,

JSON,

XML

JSON, CSV,

XML, HTML
Customizable

Suitable for Broad

Crawling
Yes No Yes Yes No

Build in Scaling Yes Yes No Yes No

Support AJAX No Yes No Yes Yes

Available Selectors CSS, Xpath CSS, XPath CSS, XPath CSS CSS, XPath

Built in Interface

for Periodic Jobs
No Yes No Yes No

Speed

(Fast, Medium, Slow)
Fast Medium Medium Medium Very Slow

CPU Usage

(Fast, Medium, Slow)
Medium Medium Medium Medium High

Memory Usage

(High, Medium, Low)
Medium Medium Medium High High

Github Forks 9000 3600 852 182 6200

Github Stars 39600 14800 5800 2700 19800

License BSD License
Apache License

2.0
MIT

Apache

License 2.0

Apache

License 2.0

3) Frameworks

Programming libraries have their limitations. For

example, you need to use one library for accessing a web

page, another for analyzing and extracting data from HTML

pages. The architecture designing and the compatibility of the

library's checking process can take a significant amount of

time. Frameworks are a complete solution for developing

web scrapers. Comparison results of popular frameworks for

implementing web scrapers are presented in the article as well

(Tab. 1).

Comparison is made according to the following criteria.

Built-in Data Storage Supports - supporting types of files or

other storage.

Suitable for Broad Crawling - this type of crawler covers

a large (potentially unlimited) number of domains, and is only

limited by time or another arbitrary constraint, rather than

stopping when the domain has already been crawled to

completion or when there are no more requests to perform.

These are called “broad crawls”, which are the typical

crawlers used by search engines. Speed, CPU usage, and

memory usage can represent system performance. GitHub

Forks, GitHub Starts, Last Update can inform the state of the

framework, support and community activity.

B. Orchestration and containerization systems

Since our system should support horizontal and vertical

scaling, it must support the orchestration system. The

orchestration system will monitor the status of services,

distribute the load among the nodes in the cluster, taking into

account the resources of each of these nodes. An

orchestration system is a support for the compatibility of

software products that communicate with each other through

remote procedure calls (RPC). There are many solutions on

the market today, but some of them are bound to specific

companies. Such systems can impose many different

restrictions such as: territorial limitations, bounded choice of

cloud computing service, the chance to be left without data

due to any external factors. And so, at the moment, there are

the following tools: Kubernetes, Docker Swarm, Apache

Mesos.

Based on the paper [6], we can conclude that the

Kubernetes orchestration system has a large coverage of the

required technologies. It is also the de facto standard today,

as evidenced by the fact that it is the only orchestration

system that has been accepted into the Cloud Native

Computing Foundation [7]. It is also used by such large

companies as Amazon, Google, Intel, etc.

We were also faced with the choice of virtualization or

containerization system. Referring to the fact that Kubernetes

can work with virtual machines, we chose containerization,

due to it consuming less resources, which was confirmed by

research [8]. Also, Kubernetes in its delivery recommends to

work with containers. Thus, our web scraper will be delivered

as a container running Docker.

C. Distributed scraping system review

1) Research

Scrapy does not provide any built-in facility for running

spiders in a distributed (multi-server) manner. However,

there are several ways to organize work. Some of the popular

solutions are Frontera, Scrapy Redis, Scrapy Cluster, and

Scrapyd.

Frontera is a distributed crawler [9] [10] system. Based on

the description of the project, we can say that the system is a

separately distributed web crawler. It is designed to collect a

large number of URLs as data sources. The system does not

have a built-in data extractor and it is not known whether it is

possible to add one. Hence, we can say that the system is

intended for other tasks.

Scrapy Redis [11] [12] is a system architecture that

supports distributed web-scraping. In the process of crawling,

the Redis database can mark the links that have been already

crawled and add to the queue links that haven't crawled yet,

avoiding the repeated crawling problem in the distributed

process. From the Scrapy Redis description follows that

Redis database is used as main storage. Redis, as the main

storage, does not satisfy the ACID theorem, namely CD,

which carries the consequences of losing part of the tasks, if

the cluster is in an emergency state, the consequences of the

loss of tasks can carry different types of damage, from re-

scanning the page, which entails a decrease in production.

Scrapy Cluster [13] was taken after Scrapy Redis, which

offloads Requests to a Redis instance. It has the same

problem with the Redis database. Based on the project

description we can find out that the system does not imply the

usage of an orchestration system, this opportunity is provided

to the user. It is a big disadvantage due to the reason that it is

not clear how the system will behave when the basic

functions of maintaining the cluster will be launched by the

orchestrator. For instance, operation “liveness check” could

not behave correctly and conflict with internal monitoring of

the system or doesn’t work at all. Scrapy Cluster also uses the

Apache Kafka message broker as a connection between the

system components. The parallelism of Kafka lies in the

number of sections in the topic [14]. All data that falls into

the topic is balanced between sections. From one section,

following the documentation, only one instance of the

application can read data. Several disadvantages can be

distinguished from this:

• Adding new topics will semantically separate the

data, which means that the data that has been already

stored in Kafka is not rebalanced internally [15]. This

means that if you try to add a new instance, the spider

will slow down the system until all new jobs will be

balanced against the new partitions.

• In the case of Scrapy Cluster, the spiders are bound

to the partition, and according to the scrapy cluster

documentation, control signals for the spider can be

sent to the partition (stop the scraping job) [16]. This

makes it impossible to add new partitions until the

end of the complete scraping session. Since

concerning to the balancing formula in Kafka:

ℎ𝑎𝑠ℎ(𝑘𝑒𝑦) % 𝑛𝑢𝑚𝑏𝑒𝑟_𝑜𝑓_𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛

the control signal can be sent to the wrong spider.

• Removing topics from the Kafka is impossible,

which can lead to a situation when several dozen

spiders stop in the cluster, the producer (sending the

task) cannot rebalance the queue between the

remaining spiders. This can lead to imbalance -

overloading one spider and no load on others.

One of the most popular distributed scraping solutions

using the Scrapy framework is Scrapyd [17]. Scrapyd allows

you to deploy and manage multiple Scrapy projects using the

json API. The wrapper provides the ability to store a queue in

a database, and also allows you to manage several machines

at once. With all the visible advantages, the system has not

been without drawbacks. The lack of a balancing system does

not allow the use of a larger number of nodes. When sending

a request for scraping, you must specify the ip address of a

specific node and before that make sure that it is not 100%

loaded.

2) Conclusion

After conducting research and analysis of various web

scraping tools, it was decided to use the Scrapy framework.

It does not restrict the developer by its license or capabilities

and is also used in many companies [18]. At the same time, it

has a convenient architecture for building any web scraper. A

convenient mechanism for adding additional software easily

compensates drawbacks of the framework. Such as support

of JavaScript, etc

Considering all of the above, we decided to develop a

system that would solve the problems of existing solutions,

allowing programs written in the Scrapy framework to work,

and also use the Kubernetes orchestration system.

IV. METHODOLOGY

A. Overall architecture of our distributed scraping system

Distributed scraper architecture presents 3 functional

layers:

• User interface layer

• Web scraping layer

• Data storage layer

The user interface layer is responsible for interacting with

the end-user, the user can send control commands to the

cluster, receive a response and see the scraping statistics at a

given point of time. The web scraping layer is a layer of

distributed web spiders that do not store state by themselves,

that is to say, they receive it from the user interface layer, so

they can be multiplied, so this layer is responsible for all the

scraping logic of sites. The data storage layer is responsible

for storing all collected information, which includes texts and

media content.

Fig. 2 Distributed approach for data extraction

B. System design

Figure 3 shows a detailed diagram of the system

operation.

1) Ingress Controller

An ingress controller is an element of the orchestrator

infrastructure, the main task of which is to proxy external

traffic to services within the cluster. It also performs other

tasks such as SSL termination and balancing and routing of

traffic based on names and URLs.

Insert reference to the figure, the ingress controller is the

entry point to the cluster for the end-user and, based on the

hostnames, redirects requests to a particular environment.

2) Services

There are three services in our system: Scrapy

Coordinator Service, Spider Service, Redis Service. Pods in

the cluster are not permanent, they can be stopped, they can

change the IP address, they can be moved to another element

of the cluster (node). Because of this, we faced the problem

of controlled access to pods. Service solves this problem by

acting as an abstraction that provides access to pods, has

access sharing mechanisms, and also has mechanisms for

discovering all services that match the conditions. The end-

user or program does not need to know the IP address of a

particular pod, he can refer to the domain name (for example

crawler.company 1, where crawler is the generic pod name,

and company 1 is the namespace name) and gain access to

one of the pods.

Service also balances traffic using the Round-robin

method. This algorithm is already built into the standard

delivery of Service Kubernetes and allows you to evenly

distribute tasks across all working nodes.

3) Scraping Coordinator and Workers

As we saw in “Fig. 3”, the scraping coordinator and

workers run in separate containers. Scraping coordinator

working with PostgreSQL [19] database. PostgreSQL works

in Master Slave mode, namely with asynchronous replication,

asynchronous replication allows you not to wait for a

response from the master, thereby not slowing down its work,

and replication will not stop if the slave is disabled, this

solution is quite simple and reliable in the sense that this

replication mode is shipped with the database distribution and

solves most fault tolerance problems. It works as a storage of

the queue of requests and processed links.

Worker consists of scrapy spiders written in scrapy and

HTTP-wrapper. The wrapper is a web server written in

Python with micro-framework Klein. Klein framework based

on Twisted – the most powerful Python asynchronous

framework, provides easy integration with Scrapy that uses

Twisted for all HTTP traffic.

The following is the sequence followed by the system

when initiating a scraping request from the perspective of the

scraping coordinators and workers.

a) Each scraping coordinator receives a list of URLs to

crawl and the number of workers instances a user would like

to use. The scraping coordinator checks in the PostgreSQL

database if the seed URL has already been processed. If not,

the coordinator creates a job that includes the seed URL and

custom settings for the spider. After that, it adds those jobs to

a queue along with a user scrape endpoint of the worker based

on the number of received from the user.

b) The scraping coordinator pops jobs from the queue

and passes them to the scraper’s URLs.

c) HTTP-wrapper takes a job, takes settings, and starts

Scrapy spider. If a worker is free and accepts the URL, it

sends back an acceptance message. If it is busy and has no

free threads to handle the request, it replies with a rejected

message. The scraping coordinator adds those URLs for

which it received a rejection message, back into the queue.

d) Spider scrape data and send it to the Redis cluster. If

the user has enabled the deep scraping function, extracts all

the child URLs (HREF elements in the web page) and passes

them to the scraping coordinator.

Fig. 3 System design

4) Scrapy Spider

It is a standalone spider program using the Scrapy

framework. Has ample opportunities, such as: JavaScript

processing. Since most pages have dynamically generated

content these days, it is no longer enough to just browse

static pages. If this factor is not taken into account, a large

amount of data can be lost during screening. Scrapy in the

standard delivery cannot work with dynamic content. But

there is a possibility of connecting additional modules -

headless web browsers

Supports processing web pages with pagination. Unlike

traditional search engines, which write every next page to

the seed URL queue. This can lead to high code interfacing,

poor readability, and spider startup costs. Using Scrapy’s

system call-back mechanism as a bridge, URL queue

creation and content crawling operation are performed

separately, which solves the shortcomings of traditional

crawlers [20].

The system also can use middleware to dynamically

change IP proxy, as well as the User-Agent value. All this

significantly reduces the chance of blocking by a web

resource.

5) Redis-Cluster

A memory database is needed to quickly save results,

thereby blocking save operation minimizes waiting on the

part of the scraper, increasing its performance. Redis

Cluster acts as an intermediate caching layer, it provides

fast storage of information, since all data is stored in RAM.

Spiders do not stand idle waiting for information to be

saved, this is important because the write speed in

distributed file systems is rather low [21]. Redis stores

information primarily as a dictionary, that is, on a key-

value basis. The key is the site URL, and the value is the

result of scraping in the form of a JSON file.

6) Save Worker

Save Worker performs the task of post-processing

information. It scans keys in Redis at a certain frequency.

After the information reaches the desired size

(recommended 4+ Gb [21]) or is not updated, it starts

downloading information to itself and simultaneously

deleting data from Redis. After that, it starts scanning the

scraping result, looking for certain marks in it in order to

load the missing files into a distributed file storage. Thus,

the spiders unload the waiting time for downloading large

files with an indefinite download time. After that

SaveWorker saves all results to the database with one

request.

7) MongoDB

MongoDB [22] is well adapted to our problem. It is a

document-oriented database management system and does

not require a description of the schema and tables.

MongoDB has the ability to scale horizontally.

8) CephFS

It is a software-defined distributed file system that can

scale flexibly to store petabytes of data. Ceph is able to

replicate data between nodes, as well as balance the load

between them. When a node fails, Ceph can self-heal

without downtime, thereby improving system availability.

Ceph offers 3 types of interface for interacting with storage,

a POSIX compatible [23] file system, an S3 storage and a

block device, thus providing higher compatibility with

already written software.

9) Sharing resources between users

To restrict manual cluster management, unique user

environment settings are specified. After that, they are

automatically added to the declarative description of the

cluster configuration file. This file is stored alongside the

project output in YML format in the Git [24] repository.

The system supports resource sharing using the tools

provided by the orchestration system, namely namespace

and ingress controller. Ingress controller redirects the user

to a particular namespace, according to the URL. The

software located in one namespace does not have direct

access to the resources of another namespace, just as each

namespace can be allocated quotas for processor time and

the amount of RAM.

V. APPROBATION AND TESTING

In order to verify the effect of distributed crawlers

builds an experimental stand. The three servers use the 64-

bit Debian 9 operating system.

A. Scalability

Scrapers do not have an internal state, this is confirmed

by the fact that the coordinator transfers the state to each

individual scraper and does not store the subsequent state,

but writes it to the in-memory database and to the

coordinator, therefore such a system scale well

horizontally.

B. Chaos monker testing

Chaos monkey is a set of software tools that allows you

to simulate crashes on a live system. It analyzes the system

for all its critical components and disables them in different

sequences. This allows you to observe the actions of the

system during emergency operation, as well as identify

critical points of the system. During testing, a situation

occurred when, in aggressive mode, the testing software

disabled both the Master and Slave PostgreSQL servers.

C. System speed test

The first experiment examines the overall speed of the

system. For this, the Scrapy project was developed and

deployed in the system, data collection takes place within a

single website. The main database for storing data is the

MongoDB database management system based on CephFS

distributed file storage. Text data is stored as JSON files,

images and other data are downloaded directly to file

storage.

Testing was carried out for 5 hours, the same number of

seed-URLs were chosen as input parameters, which makes

it possible to ensure that the web crawler will follow the

same route from the links. The performance test results are

presented in the table. Each node ran 5 instances of Scrapy.

This value was chosen empirically based on the load on the

systems, and also on the network.

TABLE II. RESULT OF PERFORMANCE TEST

Time/h One Three Five

(Single node) Pages 6650 19267 31 920

Elements 77200 223 880 370 560

(Two-node) Pages 11970 34 114 58 653

Elements 131500 368 200 631 200

(Tree-node) Pages 15960 46 922 76 927

Elements 257000 724 740 1 259 300

It can be seen by reproducing the above experiments (table

2) that the data acquisition experiment results of the

distributed scraping shows that the efficiency of a node

crawling is lower than that of two nodes crawling at the

same time. Compared with the stand-alone spider, it can get

more pages and run more efficiently.

D. Balancing test

Since the system contains several fail-safe elements and

has the ability to distribute the load, its stability should be

checked.

At first, the work of the system for distributing the load

on the nodes was checked. The launch was carried out on

100 seed URLs, which contain tabular data, text, as well as

data stored in various types of files. During the scanning

process, the crawler worked in a limited wide scan mode,

that is, it could click additional links within the same

domain.

Fig. 4 Loading node №1

Fig. 5 Loading node №2

Fig. 6 Loading node №3

Testing was carried out within 5 hours. During testing,

there were no emergencies.

On the graphs of the load of nodes, we can see that the

balancer copes well with its task; the system is working

quite stably, there are no strong drawdowns and spikes in

performance.

TABLE III. STABILITY TEST

Time/h One Two Three Four Five

Pages 15343 14903 16013 14850 15025

On the table 3, we can see that the number of collected

items for each hour is almost the same. This fact shows the

stability of the system. This is facilitated by the work of the

balancing algorithm, which allows not to overload the

system nodes and the optimal load.

VI. CONCLUSION

As part of the work, the following work has been done:

• Classification of information extraction solutions

has been introduced;

• A review of existing distributed web scrapers

implementations has been conducted;

• A comparative analysis of the considered solutions

is carried out.

In the course of the comparative analysis, deficiencies

were found in existing solutions, namely, the lack of an

orchestration system, problems with horizontal scalability

implementations, and deployment of applications.

An architecture has been proposed, which is headed by

the Kubernetes orchestration system, which monitors the

health of each element of the cluster and shares access to

resources.

During the analysis of the work of the resulting system,

it showed its viability. Reducing the time required to

retrieve data from web resources, connecting additional

work nodes to work. And so, the increased stability of the

system due to replication of the data storage, the use of a

load balancer, and an intermediate storage layer in the

Redis Cluster.

VII. REFERENCES

[1] Deepak Kumar Mahto, Lisha Singh, «A dive into Web Scraper

world,» in 2016 3rd International Conference on Computing for

Sustainable Global Development (INDIACom), New Delhi, India,
2016.

[2] «Web Cralwer,» [Online]. Available: https://webbrowsersintrodu

ction.com/.

[3] Momin Saniya Parvez, Khan Shaista Agah Tasneem, Shivankar

Sneha Rajendra, Kalpana R. Bodke, "Analysis Of Different Web

Data Extraction Techniques," in International Conference on
Smart City and Emerging Technology (ICSCET), Mumbai, India,

2018.

[4] Anand V. Saurkar, Kedar G. Pathare, Shweta A. Gode , «An
Overview On Web Scraping Techniques And Tools,»

International Journal on Future Revolution in Computer Science

& Communication Engineering, т. 4, № 4, p. 365, 2018.

[5] Rohmat Gunawan, Alam Rahmatulloh, Irfan Darmawan,Firman

Firdaus, «Comparison of Web Scraping Techniques: Regular

Expression, HTML DOM and Xpath,» Atlantis Press, pp. 283-
287, March 2019.

[6] Isam Mashhour Al Jawarneh, Paolo Bellavista, Filippo Bosi, Luca

Foschini, Giuseppe Martuscelli, Rebecca Montanari, Amedeo
Palopoli, «Container Orchestration Engines: A Thorough

Functional and Performance Comparison,» in ICC 2019 - 2019

IEEE International Conference on Communications (ICC),
Shanghai, China, 2019.

[7] «CNCF certificate,» [Online]. Available: https://www.cncf.io/cer

tification/software-conformance/.

[8] S. Vestman, «Cloud application platform - Virtualization,» pp. 25-

31, 2017 .

[9] «Distributed Frontera: Web crawling at scale,» [Online].
Available: https://www.zyte.com/blog/distributed-frontera-web-

crawling-at-large-scale/.

[10] «Frontera documentation,» [Online]. Available: https://frontera.r
eadthedocs.io/en/latest/.

[11] «Scrapy-Redis documentation,» [Online]. Available:

https://scrapy-redis.readthedocs.io/en/v0.6.x/readme.html#.

[12] Fulian Yin, Xiating He, Zhixin Liu, «Research on Scrapy-Based

Distributed Crawler System for Crawling Semi-structure

Information at High Speed,» in 2018 IEEE 4th International
Conference on Computer and Communications (ICCC), Chengdu,

China, 2018.

[13] «Scrapy-Cluster documentation,» [Online]. Available:
https://scrapy-cluster.readthedocs.io/en/latest/.

[14] «Kafka documentation. Intro,» [Online]. Available:
https://kafka.apache.org/documentation/#introduction.

[15] «Kafka official documentation. Basic_ops_modify_topic,»

[Online]. Available: https://kafka.apache.org/documentation.html
#basic_ops_modify_topic.

[16] «Scrapy-Cluster documentation. Core Concepts,» [Online].

Available: https://scrapy-
cluster.readthedocs.io/en/latest/topics/introduction/overview.html

.

[17] «Scrapyd documentation,» [Online]. Available: https://scrapyd.re
adthedocs.io/en/stable/.

[18] «Official Scrapy framework web-site. List of companies using

Scrapy.,» [Online]. Available: https://scrapy.org/companies/.

[19] Regina O. Obe, Leo S. Hsu, PostgreSQL: Up and Running, 3rd

Edition, O'Reilly Media, Inc., 2017.

[20] Deng Kaiying; Chen Senpeng; Deng Jingwei, «On optimisation of
web crawler system on Scrapy framework,» International Journal

of Wireless and Mobile Computing, т. 18 , № 4, pp. 332 - 338,

2020.

[21] Jia-Yow Weng, Chao-Tung Yang. Chih-Hung Chang, «The

Integration of Shared Storages with the CephFS,» in 2018 IEEE

42nd Annual Computer Software and Applications Conference

(COMPSAC), Tokyo, 2019. pp. 97.

[22] Shannon Bradshaw, Eoin Brazil, Kristina Chodorow, MongoDB:

The Definitive Guide, 3rd Edition, O'Reilly Media, Inc., 2019.

[23] Abutalib Aghayev, Sage Weil, Michael Kuchnik, Mark Nelson,
Gregory R. Ganger, George Amvrosiadis, «File systems unfit as

distributed storage backends: lessons from 10 years of Ceph

evolution,» in SOSP '19: Proceedings of the 27th ACM Symposium
on Operating Systems, 2019. pp. 353–369.

[24] Voinov, N., Rodriguez Garzon, K., Nikiforov, I., Drobintsev, P.,

«Big data processing system for analysis of GitHub events,» in
Proceedings of 2019 22nd International Conference on Soft

Computing and Measurements, 2019, 2019, pp. 187-190.

