
Generation of optimal object code
1st Ivan Arkhipov

faculty of mathematics and mechanics
St Petersburg University
St Petersburg, Russia
arkhipov.iv99@mail.ru

Abstract—This article is related to optimizations in code
generator of MIPS assembler. This work is a part of the RuC
project.

Index Terms—code generation, translator, optimization, MIPS

I. INTRODUCTION

The C programming language has significant drawbacks,
such as pointer arithmetic and the lack of control over array
boundaries when accessing an array element. It is noteworthy
that these are the shortcomings of the language itself, and
not of individual compilers. These drawbacks have a negative
impact on the security of the C language.

The Department of System Programming of St. Peters-
burg State University is developing a translator of the RuC
language, which is an improved version of the C language
[1]. For example, pointer arithmetic is forbidden in RuC,
which makes this language more secure than C. Scientific
publications have been made on this topic [2] [3]. At the
moment, the RuC project has become an industrial one, which
shows the relevance and practical significance of this project.

With the development of RuC, the need of implementation
of optimizations arose. Without optimizations, the translator
will not be able to compete with its analogs.

Generation of optimal object code is one of the main and
one of the most difficult tasks in the field of system program-
ming. This paper is devoted to optimizations in the MIPS [4]
assembler, which complicates the optimization problem. MIPS
is a RISC architecture, which gives a huge variability in code
generation and its optimizations.

The developer of the code generator faces difficult ques-
tions. What optimizations should be implemented? What
optimizations will give a significant gain in the speed of
the program? Which optimizations will often speed up the
program, and which will work very rarely? What architecture
features should be considered when optimizing the code? All
this requires an analysis of other translators, optimization
approaches, and a lot of work with the machine in which codes
the program is translated.

Some optimizations cannot be implemented only within the
framework of the code generator. For complex optimizations,
you may need to change the abstract syntax tree or add
additional information to the translator tables.

After implementation, it is necessary to re-analyze other
translators in order to find out where and how else you can

optimize the code, how much and in what cases RuC loses
to its analogs, and in what cases and by how much RuC has
become better.

II. MOTIVATION

This publication solves a practical problem. The develop-
ment of the translator is impossible without the implementa-
tion of optimization. It is especially important in an industrial
project. Optimizations will allow RuC to compete with its
analogs in efficiency.

This article considers not only the implementation of certain
optimizations, but also the analysis of approaches and ana-
logues of RuC. This paper describes optimizations that can
be implemented for C compilers as well, since the specific
features of the RuC language do not affect these optimizations.
Therefore, this work will be interesting to the developer of the
code generator and the optimizer.

III. PROBLEM STATEMENT

The goal of this paper is implementation of a set of
optimizations for the MIPS code generator.

To achieve this goal, the following tasks were set:
• Analysis of widespread analogs of RuC: GCC and Clang
• Creating a list of optimizations
• Implementation of optimizations in the RuC code gener-

ator
• Evaluation of results and comparison with analogues
The result of the work is the acceleration of the work of the

compiled programs. Testing and measurements are presented
in the chapter Evaluation.

IV. RELATED WORK

These translators from C to MIPS codes were selected as
analogs for comparison and analysis: GCC [5] and Clang [6].
This choice is due to the popularity, prevalence and a large
list of optimizations of these translators.

For speed testing, a program for multiplying 200x200
matrices 1000 times was selected. The code is provided in
Application 1. The size of the matrices and the number of
repeats were taken so that the program execution time was
not too large, so as not to wait long for the end of the test,
and not too small, so that the time measurement error was
slightly affected. Firstly, this test contains important language
constructs, such as loops and array slices. Secondly, matrix

multiplication is a widespread problem in various computing
programs.

First of all, it is necessary to measure the speed of the
code received after GCC and Clang translation. All tests
were executed on the Baikal-T1 processor [7]. The time was
measured using the time utility [8]. The measurement results
are presented in Table I.

TABLE I
COMPARISON OF CLANG AND GCC

Translator Time
Clang 0m 31.46s
GCC 0m 36.12s

Most of all, the optimization of the inner loop itself affects
the running time of the program, since the commands in it are
executed the most times. Analysis and comparison of internal
cycles require special attention.

A. Clang inner loop

The code of the internal loop of the program received
after the Clang translation is given in Algorithm 1. Several
important optimizations are performed here: induced variables,
optimizing serial branch commands, calculating the number
of loop repeats before the loop body, using the delay slot,
removing unnecessary inductive variables.

Algorithm 1: Clang inner loop
$BB0_12:
calculating the address of a[i][k]

addu $1, $9, $24
slice of a[i][k]

lw $1, 0($1)
slice of b[k][j]

lw $25, 0($14)
multiplication

mul $1, $25, $1
addition

addu $15, $15, $1
increment of the induced variable

addiu $24, $24, 4
branch

bne $24, $6, $BB0_12
increment of the induced variable

addiu $14, $14, 800

However, even such good code is not yet fully optimized.
During the translation, an induced variable was created not for
a[i][k], but for the offset relative to a[0][0] for the variables i
and k. Because of this, the address a[i][k] must be calculated
at the beginning of the loop, which adds one extra command
in the inner loop. This method works well when there are

many slices of the form array[i][k] from a large number of
arrays in the inner loop. Because of this, it is not possible
to create an induced variable for slice from each array, since
there are not enough registers. Therefore, an induced variable
is created for the offset by variables i and k, and the addresses
are counted separately. But in this test, this is not necessary,
moreover, a separate induced variable was created for b[k][j].
This decision of Clang is not optimal.

B. GCC inner loop

The code of the internal loop of the program received
after the GCC translation is given in Algorithm 2. Just like
in Clang, the main and most important optimizations are
also implemented here. GCC is devoid of the Clang flaw
mentioned above. For this program, the induced variables are
implemented in the best way, for each slice its own induced
variable is created. In addition, GCC has replaced the two
addition and multiplication commands with a single madd
command. This command multiplies the values from the two
registers and adds the result of the multiplication to the special
registers hi and lo [9].

Algorithm 2: Clang inner loop
$L8:
increment of the induced variable

addiu $2,$2,800
slice of a[i][k]

lw $5,0($3)
slice of b[k][j]

lw $4,-800($2)
increment of the induced variable

addiu $3,$3,4
branch

bne $6,$2,$L8
multiplication and addition

madd $5,$4

However, the execution time of the program received during
the GCC translation is longer than that received during the
Clang translation. As it turned out, the reason is the use of
the madd command. An experiment was set up. In the object
code generated by GCC, the madd command was manually
replaced with two mul and addu commands, and the program
execution time on the Baikal-T1 was measured. The result is
shown in Table II.

TABLE II
GCC CODE WITH AND WITHOUT MADD

Time
With 0m 36.12s
Without 0m 27.26s

To verify the results, an additional experiment was con-
ducted. In the object code generated by Clang, two mul
and addu commands were manually replaced with one madd
command, and the execution time of the program code was
measured. The result is shown in Table III.

TABLE III
CLANG CODE WITH AND WITHOUT MADD

Time
With 0m 37.18s
Without 0m 31.46s

Obviously, the madd command should not be used for
optimization.

There are several approaches to implementation of opti-
mizations. It is necessary to consider them and choose the
appropriate one.

C. Implementation based on SSA-form

Many modern translators use an intermediate representation
in the form of SSA to implement optimizations [5] [6].
SSA-based optimizations are also demonstrated in theoretical
books [10] [11]. A lot of scientific papers are devoted to
optimizations in SSA form [12] [13].

The SSA form can be either high-level or low-level, which
gives this representation flexibility. For translation from high-
level languages, several SSA representations can be created,
which allows to implement optimizations at different levels
of abstraction. The low-level representation is well suited for
implementing machine-dependent optimizations.

However, the disadvantage of this approach is its complex-
ity. At first the SSA form of the intermediate representation
should be developed, then the code generator into the codes of
this representation and the code generator from the codes from
this representation into the codes of the real machine should
be implemented, and the optimizer may be implemented.

D. Implementation based on AST-form

The second form of intermediate representation is an ab-
stract syntax tree. It is a high-level representation and displays
the hierarchical structure of programs in the translated pro-
gramming language. This form is poorly suited for low-level
optimizations, and, as a result, it is not enough for efficient
translation of high-level programming languages.

However, the advantage of this approach is its simplicity.
There is no need to develop an SSA form, write a code
generator to its codes and from its codes to the codes of the
target machine. Due to the simplicity, the compilation speed
increases, this advantage is used, for example, in TCC [14].

V. GENERAL DESIGN

Based on the results of the review of analogs, it was decided
to implement the following optimizations:

• Optimizing serial branch commands

• Calculating the number of loop repeats before the loop
body

• Using the delay slot
In RuC, there is currently no need for an intermediate

representation in the SSA form. RuC is a low-level program-
ming language, so there is no need to create complex forms
of intermediate representation for analyzing and optimizing
program constructs.

The selected optimizations can be implemented directly
in the code generator without changing the abstract syntax
tree. In the process of parsing the tree, depending on the
optimization, flags is set to generate certain commands specific
to each optimization. For example, the following sections will
describe how to optimize the calculation of the number of
loop repeats. It should be generated a comparison command
for two registers instead of a comparison command with zero,
as it was before optimization. To do this, during the processing
of the TFor node, a flag is set to generate such commands.

VI. IMPLEMENTATION

A. Optimizing serial branch commands

During the code generation of loops, it is possible to
form unnecessary branch commands that create a sequence
of jumps. Let’s consider an example of a loop generated by
the RuC translator. The loop code is shown in Algorithm 3.

Algorithm 3: RuC inner loop before optimization
BEGLOOP23:
calculating a condition

addi $t1, $s2, -200
branch

bgez $t1, ELSE22
loop body

...
CONT23:
increment of the inductive variable

addi $s2, $s2, 1
jump

j BEGLOOP23
ELSE22:
code after loop

...

At first, the loop condition is calculated, then it is checked,
and at the end, the jump to the calculation and checking of the
condition is executed. This loop can be optimized by setting
a condition and a branch command before the loop and at the
end of the loop. The optimized code is presented in Algorithm
4.

This optimization is implemented in the code generator in
the processing module of the TFor node and conditional ex-
pression nodes. In the TFor node processing module, the loop
structure is organized in the appropriate way. In the module

for processing conditional expression nodes, the appropriate
branch commands are generated.

Algorithm 4: RuC inner loop after optimization
calculating a condition

addi $t1, $s2, -200
branch

bgez $t1, ELSE26
BEGLOOP27:
loop body

...
CONT27:
increment of the inductive variable

addi $s2, $s2, 1
calculating a condition

addi $t1, $s2, -200
branch

bltz $t1, BEGLOOP27
ELSE26:
code after loop

...

To check the correctness, tests were run for various condi-
tions for exiting the for loop [15]. This paper does not consider
a formal proof of the correctness of optimizations. It is enough
to pass prepared tests.

B. Calculating the number of loop repeats before the loop
body

When generating code for loops, it is better to generate the
code of the exit condition before the loop body. The condition
will be evaluated before the loop and will not be evaluated
in each iteration of the loop. It is necessary to remember
the condition in the register, and at the end of the cycle
compare the value of the inductive variable with this register.
Code without this optimization is shown in Algorithm 4 and
optimized code is shown in Algorithm 5.

This optimization requires allocating a register to store the
condition. Due to the limited number of registers, optimization
is implemented only for the most internal loops. This optimiza-
tion is implemented in the code generator in the processing
module of the TFor node and conditional expression nodes.
In the TFor node processing module, the loop structure is
organized in the appropriate way. In the module for pro-
cessing conditional expression nodes, the appropriate branch
commands are generated.

There may be situations when the loop exit condition is too
complex, so it is not possible to apply this optimization. The
possibility of applicability will be considered at earlier stages
of translation and is beyond the scope of this work.

To check the correctness, tests were run for various condi-
tions for exiting the for loop [16].

Algorithm 5: RuC inner loop after optimization
calculating and saving a condition

addi $s5, $0, 200
branch

bge $s2, $s5, ELSE26
BEGLOOP27:
loop body

...
CONT27:
increment of the inductive variable

addi $s2, $s2, 1
branch

bne $s2, $s5, BEGLOOP27
ELSE26:
code after loop

...

C. Using the delay slot

A delay slot is an instruction slot being executed without
the effects of a preceding instruction. There are branch delay
slot in MIPS architecture [9]. This is a feature of pipelined
computing.

The MIPS directive ”.set reorder” [17] and the GCC assem-
bler option ”-mcompact-branches=optimal” [18] allow to fill
the delay slot with a previous command when it is possible. If
this is not possible, the nop command is inserted. A command
can be inserted into the delay slot only if it does not work with
the registers that are used in the branch command.

Algorithm 6: RuC inner loop after optimization
calculating and saving a condition

addi $s5, $0, 200
branch

bge $s2, $s5, ELSE26
decrement of the inductive variable

addi $s2, $s2, -1
decrement of the condition

addi $s5, $s5, -1
BEGLOOP27:
increment of the inductive variable

addi $s2, $s2, 1
loop body

...
CONT27:
branch

bne $s2, $s5, BEGLOOP27
increment of the condition

addi $s5, $s5, 1
ELSE26:
code after loop

...

The essence of optimization is to allow GCC to fill the delay
slot. It is necessary to move the increment of the inductive
variable to the beginning of the loop and reorganize loop code.
Code without this optimization is shown in Algorithm 5 and
optimized code is shown in Algorithm 6.

This optimization is implemented in the code generator in
the processing module of the TFor node. In the TFor node
processing module, the loop structure is organized in the
appropriate way.

To check the correctness, tests were run for various condi-
tions for exiting the for loop [19].

VII. EVALUATION

To demonstrate the effectiveness of optimizations, a pro-
gram for multiplying 200x200 matrices 1000 times was se-
lected. The code is provided in Application 1. The size of
the matrices and the number of repeats were taken so that
the program execution time was not too large, so as not to
wait long for the end of the test, and not too small, so that
the time measurement error was slightly affected. Firstly, this
test contains important language constructs, such as loops and
array slices. Secondly, matrix multiplication is a widespread
problem in various computing programs.

All tests were executed on the Baikal-T1 processor [7]. The
time was measured using the time utility [8]. The measurement
results are presented in Table IV.

TABLE IV
RUC OPTIMIZATIONS

Time
Without optimizations 1m 37.91s
Optmization of serial branch commands 1m 34.66s
Previous + Optmization of condition calculation 1m 32.13s
Previous + Using delay slot 1m 29.74s

The operating time of the matrix multiplication program
has become significantly less. However, the result is still far
from the RuC analogues (Table V), since there aren’t many
optimizations in the RuC compiler.

TABLE V
COMPARISON OF CLANG, GCC AND RUC

Translator Time
Clang 0m 31.46s
GCC 0m 36.12s
RuC 1m 29.74s

For further implementation, there are optimizations related
to induced variables and reduction of the inductive variable.
There is an hypothesis that the induced variables will give a
big profit in time, since many commands are spent on slices
from the array, but this is already a theme for future work.

VIII. CONCLUSION

This paper solves the problem of optimizations in the
MIPS architecture in the code generator. The GCC and Clang
compiler were analyzed. Based on the analysis, optimizations
for implementation were selected: optimizing serial branch
commands, calculating the number of loop repeats before the
loop body and using the delay slot. The efficiency of opti-
mizations was shown by the example of matrix multiplication.
Thus, the code generation for loops was optimized in the RuC
translator.

This work has many opportunities for further research.
Optimization is a very broad topic for research. In this paper,
the result of analogs for the matrix multiplication test has not
yet been achieved. The research can be continued with the
implementation of induced variables and reduction of induc-
tive variable. There are many other language constructions, the
optimization of which is not considered in this work. These
are, for example, function declarations and calls, or arithmetic
operations. As you can see, there are still many sources for
research.

REFERENCES

[1] RuC project github – URL: https://github.com/andrey-terekhov/RuC
(accessed: 04.04.2021)

[2] Terekhov A. N., Terekhov M. A. ”RuC project for education and reli-
able software systems development” ISSN 0321-2653 Izvestiya Vuzov.
Severo-Kavrfzskiy Region. Technical Science, 2017

[3] Arkhipov I.S. Code generation for floating-point arithmetic in architec-
ture MIPS. Proceedings of the Institute for System Programming of the
RAS (Proceedings of ISP RAS). 2020;32(3):49-56

[4] System V Application Binary Interface MIPS RISC Processor, 3rd
Edition

[5] GCC official site – URL: https://gcc.gnu.org/ (accessed: 04.04.2021)
[6] LLVM official site – URL: https://llvm.org/ (accessed: 04.04.2021)
[7] Baikal-T1 specifications – URL: http://www.baikalelectronics.ru/products/35/

(accessed: 04.04.2021)
[8] time(1) Linux manual page – URL: https://man7.org/linux/man-

pages/man1/time.1.html (accessed: 04.04.2021)
[9] MIPS Architecture for Programmers Volume II-A: The MIPS32 Instruc-

tion Set Manual
[10] Aho, Alfred Vaino; Lam, Monica Sin-Ling; Sethi, Ravi; Ullman, Jeffrey

David (2006). Compilers: Principles, Techniques, and Tools (2 ed.)
[11] S. Muchnick. Advanced Compiler Design and Implementation, 1997
[12] Kathleen Knobe, Vivek Sarkar. Array SSA form and its use in paral-

lelization. POPL ’98: Proceedings of the 25th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, January 1998

[13] Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin, Steve Arthur
Zdancewic. Formal verification of SSA-based optimizations for LLVM.
PLDI ’13: Proceedings of the 34th ACM SIGPLAN Conference on
Programming Language Design and Implementation, June 2013

[14] Tiny C Compiler Reference Documentation – URL:
https://bellard.org/tcc/tcc-doc.html (accessed: 04.04.2021)

[15] Tests for optimization of serial branch commands – URL:
https://github.com/IvanArkhipov1999/RuC/tree/mips/tests/mips/
optimizations/cycle jump reduce (accessed: 04.04.2021)

[16] Tests for optimization of condition calculation – URL:
https://github.com/IvanArkhipov1999/RuC/tree/mips/tests/mips/
optimizations/cycle condition calculation (accessed: 04.04.2021)

[17] MIPS Assembly Language Programmer’s Guide
[18] GCC MIPS options – URL: https://gcc.gnu.org/onlinedocs/gcc/MIPS-

Options.html (accessed: 04.04.2021)
[19] Tests for optimization of delay slot – URL:

https://github.com/IvanArkhipov1999/RuC/tree/mips/tests/mips/
optimizations/delay slot (accessed: 04.04.2021)

APPLICATION 1

vo id main ()
{

i n t a [2 0 0] [2 0 0] , b [2 0 0] [2 0 0] , c [2 0 0] [2 0 0] ;
r e g i s t e r i n t i , j , k , v ;
f o r (i = 0 ; i < 200 ; ++ i)
{

f o r (j = 0 ; j < 200 ; ++ j)
{

a [i] [j] = i * j ;
}

}

f o r (i = 0 ; i < 200 ; ++ i)
{

f o r (j = 0 ; j < 200 ; ++ j)
{

b [i] [j] = i + j ;
}

}

f o r (v = 0 ; v < 1000 ; ++v)
{

f o r (i = 0 ; i < 200 ; ++ i)
{

f o r (j = 0 ; j < 200 ; ++ j)
{

r e g i s t e r i n t c i j = 0 ;
f o r (k = 0 ; k < 200 ; ++k)

c i j += a [i] [k] * b [k] [j] ;
c [i] [j] = c i j ;

}
}

}
p r i n t f (”% i \n ” , c [0] [0]) ;

}

