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Abstract— Cloud-native architecture was developed to deal 

with rapidly changing and uncertain cloud environments. Cloud-

native applications have strict managing requirements and by 

implementing cloud-native architecture it becomes easier to 

develop and control such software. Cloud-native applications are 

usually managed by Kubernetes. It allows using the controller 

pattern that came from the control theory for control software. 

With Kubernetes’ possibility to extend a developer can create own 

controller with specific knowledge about their software. Control 

theory can help to make a controller for an application that will be 

mathematically proved by control theory methods and laws.  

Keywords— cloud-native, cloud-native architecture, cloud-

native applications, kubernetes; operators, controllers, devops, 

control systems, self-adaptive systems. 

I. INTRODUCTION 

Increasingly, software engineers are choosing a cloud 
environment as a platform to launch their software systems. 
Cloud environments provide a lot of useful functionality that 
can increase economical venue and business value even for a 
small application. However, with many advantages, clouds 
have their own cost that must be considered at the stage of 
making the decision to run an application in a cloud. 

Nowadays many companies consider the cost and many 
successful experiences of other companies and decide to move 
to the clouds.  

For leveraging all the advantages and functionally of cloud 
environments, there are many paths to do it. In [1] it is called 
“7R’s of migration”.  

“7R’s of migration” contains: 

• replacing an existing application with a SaaS service or 
creating a new one with cloud-native characteristics 
and features; 

• reusing common business and technical services 
offered by other vendors; 

• refactoring an existing application according to a 
cloud-native architecture. 

• re-platforming an application environment and 
integration with cloud features; 

• rehosting an application with minimal changes in its 
source code (if it possible); 

• retaining an application as is; 

• retiring an application lifecycle, i.e. end of life. 

Based on our experience we can conclude that refactoring 
and replacing are the hardest but the most promising way to 
become cloud-native that can give a lot of benefits in the future. 

The industry and academia have already defined cloud-
native architecture that can guide software engineers while 
creating cloud-native applications. 

Cloud-native applications are executed in unpredictable 
environments and applications’ requirements can be changed in 
runtime depending on customers' needs. Control Theory can be 
used to address these issues. 

This idea was explored in [2], [3], and [4]. These papers 
contain possible ways to apply Control Theory in software 
engineering. However, they focused on some abstract examples 
of software systems and perhaps this leads to the fact that it 
becomes not entirely clear how to apply it in practice. 

In our work, we have started to research cloud-native 
architecture and applications and their adaptive properties. The 
industry concluded that it is difficult to run complex stateful 
applications in cloud environments and therefore introduced a 
new pattern for deploying such applications in Kubernetes – 
Kubernetes operators. Kubernetes operators are control systems 
for complex stateful applications (Section 4-6). 

This work is a Research-in-Progress paper and contains 
interim results of research of cloud-native architectures and 
applications and possible application of control theory for such 
use cases. In this paper, our main goals are to describe cloud-
native architecture and application and create a mapping 
between regular control theory terms and Kubernetes operators 
concepts. 



 

 

II. CLOUD-NATIVE ARCHITECTURE 

An architectural style improves the separation of concerns 
and promotes design reuse by providing solutions to frequently 
recurring problems [5]. Sometimes an architectural style can be 
called an architectural pattern.  

An architectural pattern includes sets of principles and 
patterns based on which applications can be developed. The 
principles describe an architectural design of the entire software 
system that following this architecture, and the patterns 
implement the principles and are considered frequently used 
best practices that confirmed by real operational experience. 
Also, the definition of an architectural style in some areas of the 
industry gives non-technical benefit – create a tool for 
discussions some aspects of software without locking to 
technologies. 

In [6], [7], and [8] cloud-native architecture is defined by 
using control-theoretic and model-based approaches. This 
architecture has the following principles: 

• Virtualization 

• Service-orientation 

• Uncertainty 

• Adaptivity 

Patterns implement these principles to templates that can 

be used in multiple applications: 

• Microservices 

• Models at runtime 

• Controller-based feedback loop 

These principles and patterns allow creating a self-adaptive 
software system. Self-adaptive systems are necessary to use to 
carry out changing requirements in unstable environments like 
a cloud and maintain the required performance.  

These requirements should have representation in the 
system’s runtime via dynamic models. It allows the system to 
be changed during its lifecycle. 

Also, applying microservices patterns developers must be 
able to create continuous integration and continuous delivery 
pipelines for their applications since microservices are 
deploying in their own processes and communicating with each 
other via a communication network. 

III. CLOUD-NATIVE APPLICATIONS 

The Cloud Native Computing Foundation (CNCF) was 
created to help evaluate and make production-ready cloud-
native technologies in open source and vendor-neutral 
ecosystems. 

Based on the CNCF Technical Oversight Committee’s 
definition [9] of Cloud Native we can identify key properties of 
cloud-native applications (CNA) – containerization, 
microservice architecture, and usage of immutable 
infrastructure that means that an application and its 
infrastructure are dynamically managed. Therefore, we can 
define that CNA as a containerized, microservice-based, and 
dynamically managed application. Such applications can be 
deployed in public, private, and hybrid cloud environments. 

Also, there are a lot of similar definitions of cloud-native 
applications. E.g. “A cloud-native application is a distributed, 
elastic and horizontal scalable system composed of 
(micro)services which isolate state in a minimum of stateful 
components. The application and each self-contained 
deployment unit of that application is designed according to 
cloud-focused design patterns and operated on a self-service 
elastic platform.” [10].  

A lot of papers and industry experts have an opinion that 
cloud-native applications require using DevOps practices to 
take full advantage and reduce the disadvantages of cloud 
environments. Besides it, using microservices require it. 

DevOps practices like continuous integration and 
deployment, automated acceptance testing, monitoring, logging, 
and so on allow CNA to be developed much faster, and 
paradoxically, high-quality.  

According to “The Accelerate State Of DevOps Report” the 
high-performance teams that use DevOps practices develop 
more qualitative software than teams that don’t use these 
practices. 

 

IV. KUBERNETES 

Cloud-native applications are containerized and 
dynamically managed. To achieve dynamic management, 
software called container orchestrators is used. Every container 
orchestrator (CO) controls multiple hosts like one entity for the 
end-user. 

Sysdig company made the research called “Sysdig 2019 
Container Usage Report: New Kubernetes and security insights” 
[11]. This research says that 77% of Sysdig’s customers use 
Kubernetes. Also, 7% use Rancher and Openshift that built 
based on Kubernetes. It can be assumed that this report and 
similar reports of other companies show the current state of the 
industry. 

So, we can conclude that Kubernetes is the most popular 
container orchestration system and de-facto the industry 
standard. 

Kubernetes is open-source software and has functionality 
for automatic deployment, scaling, and control of containerized 
applications [12]. It also offers functionality for managing 
computing and network resources for various types of 
workloads. 

Kubernetes is a big and complex software system that has 
12 components [13]. However, Kubernetes’ essence can be 
represented in Figure 1. The figure shows how Kubernetes can 
be represented in its main entities.  

 

 

Fig. 1. Kubernetes working mode  



 

 

In Figure 1, resources are Kubernetes’ “building” blocks. 
Resources have their controllers which implement a control 
loop that watches for this resource through the Kubernetes 
API server and performs control actions to move the current 
state of resources to the desired state.  

Sometimes control loop is called the “reconciliation loop” 
in the Kubernetes ecosystem. Controllers are separate binaries 
usually written using Golang.  

Everything that happens with resources is writing to 
Kubernetes Event Stream which can be accessed through the 
API server. The event stream is an append-only log. 

It may be said that Kubernetes is not used only for creating 
cloud-native applications and implementing cloud-native 
architecture, but also uses this architecture. 

V. KUBERNETES EXTENDIBILITY  

The Kubernetes’ developers laid the possibilities in it to be 
highly configurable and extensible for minimizing changes into 
core source code. Configurations are turning on with changing 
configuration flags, configuration files, and API resources. 

Kubernetes has 7 extensions points [14] – original 
command-line interface by dint of using plugins, API client via 
new types, API server with custom resources, Kubernetes’ 
behavior with custom controllers for custom resources, 
Kubernetes scheduler with new rules for scheduling, node-level 
components via network and storage plugins.  

Typically, extensions are new software components that 
deeply integrate with Kubernetes. It is done to support new 
resource types and run complex applications. 

In this paper, we focus more on custom resources and 
custom controllers. 

In the Kubernetes term, a resource is an endpoint in its 
default API. It has various built-in resources. A custom resource 
is an endpoint that extends default endpoints. Besides built-in 
resources, Kubernetes core functionality is made using custom 
resources making Kubernetes even more extendable.  

After applying a custom resource to the cluster, users can 
interact with them through CLI as a usual resource. Custom 
resources can be used as key-value storage since Kubernetes 
stores information about resources in its etcd instance.  

After connecting a custom resource with a custom controller, 
a custom resource can provide a declarative API that allows 
declaring the desired state of a resource which can be supported 
by a custom controller.   

These functionalities were the beginning of the creation of 
a new type of software called “Kubernetes operators”. 

VI. KUBERNETES OPERATORS 

Kubernetes Operator is a combination of custom resources 
and custom controllers that encode domain-specific knowledge 
for application as an extension of the Kubernetes API. The 
emergence of a new role called “Site Reliability Engineer” has 
led to the fact that applications have been supplemented by 

domain operational knowledge for better operation in 
production. 

The first time, operators were represented in the CoreOS 
article “Introducing Operators: Putting Operational Knowledge 
into Software”. In this article, there is the authors’ definition of 
this software – “an Operator is an application-specific 
controller that extends the Kubernetes API to create, configure, 
and manage instances of complex stateful applications on 
behalf of a Kubernetes user. It builds upon the basic Kubernetes 
resource and controller concepts but includes domain or 
application-specific knowledge to automate common tasks” 
[15]. 

Creating Kubernetes operators was the answer to the 
challenge of managing large stateful applications, e.g. 
databases and monitoring systems. Such software requires 
specific knowledge for correct scaling decisions, upgrade 
procedures, and numerous configurations to maintain the 
required application state and performance. 

The operator pattern is an implementation of the controller 
pattern in Kubernetes with some application-specific 
knowledge. The controller pattern has much greater adaptations 
both in cloud-native architecture and in simple software without 
any specifics. 

 

Fig. 2. Controller pattern in Kubernetes  

Figure 2 shows how the controller pattern works – read the 
actual state of a resource from the API server, change the state 
using CRUD operations and update information about the state 
in the API server. This reconciliation loop is infinite by its 
nature. 

VII. AUTOMATIC CONTROL OF SOFTWARE AND 

ADAPTIVENESS 

The controller pattern came from the control theory and 
robotics where a control loop is also a non-terminating loop that 
regulates (control) the system work. “In Kubernetes, a 
controller is a control loop that watches the shared state of the 
cluster through the API server and makes changes attempting 
to move the current state towards the desired state” [16]. 

Figure 3 shows a simplified high-level diagram of such 
systems. 



 

 

 

Fig. 3. Controller pattern in Kubernetes  

In the state-space model, such a system can be described as: 

�̇� = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 
𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡), 

(1) 

 where 𝑥 ∈ ℝ𝑛×1, 𝑢 ∈ ℝ𝑚×1  and 𝑦 ∈ ℝ𝑝×1- the state of 
the system, input (or control), and output vectors, respectively. 
Matrix 𝐴 ∈ ℝ𝑛×𝑛 - state or system matrix, 𝐵 ∈ ℝ𝑛×𝑚 , 𝐶 ∈
ℝ𝑝×𝑛 and 𝐷 ∈ ℝ𝑛×𝑚- input, output, and feedforward matrices, 
respectively. In Figure 3 case, 𝐷 is not necessary. 

A controller can be used for providing service level 
agreement (SLA) since it has formal guarantees about quality 
of operation under the assumption of the operating environment. 
However, these guarantees must be tested during the design and 
testing stage in the software development lifecycle.  

A system can be modeled as a continuous-time system or as 
a discrete. Inputs and outputs vectors can be multi-dimensional 
and contain different elements that correspond to many 
different input and output factors. The design of such systems 
starts with defining control goals and inputs that can get into a 
system. The number of goals depends on a system’s output. 

Traditionally, control theory is used for physical and 
nowadays for cyber-physical systems. It has various methods 
and a big theoretical basis for managing such systems. Many 
control problems were solved and mathematically proved. 

Cloud is a dynamic and uncertain environment. Cloud-
native architecture requires adaptivity to deal with changing 
requirements and uncertainty. Adaptive software should be able 
to modify its behavior during the runtime without interrupting 
itself. 

This challenge is not new in the industry and academia and 
idea to take a theoretical basis and methods from control theory. 
There are some papers [17], [18], and [19] that describe this 
approach. 

From a software engineering point of view, there are several 
approaches for creating self-adaptive systems with a feedback 
loop. A well-known example is MAPE-K that was introduced 
in [20]. Using MAPE-K it is possible to create a computing 
environment with functionality to adapt to changes in 
requirements, business processes and manage itself at runtime. 

MAPE-K loop includes monitoring managed resources and 
determines an attribute to analyze. If adaptation is required, a 
plan function selects procedures to achieve the desired state. 
After it, these procedures execute action recommended by the 

plan function. The execution step updates the entire knowledge 
about the computing environment. 

A control theory-based controller development process 
contains 5 steps: identifying control goals, identifying 
constraints, define system model, develop controller, testing, 
and validation.  

For software control goals may be functional and non-
functional requirements. Constraints may lead from 
requirements and target environment, e.g. amount of computing 
resources, time for a spin up a virtual machine. The system 
model should describe the relationship between control goals 
and constraints. Based on the model a controller can be 
designed and implemented. After development, it should be 
tested and validated. It can be done using DevOps approaches. 

In control theory, these steps are clearly defined and have a 
lot of principles and recommendations. Merging software 
engineering challenges with control theory can increase the 
quality of software with mathematically proved methods and 
laws [21]. 

 

VIII. KUBERNETES OPERATOR AS A CONTROL SYSTEM FOR 

CLOUD-NATIVE APPLICATIONS 

 Developing the idea behind automatic control and 
considering the use of the controller pattern in Kubernetes, we 
can say that a Kubernetes operator is a control system for the 
Kubernetes application. Moreover, since the cloud environment 
and cloud-native architecture are based on controller pattern 
usage it is the best place to implement this idea. 

 Also, this idea finds confirmation in [3] and [22]. “An 
adaptive system can be coupled with an adaptation manager to 
make it continuously satisfy its requirements.” [3]. In addition, 
in the industry Kubernetes operators often have a “manager” 
word in their names. 

Figure 4 shows the idea in the representation from the 
control theory point of view. 

 

Fig. 4. Operator as a control system  

A system can be described as (1). The system with changes 
on that an operator should react can be modeled as: 

{
�̇� = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡), 𝑡 < 𝑡𝑐                              

�̇� = (𝐴 + ∆𝐴)𝑥(𝑡) + (𝐵 + ∆𝐵)𝑢(𝑡), 𝑡 ≥ 𝑡𝑐
 (2) 

and 



 

 

 {
𝑦(𝑡) = 𝐶𝑥(𝑡), 𝑡 < 𝑡с               

𝑦(𝑡) = (𝐶 + ∆𝐶)𝑥(𝑡), 𝑡 ≥ 𝑡с,
 (3) 

   where 𝑡с is the time instance when a change has occurred. 
∆A  – matrix that contains a new system state. ∆B and ∆C 
represent changes in the input and the output matrix, 
respectively.  

An operator is a controller and its development process 
should contain all 5 steps from the development process of 
traditional controllers. In applications running in Kubernetes, 
usually control goals are performance, reliability, and 
availability. Controlled variables can be the number of 
instances of an application, network configuration (load 
balancing), affinity, etc. All this should be considered when 
developing the operator.  

For creating Kubernetes Controller there are 2 the most 
popular projects – Operator SDK by CoreOS [23] and 
Kubebuilder [24] by Kubernetes SIGs. These projects make 
writing operators easier for developers by providing API, 
abstractions, and tools for code generation for building 
Kubernetes API and controllers. 

Controllers which generated by these projects contains 
special function for creating reconciliation (feedback) loops: 

func (…) Reconcile(request reconcile.Request) (…) {  

  app:= &v1.App{}   

  err:=r.client.Get(context.TODO(),…) 

  if err != nil {}  

  changed := checkChanges()  

    if changed { }  

  ...  

  return reconcile.Result{…}, nil  

} 

This function contains an implementation of the control 

loop and automatically registers this loop and controller in 

Kubernetes API.  

Kubernetes itself periodically monitor build-in and custom 

resources. If a change occurs or the resync period is finished, 

it sends a request to a resource controller to reconcile this 

resource. In this function, it checks with the special client if an 

application instance was changed and performs some actions 

depending on this change. 

Summarizing, it can be said that the Kubernetes ecosystem 

has the necessary functionality to implement controllers with 

feedback loops based on methods and laws of control theory. 

IX. APPLYING CONTROL THEORY TO KUBERNETES OPERATORS 

From Control Theory perspective the plant is a software 

system controlled by a controller. In the Kubernetes 

environment, an operator is a control system (controller) that 

watches for a software system.  

For example, the Postgres-operator manages the Postgres 

database application [25], Confluent Operator deploys the 

Confluent streaming platform that is based on Kafka [26], 

Pravega operator creates and controls Pravega streaming 

storage which is part of enterprise proprietary solution called 

“Dell EMC Streaming Data Platform” [27].  

During the design and verification of control systems, it 

necessary to check key properties of control systems like 

stability, controllability, observability, robustness. These 

properties can be considered from Kubernetes operators 

perspective too.  

Stability is a property of control systems to return to a given 

or close to its operating mode after any disturbance. Stability 

has different definitions for both linear and nonlinear systems. 

Lyapunov stability and some other criteria are used in regular 

control theory for such cases. In [28] proposed methods to 

transfer criteria to software. For applications that are managed 

by operators disturbances can node failure, network glitches, 

restarts of application instances. For example, the operators that 

we have given above can cope with such perturbations. 

Another important property is controllability. This property 

shows the ability to transfer the system from one state to another. 

This is one of the mandatory steps in the synthesis of control 

systems. To prove controllability, we can use the controllability 

criteria, which states that a linear system (1) is completely 

controllable if the rank of the controllability matrix is n. For 

Kubernetes operators, it means that they should be able to move 

a software system from failed or maintenance state to a normal. 

Observability is a property that shows whether it is possible 

to completely restore information about the states of the system 

at the exit. It is necessary to have information about the current 

state of the system x(t) at each moment of time. The measurable 

and observable are output variables y(t). To prove observability, 

we can use the observability criteria, which states that a linear 

system (1) is completely observable if the rank of the 

observability matrix is n. Reconciliation loops in operators use 

this property to achieve control goals. Operators have only 

output information (current state of the system) and based on 

this information they perform control actions.  

Some examples of models of software and examination of 

properties listed above are given in [29].  

 

X. CONCLUSIONS AND FUTURE WORK 

This paper describes the cloud-native architecture and 

cloud-native applications. With gained usage of cloud 

environments, these concepts will become more popular and 

important. Also, we described Kubernetes operators for 

complex stateful cloud-native application as a control system 

and made mapping between operators concepts and control 

theory. 

Cloud-native architecture is based on principles such as 

virtualization, service-orientation, uncertainty, adaptivity. 

Also, it includes patterns such as microservices, models, and 

usage of controllers with a feedback loop. 

Cloud-native applications are containerized, microservice-

based, and dynamically managed software. Such applications 

implement cloud-native applications and are designed to work 

in a cloud environment.  

CNA is mostly managed by Kubernetes. Kubernetes is the 

most popular container orchestrator. It has an extendible API 



 

 

with custom resources and custom controllers. Controllers’ 

essence is the feedback (reconciliation) loop. Because of it, the 

idea to merge software engineering with methods and 

mathematical laws of control theory become more popular. 

Besides this idea, CoreOS developed a new type of 

software called “Operators”. An operator is a controller with 

specific domain knowledge. 

Our next steps continue researching Kubernetes operators 

and create an example of how to apply control theory, its 

method, and steps for designing a controller to a complex 

stateful application that should be launch in Kubernetes.  

After that, we want to develop recommendations for 

developers on how to develop operators better based on 

control theory laws. Then we want to propose to incorporate 

these steps and recommendations into Operator SDK and 

Kubebuilder. 
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