
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Solving Equations over Automata with Timeouts

Ekaterina Shirokova
Tomsk State University

Tomsk, Russia

Nina Yevtushenko
Ivannikov Institute for System Programming of RAS

Higher School of Economics
Moscow, Russia

Abstract—In this paper, we consider the problem of solving

equations for automata with timeouts over the concatenation

operator. Such equations over finite automata are used for

checking the vulnerability of web services to various attacks

based on the analysis of the solvability of a corresponding

equation. Since a number of web services contain time aspects

in their descriptions, in this paper, we discuss the solvability

problem for equations over automata with timeouts. We discuss

two ways for solving these equations: an approach that is based

on the selection of an appropriate submachine and an approach

that is based on solving an equation over abstractions of

automata with timeouts.

Keywords—finite automata with timeouts, automata equations

over concatenation operator

I. INTRODUCTION

The provision of various services using the Internet
contributes to the emergence of a large number of web
services, that is, software systems that provide interaction
between the service provider and the client [1]. The client
application sends a request to the server that satisfies the rules
of the data transfer protocol, which is processed by the server.
After processing the request, the server sends a response to the
client, which is the requested information or an error message.

Web service implementations are usually cross-platform,
since it does not matter where the service components are
physically located and/or the language in which one or another
module of the service system is written. Accordingly, service
components can be implemented by different developers who
typically do not share implementation details. In this regard, it
is important to check both the functionality of service
components and their security. Such a check makes sure that
when using a third-party implementation, even if an incorrect
request is sent, the system will not be "destroyed", and such a
client will not be able to "get" to data that is not intended for
it. The system should handle invalid input by generating
appropriate messages.

In this work, attacks on a web service are understood as
the implementation of actions aimed at unauthorized access to
data, their modification, and so on. The non-profit OWASP
[2] provides a list of the most popular attacks on web services,
such as injections (for example, SQL injections);
authentication failure; disclosure of confidential data; XSS
attacks (cross-site scripting); incorrect security settings, etc.

Attacks on a web service can be staged by generating
invalid input data. Such an implementation of attacks can be
considered as a test for the robustness of the system under
study: having received invalid data, the system must remain
operational and must not compromise user data both inside the
system and outside it. Detection of web service vulnerabilities
can be done by solving automata equations. This approach
allows to define a set of input sequences of impacts on a web
service that can lead to an attack. Since a number of web
services contain time aspects in their descriptions, in this

paper, it would be interesting to discuss the solvability
problem for equations over automata with timeouts.

Automata equations over the concatenation operation
equations can come from the flow graph of the PHP program
and attack patterns that are described via finite automata [3].
The intersection of the automaton that presents the set of
possible actions of a web-service with the automaton that
represents attack patterns allows drawing a conclusion
whether some attacks can be successful. If such intersection is
not empty, we can consider one of the following equations:

a) A.X  S, b) X.B  S, c) X.Y  S. In these equations S

corresponds to the intersection that was described above, so S
is the automaton that corresponds to the set of non-safe actions
of a web-service while a solution corresponds to possible
malicious user inputs. Correspondingly, in cases a) and b) we
solve the equation in order to describe such malicious user
inputs; an obtained solution can be used in the sanitization.
Case c) is more complex, in this case both prefix and suffix
can depend of user inputs.

The problem of solving equations over the concatenation
operator is discussed in [4, 5] where the formula is proposed

for the largest solution of the language equation A.X  S. The

authors argue that the equation A.X  S has unique maximal
solution, which includes all the other solutions to the equation
(if equation is solvable). Similar results were obtained for an

equation X.B  S.

In a number of cases, when a set of user inputs can lead to
attacks, it becomes necessary to take into account time
aspects. In this case, the problem of solving equations for
automata with timeouts [6] over the concatenation operation
arises. This problem is considered in this paper.

The structure of the paper is the following. Section II
contains the necessary preliminaries: in Paragraph A, we
remind the definition of finite automata and some properties
and operations over the automata, while in Paragraph B, the
definitions of an automaton with timeouts and its abstraction
are considered. Section III is devoted to the investigation of

the equations over A.X  S and X.B  S for automata with
timeouts, and Section IV concludes the paper and contains
discussions and the brief description of future work.

II. BASIC DEFINITIONS

A. A Finite Automaton

An alphabet [7] is a finite set of symbols (letters). The set
of all finite strings over alphabet V is denoted by V* and

includes the empty string ε. A possibly infinite subset L  V*
is a language over alphabet V.

A Finite Automaton or simply called an automaton

throughout the paper is a quintuple A = (A, V, A, a0, FA)
where A is a finite nonempty set of states with the initial state
a0 and the set FA of final states, V is an alphabet, and

A  A  V  A is a transition relation.

An automaton A', V, 'A, a0, F'A is a submachine of the

automaton A if A'  A, 'A  A, and F'A  FA. As usual, the

transition relation A of the automaton A is extended to

sequences of actions over the alphabet V. A state a is

reachable from state a in A if there exists a sequence of

consecutive transitions from state a to a. An automaton is

connected if each state a  A is reachable from the initial state.

Given a sequence  over alphabet V,  is accepted by A if

 labels a sequence of transitions from the initial state to a

final state. The language accepted by A, denoted LA, is the set

of all accepted sequences of A. Two

automata A and B are equivalent, written A  B, if LA = LB.

An automaton A is deterministic if for each pair

(a, v)  A  V there exists at most one state a'  A such that

(a, v, a')  A; otherwise, an automaton A is nondeterministic.

In other words, an automaton A is nondeterministic if there

exist a  A and v  V such that there are two different

transitions (a, v, a'), (a, v, a'')  A where a'  a''.

Given a nondeterministic automaton A = (A, V, A, a0, FA),
there exists an equivalent deterministic automaton obtained

from A by applying the so-called subset construction [7].

The concatenation of the automaton A = (A, V, A, a0, FA)

with the automaton B = (B, V, B, b0, FB) is the

automaton A.B such that the language accepted by

A.B contains each string  such that   LA and   LB. In

this case, A is called the prefix of A.B, B is called the suffix

of A.B. Formally [8], A.B = (A  B, V, S, a0, FS) where

FS = FB if b0  FB or FS = FA  FB if b0 FB. A transition

relation S is defined in the following way:

1. For each s A \ FA, i.e., for each transition of the

automaton A from a non-final state s, under action v we

add a transition of A from state s under action v into the

automaton A.B.

2. For each s FA, i.e., for each transition of the automaton

A from final state s under action v, and for a transition of

the automaton B from initial state b0 under action v we add

two transitions into the automaton A.B: a transition of A
from state s under action v and a transition of B from state

b0 under action v.

3. For each b B, i.e., for each transition of the automaton B

from state b under action v we add a transition from state

b under action v into the automaton A.B.

Thus, A.B starts by stimulating A. When A.B reaches a

final state of A, A.B starts stimulating B and this final state of

A becomes the initial state of B. If the initial state of B is final

then a final state of A is a final state of the concatenation. We

also note that even in the case when A and B are deterministic
automata the concatenation can still be nondeterministic
according to the second rule of the concatenation construction.

Let L1 and L2 be languages on the alphabet V. The right

quotient [5] of L1 with L2 is defined as L1/L2 = {α : αβ  L1 for

some β  L2}. The left quotient of L1 with L2 is defined as

L2/L1 = {β : αβ  L1 for some α  L2}.

B. An Automaton with Timeouts

In this paper, a timed automaton A is an automaton with

timeouts, i.e. a 6-tuple (A, a0, FA, J, A, A), where A is a finite

non-empty set of states with the initial state a0, FA  A is a set
of final states, J is an alphabet of (input) actions,

A  A × J × A is a transition relation, A: A  A × (N {})
is a timeout function that determines the number of time units
when the automaton can leave a current state without

executing an action. If A(a)N = , then the timed automaton
stays at state a until an action is executed. The timeout at state
a is denoted as Ta. In this paper, timed automata are considered
in which all final states have infinite timeouts.

The timed automaton has an internal (clock) variable with
non-negative integer values and indicates the time elapsed
since the current state was reached. If a transition

(a, j, a')  A, then the timed automaton A being in the state a
changes its state to a' after executing the action j; the
corresponding timed variable takes the value 0.

If for each pair (a, j)  A  J there is at most one state

a'  A such that (a, j, a')  A, then the timed automaton A is
called deterministic. Otherwise, the timed automaton is called
non-deterministic. We further consider only deterministic
timed automata.

A timed (input) symbol (action) is a pair (j, t)  J × Ζ0
+,

where Ζ0
+ is the set of non-negative integers. The timed

symbol (j, t) indicates that the action j is executed at the time
instance when the value of the timed variable is t. The
sequence α = (j1, t1)(j2, t2)…(jn, tn) where t1 ≥ 0 and ti ≥ t(i-1),
i = 2, …, n, of timed symbols is called a timed (action)
sequence of length n. A timed action (j, t) is accepted by timed

automaton A at state a1 if j is a defined action at state a1 and t
is less than the timeout at this state. Let t0 = 0. A timed
sequence α = (j1, t1)(j2, t2)…(jn, tn) is accepted by timed

automaton A at state a1 if there exists a sequence of states

a2, …, an such that (ak, jk, ak+1)  A and (tk - tk-1) is less than
the timeout at state ak, k = 1, …, n. The set of all accepted

timed sequences of A in the initial state a0 is a language

(behavior) LA of timed automaton A.

The concatenation of the timed automaton A = (A, a0, FA,

J, A, A) with the timed automaton B = (B, b0, FB, J, B, B)

is the timed automaton A.B such that the language accepted

by A.B contains each timed string  such that α = (j1, t1)

(j2, t2)…(jn, tn)  LA and  = (jn+1, tn+1- tn)(jn+2, tn+2- tn)…

…(jn+k, tn+k - tn) LB. Similar to classical automata, in this case,

A is called the prefix of A.B, B is called the suffix of A.B.

The operations over automata with timeouts are not well
defined and in order to formally define the concatenation of
automata with timeouts we adapt the notion of an abstraction
that was proposed for finite state machines with timeouts
[6, 9] and will use this abstraction when solving equations
over such automata. In this paper, it is proposed to construct a

Î-automaton that in some cases, corresponds to the behavior of
a timed automaton. Such an automaton has transitions over

abstract action Î that correspond to elapsing one time unit [7].

Consider a deterministic timed automaton A = (A, a0, FA,

J, A, A). The corresponding Î-automaton is AÎ = (AÎ, JÎ, AÎ,

(a0, 0), FA) where JÎ = JÎ {Î} while the set of states has a state
(a, t) where t is a non-negative integer if there is a finite
timeout Ta at state a that is bigger than t. If the timeout Ta at
state a is the infinity, then there is state (a, 0) in the automaton

AÎ. If A(a) = (a', Ta) and the timeout Ta < , then timeout
transition from state a to state a' is transformed to a sequence

((a, 0), Î, (a, 1)) ((a, 1), Î, (a, 2))…((a, Ta - 1), Î, (a', 0)) of
transitions, where all intermediate states (a, t), t = 1, …, Ta – 1,
are not final and «copies» of the state a, have the same

transitions under j  J as the state a.

The set of all accepted sequences of AÎ in the initial state

(a0, 0) is a language (behavior) LAÎ of Î-automaton is AÎ.

Proposition 2.1 Given a timed automaton A, a

corresponding Î-automaton AÎ accepts a sequence

Ît1 j1 Î
t2 j2 …Îtn jn at state (a, 0) if and only if timed automaton

A accepts a sequence (j1, t1)(j2, t2 – t1)…(jn, tn – tn-1) at state a.

Consider an example. A timed automaton A and its

corresponding Î-automaton AÎ are shown in Fig. 1(a) and

Fig. 1(b). The timed automaton A in states a0 and a1 can stay

infinitely long until an action is executed. In Î-automaton AÎ,
these states correspond to the states (a0, 0) and (a1, 0). In the
state a2 , a timeout transition to state a0 is defined. Thus, if the

action j2 is not executed by timed automaton A in state a2

within three time cycles, then A will move to state a0. The
timeout transition from state a2 to state a0 corresponds to the

chain of transitions ((a2, 0), Î, (a2, 1)) ((a2, 1), Î, (a2, 2))

((a2, 2), Î, (a0, 0)) in the Î-automaton AÎ. States (a2, 1) and
(a2, 2) are «copies» of the state a2, that is there are the same
transitions under j2 as at the state (a2, 0).

Fig. 1. (a) Timed automaton A; (b) Corresponding Î-automaton AÎ

The concatenation of the Î-automaton AÎ = (AÎ, JÎ, AÎ,

(a0, 0), FA) with the Î-automaton BÎ = (BÎ, JÎ, BÎ, (b0, 0), FB) is

the automaton AÎ.BÎ such that the language accepted by

AÎ.BÎ contains each string  such that α = Ît1 j1 Î
t2 j2 …

…Îtn jn  LA and  = Îtn+1-tn jn+1 Î
tn+2-tn jn+2 …Îtn+k-tn jn+k  LB.

Similar to classical automata, in this case, AÎ is called the

prefix of AÎ.BÎ, BÎ is called the suffix of AÎ.BÎ.

Proposition 2.2 Given timed automata A and B.

(A.B)Î  AÎ.BÎ, the Î-abstraction of the concatenation A and B

is the concatenation of corresponding Î-automata AÎ and BÎ.

III. SOLVING TIMED AUTOMATA EQUATIONS

In this paper, we consider two types of automata equations

over the concatenation operator: A.X  S and X.B  S where

the timed automaton X is the unknown. We can also consider

the corresponding inequalities X.B  S and A.X  S.

The timed automaton Largest is called the largest

solution to an equation A.X  S (X.B  S) if it contains every
solution of the equation.

We discuss two ways for solving these equations.

A. Solving an equation by the use of submachines

An algorithm for solving the equation A.X  S, has the
following steps.

1. For the timed automaton S with the initial state s0 we

check whether there is a submachine A' with the initial

state s0 that is equivalent to A.

2. If such submachine A' exists, then it is necessary to add to

the largest solution Largest each submachine of the

timed automaton S with the initial state a, where a is the

final state of the submachine A'.

3. We construct the concatenation of the timed automata A

and Largest. If the concatenation is equivalent to S then

Largest is the largest solution to the equation A.X  S;
otherwise, the equation is unsolvable.

Proposition 3.1 The automaton with timeouts obtained in

Step 2, is the largest solution to the inequality A.X ≤ S.

The procedure for constructing a largest solution to the

equation X.B  S is a bit different from the above. For initial

state s0 of the timed automaton S, it is necessary to check

whether there is a submachine X' with an initial state s0, such

that X'.B  S. Each such submachine X' (if it exists) is added

to the largest solution Largest. Finally, it is necessary to

assure that the timed automata Largest.B and S are
equivalent.

B. Solving an equation using the abstractions

Another way for solving the equation A.X  S (B.X  S)
is to use the corresponding abstractions for which the left
(right) quotient operation [4, 5] is well developed.

Proposition 3.2 Timed automaton X' is a solution to the

equation A.X  S if and only if Î-automaton X'Î is a solution

to the equation AÎ.XÎ  SÎ.

Proposition 3.3 Timed automaton X' is a solution to the

equation B.X  S if and only if Î-automaton X'Î is a solution

to the equation BÎ.XÎ  SÎ.

Consider an example of finding a solution to a timed

automata equation A.X  S. The timed automaton A and the

corresponding Î-automaton AÎ are shown in Fig. 1. The timed

automaton S and the corresponding Î-automaton SÎ are shown
in Fig. 2.

Fig. 2. (a) Timed automaton S; (b) Corresponding Î-automaton SÎ

According to Proposition 3.2, in order to solve the

equation A.X  S, we determine a solution to the equation

AÎ.XÎ  SÎ. An algorithm for solving the equation AÎ.XÎ  SÎ,
has the following steps or the left quotient can be utilized [5].

Consider the equation AÎ.XÎ  SÎ. It can be seen that the

Î-automaton X'Î (Fig. 3(a)) is a submachine of the Î-automaton

SÎ and the concatenation of the Î-automaton AÎ and X'Î is

equivalent to the Î-automaton SÎ. Thus X'Î is the solution of

the Î-automata equation AÎ.XÎ  SÎ. Next, we transform

Î-automaton X'Î into the corresponding timed automaton X',
which is the solution of the equation A.X  S. States (s1, 0)

and (s4, 0) of Î-automaton X'Î correspond to states s1 and s4 in

the timed automaton X'. States (s3, 0) and (s3, 1) of

Î-automaton X'Î correspond to the state s3 in the timed

automaton X'. The sequence of transitions ((s3, 0), Î, (s3, 1))

((s3, 1), Î, (s4, 0)) corresponds timeout transition Ts3 = 2 from

state s3 to state s4. Thus, we get timed automaton X' (Fig. 3(b)).

The concatenation of the timed automaton A and the obtained

timed automaton X' is equivalent to the timed automaton S.

Thus, X' is the solution to the equation A.X  S.

It should be noted that the solution of the equation

A.X  S (X.B  S) describes the malicious input of the web
service and can be used to sanitize input data from malicious
content. Any submachine of the largest solution to the

equation A.X  S (X.B  S) contains sequences whose

concatenation with sequences of the automaton A (the

automaton B) is unsafe.

Fig. 3. (a) Î-automaton X'Î; (b) Corresponding timed automaton X'

IV. DISCUSSION AND CONCLUSION

In this paper, we considered the problem of solving timed
automata equations over the concatenation operator. Such
equations appear when checking the security of a web service,
which is a hot topic. An approach for solving such equations
based on the selection of appropriate submachines is
proposed. However, this approach requires further research
which is a part of our future work. An approach that is based
on solving an equation over abstractions also needs additional
research, especially would be interesting to evaluate the
complexity of both approaches. Our future work also includes
the application of the proposed approaches to checking the
security of real web services.

REFERENCES

[1] E. Al-Masri, and Q.H. Mahmoud, “Investigating web services on the
world wide web”, Proceedings of the 17th international conference on

World Wide Web, 2008, pp. 795-804.

[2] OWASP Top Ten, url: https://owasp.org/www-project-top-ten/

[3] F. Yu, M. Alkhalaf, and T. Bultan, “Generating vulnerability signatures
for string ma-nipulating programs using automata-based forward and

backward symbolic analyses,” Technical Report 2009-11, UCSB CS,

2009.

[4] L. Kari, “On language equations with invertible operations,” Theoret.

Comput. Sci. 132 (1994), 129-150.

[5] P. Linz, An Introduction to Formal Languages and Automata, Jones &

Bartlett Learning, 2011.

[6] O. Kondratyeva, Timed FSM strategy for optimizing web service
compositions w.r.t. the quality and safety issues, Doctoral thesis, Paris

Saclais, 2015.

[7] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory,

Languages and Computation, Addison-Wesley, 1979.

[8] A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation, and

Compiling, Volume I: Parsing, Prentice Hall, 1972.

[9] O. Kondratyeva, N. Yevtushenko, and A. Cavalli, “Parallel
composition of nondeterministic finite state machines with timeouts”,

Journal of Control and Computer Science of Tomsk State University,

2:27, 2014, pp. 73-81.

	I. Introduction
	II. Basic definitions
	A. A Finite Automaton
	B. An Automaton with Timeouts

	III. Solving Timed Automata Equations
	A. Solving an equation by the use of submachines
	B. Solving an equation using the abstractions

	IV. Discussion and Conclusion
	References

