

Kubernetes Operators as a control system for cloud-

native applications

Fedor Y. Chemashkin#1, Pavel D. Drobintsev #2
#
The High School of Software Engineering, Institute of Computer Science and Technology

Peter the Great St. Petersburg Polytechnic University

St. Petersburg, Russia
1fedor.chemashkin@gmail.com

2drob@ics2.ecd.spbstu.ru

Abstract— Cloud-native architecture was developed to deal

with rapidly changing and uncertain cloud environments. Cloud-

native applications have strict managing requirements and by

implementing cloud-native architecture it becomes easier to

develop and control such software. Cloud-native applications are

usually managed by Kubernetes. It allows using the controller

pattern that came from the control theory for control software.

With Kubernetes’ possibility to extend a developer can create own

controller with specific knowledge about their software. Control

theory can help to make a controller for an application that will be

mathematically proved by control theory methods and laws.

Keywords— cloud-native, cloud-native architecture, cloud-

native applications, kubernetes; operators, controllers, devops,

control systems, self-adaptive systems.

I. INTRODUCTION

Increasingly, software engineers are choosing a cloud
environment as a platform to launch their software systems.
Cloud environments provide a lot of useful functionality that
can increase economical venue and business value even for a
small application. However, with many advantages, clouds
have their own cost that must be considered at the stage of
making the decision to run an application in a cloud.

Nowadays many companies consider the cost and many
successful experiences of other companies and decide to move
to the clouds.

For leveraging all the advantages and functionally of cloud
environments, there are many paths to do it. In [1] it is called
“7R’s of migration”.

“7R’s of migration” contains:

• replacing an existing application with a SaaS service or
creating a new one with cloud-native characteristics
and features;

• reusing common business and technical services
offered by other vendors;

• refactoring an existing application according to a
cloud-native architecture.

• re-platforming an application environment and
integration with cloud features;

• rehosting an application with minimal changes in its
source code (if it possible);

• retaining an application as is;

• retiring an application lifecycle, i.e. end of life.

Based on our experience we can conclude that refactoring
and replacing are the hardest but the most promising way to
become cloud-native that can give a lot of benefits in the future.

The industry and academia have already defined cloud-
native architecture that can guide software engineers while
creating cloud-native applications.

Cloud-native applications are executed in unpredictable
environments and applications’ requirements can be changed in
runtime depending on customers' needs. Control Theory can be
used to address these issues.

This idea was explored in [2], [3], and [4]. These papers
contain possible ways to apply Control Theory in software
engineering. However, they focused on some abstract examples
of software systems and perhaps this leads to the fact that it
becomes not entirely clear how to apply it in practice.

In our work, we have started to research cloud-native
architecture and applications and their adaptive properties. The
industry concluded that it is difficult to run complex stateful
applications in cloud environments and therefore introduced a
new pattern for deploying such applications in Kubernetes –
Kubernetes operators. Kubernetes operators are control systems
for complex stateful applications (Section 4-6).

This work is a Research-in-Progress paper and contains
interim results of research of cloud-native architectures and
applications and possible application of control theory for such
use cases. In this paper, our main goals are to describe cloud-
native architecture and application and create a mapping
between regular control theory terms and Kubernetes operators
concepts.

II. CLOUD-NATIVE ARCHITECTURE

An architectural style improves the separation of concerns
and promotes design reuse by providing solutions to frequently
recurring problems [5]. Sometimes an architectural style can be
called an architectural pattern.

An architectural pattern includes sets of principles and
patterns based on which applications can be developed. The
principles describe an architectural design of the entire software
system that following this architecture, and the patterns
implement the principles and are considered frequently used
best practices that confirmed by real operational experience.
Also, the definition of an architectural style in some areas of the
industry gives non-technical benefit – create a tool for
discussions some aspects of software without locking to
technologies.

In [6], [7], and [8] cloud-native architecture is defined by
using control-theoretic and model-based approaches. This
architecture has the following principles:

• Virtualization

• Service-orientation

• Uncertainty

• Adaptivity

Patterns implement these principles to templates that can

be used in multiple applications:

• Microservices

• Models at runtime

• Controller-based feedback loop

These principles and patterns allow creating a self-adaptive
software system. Self-adaptive systems are necessary to use to
carry out changing requirements in unstable environments like
a cloud and maintain the required performance.

These requirements should have representation in the
system’s runtime via dynamic models. It allows the system to
be changed during its lifecycle.

Also, applying microservices patterns developers must be
able to create continuous integration and continuous delivery
pipelines for their applications since microservices are
deploying in their own processes and communicating with each
other via a communication network.

III. CLOUD-NATIVE APPLICATIONS

The Cloud Native Computing Foundation (CNCF) was
created to help evaluate and make production-ready cloud-
native technologies in open source and vendor-neutral
ecosystems.

Based on the CNCF Technical Oversight Committee’s
definition [9] of Cloud Native we can identify key properties of
cloud-native applications (CNA) – containerization,
microservice architecture, and usage of immutable
infrastructure that means that an application and its
infrastructure are dynamically managed. Therefore, we can
define that CNA as a containerized, microservice-based, and
dynamically managed application. Such applications can be
deployed in public, private, and hybrid cloud environments.

Also, there are a lot of similar definitions of cloud-native
applications. E.g. “A cloud-native application is a distributed,
elastic and horizontal scalable system composed of
(micro)services which isolate state in a minimum of stateful
components. The application and each self-contained
deployment unit of that application is designed according to
cloud-focused design patterns and operated on a self-service
elastic platform.” [10].

A lot of papers and industry experts have an opinion that
cloud-native applications require using DevOps practices to
take full advantage and reduce the disadvantages of cloud
environments. Besides it, using microservices require it.

DevOps practices like continuous integration and
deployment, automated acceptance testing, monitoring, logging,
and so on allow CNA to be developed much faster, and
paradoxically, high-quality.

According to “The Accelerate State Of DevOps Report” the
high-performance teams that use DevOps practices develop
more qualitative software than teams that don’t use these
practices.

IV. KUBERNETES

Cloud-native applications are containerized and
dynamically managed. To achieve dynamic management,
software called container orchestrators is used. Every container
orchestrator (CO) controls multiple hosts like one entity for the
end-user.

Sysdig company made the research called “Sysdig 2019
Container Usage Report: New Kubernetes and security insights”
[11]. This research says that 77% of Sysdig’s customers use
Kubernetes. Also, 7% use Rancher and Openshift that built
based on Kubernetes. It can be assumed that this report and
similar reports of other companies show the current state of the
industry.

So, we can conclude that Kubernetes is the most popular
container orchestration system and de-facto the industry
standard.

Kubernetes is open-source software and has functionality
for automatic deployment, scaling, and control of containerized
applications [12]. It also offers functionality for managing
computing and network resources for various types of
workloads.

Kubernetes is a big and complex software system that has
12 components [13]. However, Kubernetes’ essence can be
represented in Figure 1. The figure shows how Kubernetes can
be represented in its main entities.

Fig. 1. Kubernetes working mode

In Figure 1, resources are Kubernetes’ “building” blocks.
Resources have their controllers which implement a control
loop that watches for this resource through the Kubernetes
API server and performs control actions to move the current
state of resources to the desired state.

Sometimes control loop is called the “reconciliation loop”
in the Kubernetes ecosystem. Controllers are separate binaries
usually written using Golang.

Everything that happens with resources is writing to
Kubernetes Event Stream which can be accessed through the
API server. The event stream is an append-only log.

It may be said that Kubernetes is not used only for creating
cloud-native applications and implementing cloud-native
architecture, but also uses this architecture.

V. KUBERNETES EXTENDIBILITY

The Kubernetes’ developers laid the possibilities in it to be
highly configurable and extensible for minimizing changes into
core source code. Configurations are turning on with changing
configuration flags, configuration files, and API resources.

Kubernetes has 7 extensions points [14] – original
command-line interface by dint of using plugins, API client via
new types, API server with custom resources, Kubernetes’
behavior with custom controllers for custom resources,
Kubernetes scheduler with new rules for scheduling, node-level
components via network and storage plugins.

Typically, extensions are new software components that
deeply integrate with Kubernetes. It is done to support new
resource types and run complex applications.

In this paper, we focus more on custom resources and
custom controllers.

In the Kubernetes term, a resource is an endpoint in its
default API. It has various built-in resources. A custom resource
is an endpoint that extends default endpoints. Besides built-in
resources, Kubernetes core functionality is made using custom
resources making Kubernetes even more extendable.

After applying a custom resource to the cluster, users can
interact with them through CLI as a usual resource. Custom
resources can be used as key-value storage since Kubernetes
stores information about resources in its etcd instance.

After connecting a custom resource with a custom controller,
a custom resource can provide a declarative API that allows
declaring the desired state of a resource which can be supported
by a custom controller.

These functionalities were the beginning of the creation of
a new type of software called “Kubernetes operators”.

VI. KUBERNETES OPERATORS

Kubernetes Operator is a combination of custom resources
and custom controllers that encode domain-specific knowledge
for application as an extension of the Kubernetes API. The
emergence of a new role called “Site Reliability Engineer” has
led to the fact that applications have been supplemented by

domain operational knowledge for better operation in
production.

The first time, operators were represented in the CoreOS
article “Introducing Operators: Putting Operational Knowledge
into Software”. In this article, there is the authors’ definition of
this software – “an Operator is an application-specific
controller that extends the Kubernetes API to create, configure,
and manage instances of complex stateful applications on
behalf of a Kubernetes user. It builds upon the basic Kubernetes
resource and controller concepts but includes domain or
application-specific knowledge to automate common tasks”
[15].

Creating Kubernetes operators was the answer to the
challenge of managing large stateful applications, e.g.
databases and monitoring systems. Such software requires
specific knowledge for correct scaling decisions, upgrade
procedures, and numerous configurations to maintain the
required application state and performance.

The operator pattern is an implementation of the controller
pattern in Kubernetes with some application-specific
knowledge. The controller pattern has much greater adaptations
both in cloud-native architecture and in simple software without
any specifics.

Fig. 2. Controller pattern in Kubernetes

Figure 2 shows how the controller pattern works – read the
actual state of a resource from the API server, change the state
using CRUD operations and update information about the state
in the API server. This reconciliation loop is infinite by its
nature.

VII. AUTOMATIC CONTROL OF SOFTWARE AND

ADAPTIVENESS

The controller pattern came from the control theory and
robotics where a control loop is also a non-terminating loop that
regulates (control) the system work. “In Kubernetes, a
controller is a control loop that watches the shared state of the
cluster through the API server and makes changes attempting
to move the current state towards the desired state” [16].

Figure 3 shows a simplified high-level diagram of such
systems.

Fig. 3. Controller pattern in Kubernetes

In the state-space model, such a system can be described as:

�̇� = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡),

(1)

 where 𝑥 ∈ ℝ𝑛×1, 𝑢 ∈ ℝ𝑚×1 and 𝑦 ∈ ℝ𝑝×1- the state of
the system, input (or control), and output vectors, respectively.
Matrix 𝐴 ∈ ℝ𝑛×𝑛 - state or system matrix, 𝐵 ∈ ℝ𝑛×𝑚 , 𝐶 ∈
ℝ𝑝×𝑛 and 𝐷 ∈ ℝ𝑛×𝑚- input, output, and feedforward matrices,
respectively. In Figure 3 case, 𝐷 is not necessary.

A controller can be used for providing service level
agreement (SLA) since it has formal guarantees about quality
of operation under the assumption of the operating environment.
However, these guarantees must be tested during the design and
testing stage in the software development lifecycle.

A system can be modeled as a continuous-time system or as
a discrete. Inputs and outputs vectors can be multi-dimensional
and contain different elements that correspond to many
different input and output factors. The design of such systems
starts with defining control goals and inputs that can get into a
system. The number of goals depends on a system’s output.

Traditionally, control theory is used for physical and
nowadays for cyber-physical systems. It has various methods
and a big theoretical basis for managing such systems. Many
control problems were solved and mathematically proved.

Cloud is a dynamic and uncertain environment. Cloud-
native architecture requires adaptivity to deal with changing
requirements and uncertainty. Adaptive software should be able
to modify its behavior during the runtime without interrupting
itself.

This challenge is not new in the industry and academia and
idea to take a theoretical basis and methods from control theory.
There are some papers [17], [18], and [19] that describe this
approach.

From a software engineering point of view, there are several
approaches for creating self-adaptive systems with a feedback
loop. A well-known example is MAPE-K that was introduced
in [20]. Using MAPE-K it is possible to create a computing
environment with functionality to adapt to changes in
requirements, business processes and manage itself at runtime.

MAPE-K loop includes monitoring managed resources and
determines an attribute to analyze. If adaptation is required, a
plan function selects procedures to achieve the desired state.
After it, these procedures execute action recommended by the

plan function. The execution step updates the entire knowledge
about the computing environment.

A control theory-based controller development process
contains 5 steps: identifying control goals, identifying
constraints, define system model, develop controller, testing,
and validation.

For software control goals may be functional and non-
functional requirements. Constraints may lead from
requirements and target environment, e.g. amount of computing
resources, time for a spin up a virtual machine. The system
model should describe the relationship between control goals
and constraints. Based on the model a controller can be
designed and implemented. After development, it should be
tested and validated. It can be done using DevOps approaches.

In control theory, these steps are clearly defined and have a
lot of principles and recommendations. Merging software
engineering challenges with control theory can increase the
quality of software with mathematically proved methods and
laws [21].

VIII. KUBERNETES OPERATOR AS A CONTROL SYSTEM FOR

CLOUD-NATIVE APPLICATIONS

 Developing the idea behind automatic control and
considering the use of the controller pattern in Kubernetes, we
can say that a Kubernetes operator is a control system for the
Kubernetes application. Moreover, since the cloud environment
and cloud-native architecture are based on controller pattern
usage it is the best place to implement this idea.

 Also, this idea finds confirmation in [3] and [22]. “An
adaptive system can be coupled with an adaptation manager to
make it continuously satisfy its requirements.” [3]. In addition,
in the industry Kubernetes operators often have a “manager”
word in their names.

Figure 4 shows the idea in the representation from the
control theory point of view.

Fig. 4. Operator as a control system

A system can be described as (1). The system with changes
on that an operator should react can be modeled as:

{
�̇� = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), 𝑡 < 𝑡𝑐

�̇� = (𝐴 + ∆𝐴)𝑥(𝑡) + (𝐵 + ∆𝐵)𝑢(𝑡), 𝑡 ≥ 𝑡𝑐
 (2)

and

 {
𝑦(𝑡) = 𝐶𝑥(𝑡), 𝑡 < 𝑡с

𝑦(𝑡) = (𝐶 + ∆𝐶)𝑥(𝑡), 𝑡 ≥ 𝑡с,
 (3)

 where 𝑡с is the time instance when a change has occurred.
∆A – matrix that contains a new system state. ∆B and ∆C
represent changes in the input and the output matrix,
respectively.

An operator is a controller and its development process
should contain all 5 steps from the development process of
traditional controllers. In applications running in Kubernetes,
usually control goals are performance, reliability, and
availability. Controlled variables can be the number of
instances of an application, network configuration (load
balancing), affinity, etc. All this should be considered when
developing the operator.

For creating Kubernetes Controller there are 2 the most
popular projects – Operator SDK by CoreOS [23] and
Kubebuilder [24] by Kubernetes SIGs. These projects make
writing operators easier for developers by providing API,
abstractions, and tools for code generation for building
Kubernetes API and controllers.

Controllers which generated by these projects contains
special function for creating reconciliation (feedback) loops:

func (…) Reconcile(request reconcile.Request) (…) {

 app:= &v1.App{}

 err:=r.client.Get(context.TODO(),…)

 if err != nil {}

 changed := checkChanges()

 if changed { }

 ...

 return reconcile.Result{…}, nil

}

This function contains an implementation of the control

loop and automatically registers this loop and controller in

Kubernetes API.

Kubernetes itself periodically monitor build-in and custom

resources. If a change occurs or the resync period is finished,

it sends a request to a resource controller to reconcile this

resource. In this function, it checks with the special client if an

application instance was changed and performs some actions

depending on this change.

Summarizing, it can be said that the Kubernetes ecosystem

has the necessary functionality to implement controllers with

feedback loops based on methods and laws of control theory.

IX. APPLYING CONTROL THEORY TO KUBERNETES OPERATORS

From Control Theory perspective the plant is a software

system controlled by a controller. In the Kubernetes

environment, an operator is a control system (controller) that

watches for a software system.

For example, the Postgres-operator manages the Postgres

database application [25], Confluent Operator deploys the

Confluent streaming platform that is based on Kafka [26],

Pravega operator creates and controls Pravega streaming

storage which is part of enterprise proprietary solution called

“Dell EMC Streaming Data Platform” [27].

During the design and verification of control systems, it

necessary to check key properties of control systems like

stability, controllability, observability, robustness. These

properties can be considered from Kubernetes operators

perspective too.

Stability is a property of control systems to return to a given

or close to its operating mode after any disturbance. Stability

has different definitions for both linear and nonlinear systems.

Lyapunov stability and some other criteria are used in regular

control theory for such cases. In [28] proposed methods to

transfer criteria to software. For applications that are managed

by operators disturbances can node failure, network glitches,

restarts of application instances. For example, the operators that

we have given above can cope with such perturbations.

Another important property is controllability. This property

shows the ability to transfer the system from one state to another.

This is one of the mandatory steps in the synthesis of control

systems. To prove controllability, we can use the controllability

criteria, which states that a linear system (1) is completely

controllable if the rank of the controllability matrix is n. For

Kubernetes operators, it means that they should be able to move

a software system from failed or maintenance state to a normal.

Observability is a property that shows whether it is possible

to completely restore information about the states of the system

at the exit. It is necessary to have information about the current

state of the system x(t) at each moment of time. The measurable

and observable are output variables y(t). To prove observability,

we can use the observability criteria, which states that a linear

system (1) is completely observable if the rank of the

observability matrix is n. Reconciliation loops in operators use

this property to achieve control goals. Operators have only

output information (current state of the system) and based on

this information they perform control actions.

Some examples of models of software and examination of

properties listed above are given in [29].

X. CONCLUSIONS AND FUTURE WORK

This paper describes the cloud-native architecture and

cloud-native applications. With gained usage of cloud

environments, these concepts will become more popular and

important. Also, we described Kubernetes operators for

complex stateful cloud-native application as a control system

and made mapping between operators concepts and control

theory.

Cloud-native architecture is based on principles such as

virtualization, service-orientation, uncertainty, adaptivity.

Also, it includes patterns such as microservices, models, and

usage of controllers with a feedback loop.

Cloud-native applications are containerized, microservice-

based, and dynamically managed software. Such applications

implement cloud-native applications and are designed to work

in a cloud environment.

CNA is mostly managed by Kubernetes. Kubernetes is the

most popular container orchestrator. It has an extendible API

with custom resources and custom controllers. Controllers’

essence is the feedback (reconciliation) loop. Because of it, the

idea to merge software engineering with methods and

mathematical laws of control theory become more popular.

Besides this idea, CoreOS developed a new type of

software called “Operators”. An operator is a controller with

specific domain knowledge.

Our next steps continue researching Kubernetes operators

and create an example of how to apply control theory, its

method, and steps for designing a controller to a complex

stateful application that should be launch in Kubernetes.

After that, we want to develop recommendations for

developers on how to develop operators better based on

control theory laws. Then we want to propose to incorporate

these steps and recommendations into Operator SDK and

Kubebuilder.

REFERENCES

[1] Linthicum, D. S. (2017). Cloud-Native Applications and Cloud
Migration: The Good, the Bad, and the Points Between. IEEE Cloud
Computing, 4(5), 12–14.

[2] Arcelli, Davide & Cortellessa, Vittorio. (2016). Challenges in Applying
Control Theory to Software Performance Engineering for Adaptive
Systems. 35-40. 10.1145/2859889.2859894.

[3] A. Filieri et al., "Software Engineering Meets Control Theory," 2015
IEEE/ACM 10th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, 2015, pp. 71-82, doi:
10.1109/SEAMS.2015.12.

[4] S. Shevtsov, M. Berekmeri, D. Weyns and M. Maggio, "Control-
Theoretical Software Adaptation: A Systematic Literature Review," in
IEEE Transactions on Software Engineering, vol. 44, no. 8, pp. 784-
810, 1 Aug. 2018, doi: 10.1109/TSE.2017.2704579.

[5] A. Ahmad, P. Jamshidi, and C. Pahl. 2014. Classification and
comparison of architecture evolution reuse knowledge – A systematic
review. J. Softw.: Evol. Process 26, 7 (2014), 654–691.

[6] Pahl C., Jamshidi P. (2015) Software Architecture for the Cloud –
A Roadmap Towards Control-Theoretic, Model-Based Cloud
Architecture. In: Weyns D., Mirandola R., Crnkovic I. (eds)
Software Architecture. ECSA 2015. Lecture Notes in Computer
Science, vol 9278. Springer, Cham

[7] Pahl, C, Jamshidi, P, Weyns, D. Cloud architecture continuity: Change
models and change rules for sustainable cloud software architectures. J
Softw Evol Proc. 2017

[8] Claus Pahl, Pooyan Jamshidi, and Olaf Zimmermann. 2018.
Architectural Principles for Cloud Software. ACM Trans. Internet
Technol. 18, 2, Article 17 (February 2018), 23 pages.

[9] CNCF, “cncf/toc,” GitHub. [Online]. Available:
https://github.com/cncf/toc/blob/master/DEFINITION.md. [Accessed:
11-Jan-2021].

[10] N. Kratzke and R. Peinl, "ClouNS - a Cloud-Native Application
Reference Model for Enterprise Architects," 2016 IEEE 20th
International Enterprise Distributed Object Computing Workshop
(EDOCW), Vienna, 2016, pp. 1-10.

[11] E. Carter, “Sysdig 2019 Container Usage Report: New Kubernetes and
security insights,” Sysdig, 29-Oct-2019. [Online]. Available:
https://sysdig.com/blog/sysdig-2019-container-usage-report/.
[Accessed: 6-May-2021].

[12] B. Burns, Kubernetes - Up and Running: Dive into the Future of
Infrastructure. OReilly Media, Incorporated, 2019.

[13] “Kubernetes Components,” Kubernetes. [Online]. Available:
https://kubernetes.io/docs/concepts/overview/components/. [Accessed:
12-Feb-2021].

[14] “Extending your Kubernetes Cluster,” Kubernetes. [Online]. Available:
https://kubernetes.io/docs/concepts/extend-kubernetes/extend-cluster/.
[Accessed: 12-Feb-2021].

[15] “Introducing Operators: Putting Operational Knowledge into
Software,” CoreOS. [Online]. Available:
https://coreos.com/blog/introducing-operators.html. [Accessed: 3-
March-2021].

[16] “kube-controller-manager,” Kubernetes. [Online]. Available:
https://kubernetes.io/docs/reference/command-line-tools-
reference/kube-controller-manager/. [Accessed: 3-March-2021].

[17] Y. Brun, G. D. M. Serugendo, C. Gacek, H. Giese, H. Kienle, M.Litoiu,
H. Muller, M. Pezze, and M. Shaw. “Engineering Self-Adaptive

[18] Systems through Feedback Loops”. In: Software Engineering for
SelfAdaptive Systems. Vol. 5525. LNCS. Springer, 2009, pp. 48–70.

[19] A. Filieri, C. Ghezzi, A. Leva, and M. Maggio. “Reliability-driven
dynamic binding via feedback control”. In: SEAMS. 2012, pp. 43–52

[20] A. Filieri, H. Hoffmann, and M. Maggio. “Automated Design of Self-
adaptive Software with Control-theoretical Formal Guarantees”. In:
ICSE. ACM, 2014, pp. 299–310.

[21] J. Kephart and D. Chess. “The vision of autonomic computing”. In:
Computer 36.1 (2003), pp. 41–50

[22] Pahl C., Jamshidi P. (2015) Software Architecture for the Cloud – A
Roadmap Towards Control-Theoretic, Model-Based Cloud
Architecture. In: Weyns D., Mirandola R., Crnkovic I. (eds) Software
Architecture. ECSA 2015. Lecture Notes in Computer Science, vol
9278. Springer, Cham

[23] “Operator-Framework/Operator-SDK,” GitHub. [Online]. Available:
https://github.com/operator-framework/operator-sdk/. [Accessed: 16-
March-2021].

[24] “kubebuilder,” GitHub. [Online]. Available:
https://github.com/kubernetes-sigs/kubebuilder/. [Accessed: 16-March-
2021].

[25] "zalando/postgres-operator", GitHub, 2021. [Online]. Available:
https://github.com/zalando/postgres-operator. [Accessed: 04- May-
2021].

[26] "Confluent Operator | Confluent Documentation", Docs.confluent.io,
2021. [Online]. Available:
https://docs.confluent.io/operator/current/overview.html. [Accessed:
04- May- 2021].

[27] "pravega/pravega-operator", GitHub, 2021. [Online]. Available:
https://github.com/pravega/pravega-operator. [Accessed: 05- May-
2021].

[28] M. Roozbehani, A. Megretski and E. Feron, "Optimization of
Lyapunov Invariants in Verification of Software Systems," in IEEE
Transactions on Automatic Control, vol. 58, no. 3, pp. 696-711, March
2013, doi: 10.1109/TAC.2013.2241472.

[29] Abdelzaher T., Diao Y., Hellerstein J.L., Lu C., Zhu X. (2008)
Introduction to Control Theory And Its Application to Computing
Systems. In: Liu Z., Xia C.H. (eds) Performance Modeling and
Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-
79361-0_7

