
Extensible IP-core library for High-Level

Synthesis

Ivan Grigorov1,2

1 Ivannikov Institute for System Programming of the Russian Academy of Sciences (ISP RAS)
2 National Research University – Higher School of Economics (HSE)

Email: grigorovia@ispras.ru

Abstract—There is a problem of hardware component

integration designed by different vendors. To address this

problem, IP-XACT standard has been introduced. It suggests

representation of the components’ key features by means of

XML descriptions, and is applicable for different components

types. This paper aimed to solve the problem of the

components integration during the process of the High-Level

Synthesis (HLS) of hardware descriptions. We propose to

annotate the HLS library components with the corresponding

IP-XACT specifications (partially, automatically), which keep

information about the components interfaces and, in some

cases, the way of how to gather the given component by means

of the external sources. In general, the proposed technique

allows structuring the HLS library, also making it

independent from the current HLS tool, and, as a result,

improving the HLS results.

Keywords—High-Level Synthesis, IP-XACT, IP,

integration, XML, Electronic Design Automation, hardware

development, hardware design.

I. INTRODUCTION

Hardware designs are continuously increasing in

complexity. The conventional manual development of the

designs is a difficult and error-prone process, which

requires the knowledge of hardware description languages

(HDL). There comes the concept of High-Level Synthesis

(HLS). HLS is an automated design process that takes as

input an algorithmic description in order to create the

hardware design that implements the desired function.

Typically, the algorithmic description is written in a high-

level programming language such as C, C++, Python, etc.

The process of HLS for a complex design includes using of

sub-components of the target design. For instance, matrix

multiplier uses adders and multipliers for the matrix

elements. Therefore, there is a need for a library with such

sub-components, which are, in fact, IP-cores (i.e.,

Intellectual Properties). Each IP-block represents the

behavior, properties and/or description of some part of the

complete future design. However, to integrate these IP-

cores is not an easy task as they may have complex

interfaces without machine-readable semantics. Besides,

the IP-cores are provided by different vendors. So, there is

a need for a standard solution, supported by HLS tool as

well.

The purpose of this paper is to present a way to integrate

IP-cores in HLS process. The first task is to identify a way

to describe interface of IP-cores. The second task is to

implement support of this description. The third task is to

use information from the description to bind all these IP-

cores together. The final task is to optimize the structure

and to translate the result into HDL.

The rest of the paper is organized as follows. The

second section touches upon similar approaches. The third

section describes implementation of the proposed

technique. The forth section summarizes the results.

II. RELATED WORK

There are a number of standards for IP-cores delivery.

The most prominent of them are SystemRDL [1], Standard

Universal Verification Methodology (UVM) [2], IP-

XACT [3] and Accellera Portable Test and Stimulus

Standard (PSS) [4].

SystemRDL has been developed since 2013. It specifies

both hardware and software behavior. However, it is

limited in scope — the main purpose of the standard is to

describe registers only. Moreover, SystemRDL standard

working group is currently inactive.

The Portable Test and Stimulus Standard (PSS) defines

a specification to create a unified representation of stimuli

and test scenarios to supply IP-cores with verification

means. It has been developed since 2018. As its main

purpose is verification, it is limited in scope.

UVM has been developed since 2011. As well as PSS,

it is aimed to supply IP-cores with the verification means.

IP-XACT standard was introduced in 2014. It proposes

description the meta-data of IP-cores, including

information about their interfaces, in a standard way. IP-

XACT also supports so-called vendor extensions to

describe user-defined vendor features. It should be noticed,

that a number of commercial Electronic Design

Automation (EDA) tools use IP-XACT in their

infrastructure, for instance Xilinx’s EDAs [5],

Magillem [6], Agnisys [7]. So, the only way for

development of standard solution for IP-cores is seen, and

it is the usage of IP-XACT.

There are some open-source EDA tools that use IP-

XACT standard. Among these instruments Kactus2 [8]

toolset should be mentioned. It is an open-source toolset for

designing embedded products. The project is under active

development. Kactus2 has various applications such as IP-

packaging, creation of hierarchical hardware designs and

integration of hardware and software.

III. IMPLEMENTATION

This work is part of an HLS-tool development, which is

currently in the prototype stage. The implementation is

written in the C++ language. It takes an algorithmic

description as input and produces a Register Transfer Level

mailto:grigorovia@ispras.ru

(RTL) model. Fig.1 shows architecture of the tool. In the

first stage Parser analyzes and parses a program written on

prototype HIL language to get the Intermediate

Representation (IR) in the form of a graph where nodes

represent atomic operations such as addition,

multiplication, subtraction, etc. and arcs represents data

dependencies between these operations.

In the second stage, the graph is scheduled and

optimized by Scheduler. This component is using data from

Library. Mapper implements the following steps. First it

creates so-called circuit from the scheduled IR. Circuit

consists of main module, external modules and their

interconnection. Main module interconnects external

modules, which correspond to atomic operations mentioned

earlier. Then it creates CIRCT [9] FIRRTL [10] dialect

model for the main module and Verilog [11] RTL models

for the nodes in the aforementioned graph from the circuit

using Library. CIRCT stands for Circuit IR Compilers and

Tools. CIRCT is an experimental effort to apply

LLVM [12] and MLIR [13] development methodology for

the development of hardware design tools. Finally, mapper

optimizes the result using circt-opt utility provided by

CIRCT infrastructure and translates the result to Verilog.

Fig. 1. HLS-tool architecture

Fig.2 shows the proposed architecture. In the first step

of the improvement IP library is created. The library

consists of RTL models of standard components such as

adders, multipliers, etc. Then these components are

provided with IP-XACT specification. An IP-block with

the corresponding IP-XACT specification is called IP-

XACT enabled IP [14]. These components form IP-XACT

library. IP-XACT specifications can be written manually or

generated using specific EDA tools. The manual process is

tedious and error-prone. So, the automation is preferable.

For this purpose, Kactus2 toolset has been chosen. The part

of the project under consideration begins after producing

an IR of an input program. In proposed architecture

Scheduler and Mapper get component data by parsing the

corresponding IP-XACT specifications. The parsing is

done using open-source xerces-c++ parser [15]. For the

present, only a subset of IP-XACT is supported, including

the following IP-XACT structures: component and catalog.

Component structure describes interfaces of an IP such as

parameters, registers and ports. Catalog documents the

location of IP-XACT files. The result is used to create

aforementioned circuit.

Fig. 2. The proposed HLS architecture

CONCLUSION

This paper presents a way to integrate IP-XACT

infrastructure in development of complex IP-cores

propagating IP-XACT standard for further use in EDA

community.

The next step is to support of all IP-XACT structures. It

is needed for the development of more complex designs.

Also, IP-XACT library is intended to be dynamic, i.e. both

an IP and the corresponding IP-XACT specification will be

created by the query in completely automated fashion.

Considering the fact that CIRCT is an open-source project,

some specific optimizations may be added.

REFERENCES

[1] SystemRDL 2.0 Register Description Language. [Online] Available:
http://www.accellera.org

[2] Universal Verification Methodology (UVM). [Online] Available:
http://www.accellera.org

[3] IP-XACT IEEE 1685-2009 Standard. [Online] Available:
http://www.accellera.org

[4] Portable Test and Stimulus Standard (PSS). [Online] Available:
http://www.accellera.org

[5] Xilinx official site. https://www.xilinx.com

[6] Magillem tool. https://www.magillem.com/ip-xact-as-a-way-to-
orchestrate-your-hw-design-flow

[7] Agnisys tool. https://www.agnisys.com

[8] Kactus2 toolset. https://github.com/kactus2/kactus2dev

[9] “CIRCT” / Circuit IR Compilers and Tools. https://circt.llvm.org

[10] Specification for the FIRRTL Language. [Online] Available:
https://aspire.eecs.berkeley.edu

[11] IEEE Standard for Verilog Hardware Description Language.
https://www.eg.bucknell.edu/~csci320/2016-fall/wp-
content/uploads/2015/08/verilog-std-1364-2005.pdf

[12] The LLVM Compiler Infrastructure. https://llvm.org

[13] Multi-Level IR Compiler Framework. https://mlir.llvm.org

[14] IP-XACT IEEE 1685-2009 Standard. [Online] Available:
http://www.accellera.org

[15] Xerces-C++ XML Parser. https://xerces.apache.org/xerces-c

http://www.accellera.org/
http://www.accellera.org/
http://www.accellera.org/
http://www.accellera.org/
https://www.xilinx.com/
https://www.magillem.com/ip-xact-as-a-way-to-orchestrate-your-hw-design-flow
https://www.magillem.com/ip-xact-as-a-way-to-orchestrate-your-hw-design-flow
https://www.agnisys.com/
https://github.com/kactus2/kactus2dev
https://circt.llvm.org/
https://aspire.eecs.berkeley.edu/
https://www.eg.bucknell.edu/~csci320/2016-fall/wp-content/uploads/2015/08/verilog-std-1364-2005.pdf
https://www.eg.bucknell.edu/~csci320/2016-fall/wp-content/uploads/2015/08/verilog-std-1364-2005.pdf
https://llvm.org/
https://mlir.llvm.org/
http://www.accellera.org/
https://xerces.apache.org/xerces-c

