
SYRCOSE 2021 1

Data Layout Optimization
for the LCC Compiler

Viktor Shamparov∗, Murad Neiman-zade†

AO ”MCST”, 24 Vavilova str., Moscow, 119334, Russia
MIPT, 9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia
Email: ∗Victor.E.Shamparov@mcst.ru, †Murad.I.Neiman-zade@mcst.ru

Abstract—In this research-in-progress report, we propose a
novel approach to unified cache usage analysis for implementing
data layout optimizations in the LCC compiler for the Elbrus and
SPARC architectures. The approach consists of three parts. The
first part is generalizing two methods of estimating cache miss
amount and choosing more applicable one in the compiler. The
second part is finding an applicable solution for the problem of
cache miss amount minimization. The third part is implementing
this analysis in the compiler and using analysis results for data
layout transformations.

Index Terms—Compilers, Compiler Optimization, Cache Anal-
ysis, Data Layout Transformation.

I. INTRODUCTION

Improving computer resources usage efficiency by a pro-
gram is one of the main tasks for optimizing compilers.
Particularly, improving memory usage is especially important
because hardware developers have introduced multi-level in-
termediate memory, called cache memory, due to the growing
performance difference between memory and CPU. Cache
memory capabilities must be used efficiently.

Cache memory is structured for using the following program
properties effectively: temporal locality and spatial locality.
Temporal locality means that the program often works with
the same data in memory. Spatial locality means that the
program is likely to work with adjacent data. Thus, to make
compiled program use cache memory efficiently, the compiler
must improve these two programs’ properties.

Nowadays, compilers optimize the programs’ temporal lo-
cality well by loop optimizations, but optimizing spatial local-
ity is more complicated since it requires choosing the correct
data structures for the program. Therefore, optimizing spatial
locality is often entrusted to the programmer, although data
location optimizations are implemented for some relatively
simple cases.

In this article, we describe the ongoing research on cache
memory usage for the further development of a high-quality
automatic cache usage analysis in the compiler for applying
an optimal set of data layout optimizations.

The article is organized as follows. In section 2, we substan-
tiate the potential effect of optimizing data layout. In section 3,
we state the problem. In section 4, we analyze papers on
this topic and related ones. In section 5, we propose further
research approach. In section 6, we describe current progress.
Finally, in section 7, we provide a conclusion.

II. MOTIVATION

It is known that part of program execution time is spent
waiting for data from memory. This is especially evident for
processors with in-order execution. They have fewer opportu-
nities to mask this wasted time by executing other instructions
than processors with out-of-order execution.

To illustrate this problem and determine the potential effect
of optimization, we measured the percentage of test execution
time from SPEC CPU benchmark packages that the processor
spends waiting for data from memory. This data is shown in
Table I. We used a computer with an Elbrus-4C processor for
measurement. It has VLIW ISA, in-order execution and two-
level cache memory. Benchmarks were compiled with peak
options.

The table shows that more than 10% of the execution time is
spent waiting for data from memory in 92 from 172 launches,
which is more than a half.

Some of this spent time is due to inefficient use of cache
memory. Mainly, these inefficiencies are:

1) loading unnecessary for further work data into the cache,
which fact is a violation of spatial locality;

2) conflicts between different data chunks due to hitting the
same cache set.

For example, it was found during our previous work that it is
possible to reduce the number of cache misses with the help of
optimization called Structure Splitting [1]. This optimization
improves the spatial locality of the program in some cases.
Such CPU pipeline stalls number decrease and consequent
execution speeding up are shown in the Table II.

From this example, it can be seen that at least some of the
losses due to waiting for data can be removed by data layout
transformations improving spatial locality. These transforma-
tions require unified analysis for an effective combination.

III. PROBLEM STATEMENT

Thus, we need to:

1) Theoretically analyze cache memory usage by programs
and develop a method of solving the problem of mini-
mizing time losses based on this theoretical analysis.

2) Based on theoretical results, make applicable automatic
analysis in the LCC compiler for the Elbrus and SPARC
ISA.



SYRCOSE 2021 2

TABLE I
NUMBER OF BENCHMARK LAUNCHES FROM SPEC CPU PACKAGES THAT

USE MORE THAN 10% OF TIME TO WAIT FOR DATA

Set Part Number
of time launches

1995 10...15% 12
1995 15...20% 4
1995 20...25% 0
1995 25...30% 1
1995 ≥ 30% 0
1995 Total in set 37
2000 10...15% 6
2000 15...20% 6
2000 20...25% 6
2000 25...30% 1
2000 ≥ 30% 6
2000 Total in set 44
f2006 10...15% 4
f2006 15...20% 1
f2006 20...25% 1
f2006 25...30% 1
f2006 ≥ 30% 2
f2006 Total in set 20
i2006 10...15% 3
i2006 15...20% 1
i2006 20...25% 3
i2006 25...30% 3
i2006 ≥ 30% 12
i2006 Total in set 35
f2017 10...15% 1
f2017 15...20% 2
f2017 20...25% 3
f2017 25...30% 0
f2017 ≥ 30% 1
f2017 Total in set 16
i2017 10...15% 1
i2017 15...20% 2
i2017 20...25% 0
i2017 25...30% 3
i2017 ≥ 30% 6
i2017 Total in set 20

All 10...15% 27
All 15...20% 16
All 20...25% 13
All 25...30% 9
All ≥ 30% 27
All Total 172

TABLE II
CPU PIPELINE STALLS NUMBER DECREASE AND FOLLOWING PROGRAM

EXECUTION SPEEDING UP

Benchmark SPEC CPU CPU pipeline stalls Speed-up
package number decrease

181.mcf 2000 27% 26%
429.mcf 2006 19% 13%

3) Implement in the same compiler a set of data layout
transformations, which transform data layout of a pro-
gram based on the analysis results.

In this case, it is necessary to take into account some
restrictions arising from the fact that the implementation is
planned in the form of compiler optimizations:

1) Various data structures need to be handled correctly.
Particularly, they are:

a) Arrays, structures and their combinations.

b) Various data structures that use pointers to other
elements internally and allocate memory for new
elements via malloc and similar memory alloca-
tion functions. For example, lists and trees.

2) We need to handle data structures altogether, as their
transformations may conflict with each other. Therefore,
it is necessary to analytically process not only regular
access to memory but also random access.

3) Analysis and transformations must be static (in the
compiler) but can be supported with runtime libraries
and special profiling, but not memory access trace.

4) Developed analysis and transformations must correctly
work in modular build mode.

IV. RELATED WORK

Several works on related topics have already been written,
but each of them does not solve assigned tasks entirely due to
different reasons.

Chris Lattner proposed automatic Data Structure Analysis to
detect data structures whose elements are allocated on the heap
in his thesis ”Macroscopic Data Structure Analysis and Opti-
mization” [2]. Using the results of this analysis, he proposed a
compiler optimization called Automatic Pool Allocation with
runtime support, designed to group the elements of such data
structures in specific regions of the heap, which improves the
spatial and, in some cases, temporal locality of the program.
In addition, he offered several optimizations for code already
optimized in this way.

Unfortunately, there is no explicit cache memory usage
analysis in Lattner’s work.

Christopher Haine in his thesis ”Kernel optimization by
layout restructuring” [3] offered an analyzer, which detects
accessing memory regularly simple data structures like struc-
tures and arrays and proposes layout transformations using
heuristics data. This analysis is separated from the compiler.
In addition, this analyzer provides user with information about
the complexities of code vectorization. For our purposes, this
work is not suitable since there is no explicit cache memory
usage analysis.

Mostafa Hagog and Caroline Tice in their article ”Cache
Aware Data Layout Reorganization Optimization in GCC” [4]
proposed several improving spatial locality optimizations of
structures and arrays of structures: Structure Peeling, Structure
Splitting, and Field Reordering. These optimizations were later
implemented in the GCC compiler. Although the authors lim-
ited themselves to working with structures, they implemented
an analysis handling every structure access, not just regular
access. During optimization, particular Field Reference Graphs
are built for each analyzed structure for each procedure. Field
Reference Graph (FRG) is an analogue of a control-flow
graph, where nodes contain operations accessing fields of
the analyzed structure and arcs contain information about the
amount of data loaded into the cache between nodes. In fact,
this is an implicit analysis of cache memory usage. Further,
after processing, this information is used in heuristics to
apply the specified optimizations and reduce the computational
complexity of further algorithms.



SYRCOSE 2021 3

This approach can potentially be used for explicit cache
memory usage analysis, provided it is generalized for working
on all program data in all procedures.

Ghosh et al. [5] and Fraguela et al. [6] suggested more ex-
plicit techniques for cache memory usage analysis for regular
access cases.

Ghosh et al. [5] proposed to compose and solve systems of
linear Diophantine equations to estimate the number of cache
misses for each cycle. They implemented this algorithm in the
SUIF compiler and implemented the choice of padding size
in the Array Padding optimization as an example. However,
they did not implement an automatic solution of systems in
parametric form - only a particular solution for Array Padding.
In addition, this approach was created only for regular memory
access.

An alternative approach was suggested by Fraguela et al. [6]
for regular memory access. It was improved by Andrade in [7]
thesis for some cases of irregular memory access: regular
access under condition and access to an array, where the
indices are read from another array. This approach is based on
estimating the probability of cache misses in each analyzable
cycle using Probabilistic Miss Equations (PME) generated
from regular access characteristics and cache memory char-
acteristics. To do this, for each processed access in the loop,
a partial Probabilistic Miss Equation is built, and then they
are combined into a complete equation for the loop or loop
nest. This complete equation gives an estimation of cache
misses amount. In addition, they did not offer any solution
to the problem of minimizing cache misses amount and did
not handle random memory access. Thus, the PME approach
can potentially be applied for explicit cache memory usage
analysis, provided the analysis is generalized for working for
all irregular memory access.

Data layout transformations were described in many papers.
Particularly, a small catalogue of such transformations was
created in the article [8]. Following transformations are listed
in this article:

1) Array Padding - adding padding between arrays to
reduce number of conflicts between arrays;

2) Array Merging - element-wise arrays merging;
3) Array Transpose - changing dimensions order of an array

by analogy with transposing a matrix.

In addition to these, in the above-mentioned article [4] and
thesis [2] some other transformations were described:

1) Structure Peeling - splitting an array of structures ele-
ment by element into several arrays;

2) Structure Splitting - splitting an array of structures
element by element into several arrays and addition of
links between the elements corresponding to the initial
element;

3) Field Reordering - changing order of fields inside the
structure;

4) Automatic Pool Allocation - replacing memory alloca-
tion for data structure elements in the heap with memory
allocation in a specific pool.

V. PROPOSAL

In this paper, we propose the following approach to re-
search.

Firstly, it is proposed to investigate and compare following
methods for cache memory usage analysis:

1) the method described in [4] using FRG graphs, general-
ized for working with all program data in all procedures;

2) the method described in [6], [7] using the Probabilistic
Miss Equations, generalized for the case of random
access.

We propose to choose one method for cache memory
usage analysis that is more suitable for implementation in
the compiler. The selection criterion is the accuracy of the
estimation of cache misses amount. Another selection criterion
is analysis time.

Further, we propose to develop an analytical or another
compiler-applicable method for solving the problem of min-
imizing the obtained estimation of the cache misses amount
using data layout transformations. This problem is a discrete
optimization problem, in which the objective function is
the dependence of the cache misses amount on the applied
data layout transformations, and a countable set of feasible
solutions is the data layout transformations.

Finally, based on the developed analysis method and the
method for solving the problem of minimizing the cache
misses amount, it is proposed to implement automatic analysis
in the compiler that controls a set of data layout transforma-
tions. Also, we will need to implement missing transforma-
tions.

A. Generalizing FRG analysis

This method should be generalized for working on all
program data in all procedures and provide an estimation of
cache misses amount. To do this, based on the FRG graph for
structures, we need to make a generalized graph for structures,
arrays, their combinations and other data structures. Such
graphs need to be created for each program object. Let us call
such graphs Object Reference Graph - ORG. In addition, we
need to build a general RGP (Reference Graph in Procedure)
graph consisting of all memory accesses in the procedure
and including profile information. So any ORG graph in a
procedure contains a subset of RGP nodes; therefore, using
RGP, one can estimate the probabilities of transitions through
various ORG arcs and cache memory usage characteristics
between ORG nodes. In addition, RGP is required to analyze
conflicts between different data structures.

It is required to determine the probability of a particular
cache line being evicted from the cache memory to estimate
the probability of a cache miss in each ORG node. Since the
probability of preempting a particular cache line depends on
the amount of memory loaded into the cache in the general
case in a complex way, it is better to store on the arcs of ORG
graphs, not the amount of memory loaded into the cache, but
the probability of preempting a particular cache line.

To estimate the probabilities, one must know in which
memory regions the memory addressed by each pointer is
located and the size of these memory regions. To obtain this



SYRCOSE 2021 4

information, we need to use pointer analysis and a particular
version of the profile, which collects data on the size of the
allocated memory.

B. Generalizing PME analysis

To use this method, we need to generalize it for processing
irregular memory access.

For this, we need to:
1) Create a way to calculate cache misses probability for

random access.
2) Generalize PME to those cases of near-regular access

where it is possible to estimate cache misses amount
more accurately than using a random access model.

3) Combine PME for regular access and ones for random
access.

4) Use the developed techniques for estimating cache
misses amount for the entire code, not just for loops.

To estimate the probabilities, one must know in which
memory regions the memory addressed by each pointer is
located and the size of these memory regions. To obtain this
information, we need to use pointer analysis and a particular
version of the profile, which collects data on the size of the
allocated memory.

VI. CURRENT PROGRESS

In the work [1] we described the particular version of data
layout transformation called Structure Splitting, which we had
implemented in the LCC compiler for the Elbrus and SPARC
architectures. In addition, in this compiler Structure Peeling,
Array Transpose, Array Linearization, and Array Padding have
already been implemented.

A. Cache miss probability for random access

To generalize the PME-based analysis, a method was cre-
ated for calculating the cache misses probability for random
access. It is supposed that the memory region is known for this
access, but the address of the region beginning is unknown.
PME will be merged with this method.

The method is based on determining cache state trans-
formations for each memory access operation. For this, the
operations are traversed sequentially in the basic blocks of
the procedure, and the transformations on the code blocks
are combined according to the probabilities in the profiled
control-flow graph. Any operation of the procedure is traversed
once for random access case. For any other case number of
single operation traversals must be O(1) due to the analysis
applicability requirement.

The cache state notation for the general case of regular and
random access has not been determined yet, but the following
notation has been chosen for the random access model: matrix
P composed of N vectors Pi corresponding to N memory
regions. Each vector has S + 1 size, where S is the number
of cache lines in the cache. The element of the matrix Pij is
the probability that exactly j lines corresponding to the area
i are stored in the cache memory at the moment.

An example of the chosen cache state notation for three
memory regions called ai, where i = 1..3, is shown in
Table III. In the shown state it is implied that region a1 has no
lines in cache with 100% probability. Also, probability of a2
taking all lines of cache is 90% and probability of a3 taking
one line and a2 taking all other lines is 10%.

TABLE III
CHOSEN CACHE STATE NOTATION EXAMPLE Pij FOR THREE MEMORY

REGIONS CALLED ai , i = 1..3

j a1 a2 a3
S 0% 90% 0%
S − 1 0% 10% 0%

... ... ... ...
1 0% 0% 10%
0 100% 0% 90%

Let us introduce for each operation or code section c an
operator for changing the state Tc. If there was state Pb before
executing c, then state Pa after executing c is: Pa = TcPb.
We require the following properties for the operator:

1) For a code section c, consisting of K consecutive
code sections or operations c1, ..., cK , the operator is
a composition of operators for parts of the section:
Tc = TcK ...Tc1 .

2) For a code section consisting of K alternative code
sections or operations c1, ..., cK with probabilities of
passing through them p1, ..., pK (for example, if block
and else block), with

∑K
j=1 pj = 1, the operator is a

linear combination of operators for parts of the section:
Tc =

∑K
j=1 pjT

cj .
3) Similarly, if during the execution of one operation op

one of the K different state changes Top
1 , ...,T

op
K may

occur with probabilities p1, ..., pK , and
∑K

j=1 pj = 1,
the operator is a linear combination of their operators:
Top =

∑K
j=1 pjT

op
j .

For the chosen matrix cache state notation, we also intro-
duce an element-wise product ◦ of the operator and coeffi-
cients.

Let us consider one memory access operation. It can cause
three different outcomes:

1) Cache hit. In this case, cache state in the selected
notation is not changed.

2) Cache miss with a conflict in the memory region. In
this case, cache state in the selected notation does not
change since it only stores the probabilities of having a
certain amount.

3) Cache miss with a conflict with another memory region.
A new line is loaded into the cache for the memory
region the operation is working with. For one of the
other memory regions, the line is evicted from the cache.

Thus, change in cache state for a single operation for a
specific memory region can consist only in loading a new
cache line for memory region, deleting cache line from the
cache for memory region, or no changes for memory region.
For such changes we introduce operators for the movement of
cache state in selected notation:



SYRCOSE 2021 5

1) M+ - moves the matrix values up by 1: if Pa = M+Pb,
then

∀i ∈ 1...N 7−→


Pa

ij = Pb
i(j−1), j = 0...S − 1

Pa
iS = Pb

iS +Pb
i(S−1)

Pa
i0 = 0

2) M− - moves matrix values down by 1: if Pa = M−Pb,
then ∀i ∈ 1...N

∀i ∈ 1...N 7−→


Pa

ij = Pb
i(j+1), j = 1...S,

Pa
i0 = Pb

i0 +Pb
i1

Pa
iS = 0

3) M0 - does not move matrix values.
Writing down cache state change operator Top for opera-

tion, working with the memory region i, we get:

Top = ρi+ ◦M+ + ρi0 ◦M0 + ρi− ◦M−

where:
1) ρi+ - matrix of coefficients for loading a new line of i

into the cache; this matrix consists of a nonzero column
for the i-th vector, other coefficients are equal to zero;

2) ρi0 - matrix of coefficients for saving cache state as it
is;

3) ρi− - matrix of coefficients for evicting a line from the
cache when loading a new line of the i area into the
cache; this matrix consists of nonzero columns for all
vectors except the i-th.

An example of applying operator Top to cache state example
above is shown in Table IV. Operation op accesses memory
region a1, so one line of a1 is loaded into cache and one line
of a2 or a3 is evicted from the cache.

TABLE IV
RESULT OF APPLYING OPERATOR Top TO CACHE STATE FROM TABLE III

WHEN op WORKS WITH MEMORY REGION a1 (i = 1)

j a1 a2 a3
S 0% 0% 0%
S − 1 0% 90% + 10% · 1

S 0%
S − 2 0% 10% · S−1

S 0%
... ... ... ...
1 100% 0% 10% · S−1

S
0 0% 0% 90% + 10% · 1

S

VII. CONCLUSION

Publications analysis showed that there is no unified solu-
tion to the problem of improving cache usage of compiled
programs. In this paper, we propose a research approach,
which can lead to a solution to this problem in compilers.

REFERENCES

[1] V. E. Shamparov and A. L. Markin, “Structure splitting for elbrus
processor compiler,” Programmnaya Ingeneria, vol. 12, no. 2, p. 82–88,
2021.

[2] C. Lattner, “Macroscopic Data Structure Analysis and Optimization,”
Ph.D. dissertation, Computer Science Dept., University of
Illinois at Urbana-Champaign, Urbana, IL, May 2005, See
http://llvm.cs.uiuc.edu.

[3] C. Haine, “Estimation d’efficacité et restructuration automatisées de
noyaux de calcul. (kernel optimization by layout restructuring),” Ph.D.
dissertation, University of Bordeaux, France, 2017. [Online]. Available:
https://tel.archives-ouvertes.fr/tel-01841485

[4] M. Hagog and C. Tice, “Cache aware data layout reorganization opti-
mization in gcc,” in Proceedings of the GCC Developers’ Summit, 2005,
pp. 69–92.

[5] S. Ghosh, M. Martonosi, and S. Malik, “Cache miss equations: A
compiler framework for analyzing and tuning memory behavior,” ACM
Trans. Program. Lang. Syst., vol. 21, no. 4, p. 703–746, Jul. 1999.
[Online]. Available: https://doi.org/10.1145/325478.325479

[6] B. B. Fraguela, R. Doallo, and E. L. Zapata, “Probabilistic miss
equations: Evaluating memory hierarchy performance,” IEEE Trans.
Comput., vol. 52, no. 3, p. 321–336, Mar. 2003. [Online]. Available:
https://doi.org/10.1109/TC.2003.1183947

[7] D. Andrade, “Systematic analysis of the cache behavior of irregular
codes,” Ph.D. dissertation, Departamento de Arquitectura e Tecnoloxı́as
Multimedia, Universidade da Coruña, 2007. [Online]. Available:
http://hdl.handle.net/2183/18378

[8] M. Kowarschik and C. Weiß, An Overview of Cache Optimization
Techniques and Cache-Aware Numerical Algorithms. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pp. 213–232. [Online]. Available:
https://doi.org/10.1007/3-540-36574-5 10


