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Abstract—In this paper, we consider the problem of solving 

equations for automata with timeouts over the concatenation 

operator. Such equations over finite automata are used for 

checking the vulnerability of web services to various attacks 

based on the analysis of the solvability of a corresponding 

equation. Since a number of web services contain time aspects 

in their descriptions, in this paper, we discuss the solvability 

problem for equations over automata with timeouts.  We discuss 

two ways for solving these equations: an approach that is based 

on the selection of an appropriate submachine and an approach 

that is based on solving an equation over abstractions of 

automata with timeouts. 
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I. INTRODUCTION 

The provision of various services using the Internet 
contributes to the emergence of a large number of web 
services, that is, software systems that provide interaction 
between the service provider and the client [1]. The client 
application sends a request to the server that satisfies the rules 
of the data transfer protocol, which is processed by the server. 
After processing the request, the server sends a response to the 
client, which is the requested information or an error message. 

Web service implementations are usually cross-platform, 
since it does not matter where the service components are 
physically located and/or the language in which one or another 
module of the service system is written. Accordingly, service 
components can be implemented by different developers who 
typically do not share implementation details. In this regard, it 
is important to check both the functionality of service 
components and their security. Such a check makes sure that 
when using a third-party implementation, even if an incorrect 
request is sent, the system will not be "destroyed", and such a 
client will not be able to "get" to data that is not intended for 
it. The system should handle invalid input by generating 
appropriate messages. 

In this work, attacks on a web service are understood as 
the implementation of actions aimed at unauthorized access to 
data, their modification, and so on. The non-profit OWASP 
[2] provides a list of the most popular attacks on web services, 
such as injections (for example, SQL injections); 
authentication failure; disclosure of confidential data; XSS 
attacks (cross-site scripting); incorrect security settings, etc. 

Attacks on a web service can be staged by generating 
invalid input data. Such an implementation of attacks can be 
considered as a test for the robustness of the system under 
study: having received invalid data, the system must remain 
operational and must not compromise user data both inside the 
system and outside it. Detection of web service vulnerabilities 
can be done by solving automata equations. This approach 
allows to define a set of input sequences of impacts on a web 
service that can lead to an attack. Since a number of web 
services contain time aspects in their descriptions, in this 

paper, it would be interesting to discuss the solvability 
problem for equations over automata with timeouts. 

Automata equations over the concatenation operation 
equations can come from the flow graph of the PHP program 
and attack patterns that are described via finite automata [3]. 
The intersection of the automaton that presents the set of 
possible actions of a web-service with the automaton that 
represents attack patterns allows drawing a conclusion 
whether some attacks can be successful. If such intersection is 
not empty, we can consider one of the following equations: 

a) A.X  S, b) X.B  S, c) X.Y  S. In these equations S 

corresponds to the intersection that was described above, so S 
is the automaton that corresponds to the set of non-safe actions 
of a web-service while a solution corresponds to possible 
malicious user inputs. Correspondingly, in cases a) and b) we 
solve the equation in order to describe such malicious user 
inputs; an obtained solution can be used in the sanitization. 
Case c) is more complex, in this case both prefix and suffix 
can depend of user inputs. 

The problem of solving equations over the concatenation 
operator is discussed in [4, 5] where the formula is proposed 

for the largest solution of the language equation A.X  S. The 

authors argue that the equation A.X  S has unique maximal 
solution, which includes all the other solutions to the equation 
(if equation is solvable). Similar results were obtained for an 

equation X.B  S. 

In a number of cases, when a set of user inputs can lead to 
attacks, it becomes necessary to take into account time 
aspects. In this case, the problem of solving equations for 
automata with timeouts [6] over the concatenation operation 
arises. This problem is considered in this paper. 

The structure of the paper is the following. Section II 
contains the necessary preliminaries: in Paragraph A, we 
remind the definition of finite automata and some properties 
and operations over the automata, while in Paragraph B, the 
definitions of an automaton with timeouts and its abstraction 
are considered. Section III is devoted to the investigation of 

the equations over A.X  S and X.B  S for automata with 
timeouts, and Section IV concludes the paper and contains 
discussions and the brief description of future work. 

II. BASIC DEFINITIONS 

A. A Finite Automaton 

An alphabet [7] is a finite set of symbols (letters). The set 
of all finite strings over alphabet V is denoted by V* and 

includes the empty string ε. A possibly infinite subset L  V* 
is a language over alphabet V. 

A Finite Automaton or simply called an automaton 

throughout the paper is a quintuple A = (A, V, A, a0, FA) 
where A is a finite nonempty set of states with the initial state 
a0 and the set FA of final states, V is an alphabet, and 

A  A  V  A is a transition relation.  



An automaton A', V, 'A, a0, F'A is a submachine of the 

automaton A if A'  A, 'A  A, and F'A  FA. As usual, the 

transition relation A of the automaton A is extended to 

sequences of actions over the alphabet V. A state a is 

reachable from state a in A if there exists a sequence of 

consecutive transitions from state a to a. An automaton is 

connected if each state a  A is reachable from the initial state. 

Given a sequence  over alphabet V,  is accepted by A if 

 labels a sequence of transitions from the initial state to a 

final state. The language accepted by A, denoted LA, is the set 

of all accepted sequences of A. Two 

automata A and B are equivalent, written A  B, if LA = LB. 

An automaton A is deterministic if for each pair 

(a, v)  A  V there exists at most one state a'  A such that 

(a, v, a')  A; otherwise, an automaton A is nondeterministic. 

In other words, an automaton A is nondeterministic if there 

exist a  A and v  V such that there are two different 

transitions (a, v, a'), (a, v, a'')  A where a'  a''. 

Given a nondeterministic automaton A = (A, V, A, a0, FA), 
there exists an equivalent deterministic automaton obtained 

from A by applying the so-called subset construction [7]. 

The concatenation of the automaton A = (A, V, A, a0, FA) 

with the automaton B = (B, V, B, b0, FB) is the 

automaton A.B such that the language accepted by 

A.B contains each string  such that   LA and   LB. In 

this case, A is called the prefix of A.B, B is called the suffix 

of A.B. Formally [8], A.B = (A  B, V, S, a0, FS) where 

FS = FB if b0  FB or FS = FA  FB if b0 FB. A transition 

relation S is defined in the following way:  

1. For each s A \ FA, i.e., for each transition of the 

automaton A from a non-final state s, under action v we 

add a transition of A from state s under action v into the 

automaton A.B. 

2. For each s FA, i.e., for each transition of the automaton 

A from final state s under action v, and for a transition of 

the automaton B from initial state b0 under action v we add 

two transitions into the automaton A.B: a transition of A 
from state s under action v and a transition of B from state 

b0 under action v. 

3. For each b B, i.e., for each transition of the automaton B 

from state b under action v we add a transition from state 

b under action v into the automaton A.B. 

Thus, A.B starts by stimulating A. When A.B reaches a 

final state of A, A.B starts stimulating B and this final state of 

A becomes the initial state of B. If the initial state of B is final 

then a final state of A is a final state of the concatenation. We 

also note that even in the case when A and B are deterministic 
automata the concatenation can still be nondeterministic 
according to the second rule of the concatenation construction. 

Let L1 and L2 be languages on the alphabet V. The right 

quotient [5] of L1 with L2 is defined as L1/L2 = {α : αβ  L1 for 

some β  L2}. The left quotient of L1 with L2 is defined as 

L2/L1 = {β : αβ  L1 for some α  L2}. 

B. An Automaton with Timeouts 

In this paper, a timed automaton A is an automaton with 

timeouts, i.e. a 6-tuple (A, a0, FA, J, A, A), where A is a finite 

non-empty set of states with the initial state a0, FA  A is a set 
of final states, J is an alphabet of (input) actions, 

A  A × J × A is a transition relation, A: A  A × (N {}) 
is a timeout function that determines the number of time units 
when the automaton can leave a current state without 

executing an action. If A(a)N = , then the timed automaton 
stays at state a until an action is executed. The timeout at state 
a is denoted as Ta. In this paper, timed automata are considered 
in which all final states have infinite timeouts. 

The timed automaton has an internal (clock) variable with 
non-negative integer values and indicates the time elapsed 
since the current state was reached. If a transition 

(a, j, a')  A, then the timed automaton A being in the state a 
changes its state to a' after executing the action j; the 
corresponding timed variable takes the value 0. 

If for each pair (a, j)  A  J there is at most one state 

a'  A such that (a, j, a')  A, then the timed automaton A is 
called deterministic. Otherwise, the timed automaton is called 
non-deterministic. We further consider only deterministic 
timed automata. 

A timed (input) symbol (action) is a pair (j, t)  J × Ζ0
+, 

where Ζ0
+ is the set of non-negative integers. The timed 

symbol (j, t) indicates that the action j is executed at the time 
instance when the value of the timed variable is t. The 
sequence α = (j1, t1)(j2, t2)…(jn, tn) where t1 ≥ 0 and ti ≥ t(i-1), 
i = 2, …, n, of timed  symbols is called a timed (action) 
sequence of length n. A timed action (j, t) is accepted by timed 

automaton A at state a1 if j is a defined action at state a1 and t 
is less than the timeout at this state. Let t0 = 0. A timed 
sequence α = (j1, t1)(j2, t2)…(jn, tn) is accepted by timed 

automaton A at state a1 if there exists a sequence of states 

a2, …, an such that (ak, jk, ak+1)  A and (tk - tk-1) is less than 
the timeout at state ak, k = 1, …, n. The set of all accepted 

timed sequences of A in the initial state a0 is a language 

(behavior) LA of timed automaton A. 

The concatenation of the timed automaton A = (A, a0, FA, 

J, A, A) with the timed automaton B = (B, b0,  FB, J, B, B) 

is the timed automaton A.B such that the language accepted 

by A.B contains each timed string  such that α = (j1, t1) 

(j2, t2)…(jn, tn)  LA and  = (jn+1, tn+1- tn)(jn+2, tn+2- tn)… 

…(jn+k, tn+k - tn) LB. Similar to classical automata, in this case, 

A is called the prefix of A.B, B is called the suffix of A.B. 

The operations over automata with timeouts are not well 
defined and in order to formally define the concatenation of 
automata with timeouts we adapt the notion of an abstraction 
that was proposed for finite state machines with timeouts 
[6, 9] and will use this abstraction when solving equations 
over such automata. In this paper, it is proposed to construct a 

Î-automaton that in some cases, corresponds to the behavior of 
a timed automaton. Such an automaton has transitions over 

abstract action Î that correspond to elapsing one time unit [7]. 

Consider a deterministic timed automaton A = (A, a0, FA, 

J, A, A). The corresponding Î-automaton is AÎ = (AÎ, JÎ, AÎ, 

(a0, 0), FA) where JÎ = JÎ {Î} while the set of states has a state 
(a, t) where t is a non-negative integer if there is a finite 
timeout Ta at state a that is bigger than t. If the timeout Ta at 
state a is the infinity, then there is state (a, 0) in the automaton 

AÎ. If A(a) = (a', Ta) and the timeout Ta < , then timeout 
transition from state a to state a' is transformed to a sequence 



((a, 0), Î, (a, 1)) ((a, 1), Î, (a, 2))…((a, Ta - 1), Î, (a', 0)) of 
transitions, where all intermediate states (a, t), t = 1, …, Ta – 1, 
are not final and «copies» of the state a, have the same 

transitions under j  J as the state a. 

The set of all accepted sequences of AÎ in the initial state 

(a0, 0) is a language (behavior) LAÎ of Î-automaton is AÎ. 

Proposition 2.1 Given a timed automaton A, a 

corresponding Î-automaton AÎ accepts a sequence 

Ît1 j1 Î
t2 j2 …Îtn jn at state (a, 0) if and only if timed automaton 

A accepts a sequence (j1, t1)(j2, t2 – t1)…(jn, tn – tn-1) at state a. 

Consider an example. A timed automaton A and its 

corresponding Î-automaton AÎ are shown in Fig. 1(a) and 

Fig. 1(b). The timed automaton A in states a0 and a1 can stay 

infinitely long until an action is executed. In Î-automaton AÎ, 
these states correspond to the states (a0, 0) and (a1, 0). In the 
state a2 , a timeout transition to state a0 is defined. Thus, if the 

action j2 is not executed by timed automaton A in state a2 

within three time cycles, then A will move to state a0. The 
timeout transition from state a2 to state a0 corresponds to the 

chain of transitions ((a2, 0), Î, (a2, 1)) ((a2, 1), Î, (a2, 2)) 

((a2, 2), Î, (a0, 0)) in the Î-automaton AÎ.  States (a2, 1) and 
(a2, 2) are «copies» of the state a2, that is there are the same 
transitions under j2 as at the state (a2, 0). 

 

Fig. 1. (a) Timed automaton A; (b) Corresponding Î-automaton AÎ 

The concatenation of the Î-automaton AÎ = (AÎ, JÎ, AÎ, 

(a0, 0), FA) with the Î-automaton BÎ = (BÎ, JÎ, BÎ, (b0, 0), FB) is 

the automaton AÎ.BÎ such that the language accepted by 

AÎ.BÎ contains each string  such that α = Ît1 j1 Î
t2 j2 … 

…Îtn jn  LA and  = Îtn+1-tn jn+1 Î
tn+2-tn jn+2 …Îtn+k-tn  jn+k  LB. 

Similar to classical automata, in this case, AÎ is called the 

prefix of AÎ.BÎ, BÎ is called the suffix of AÎ.BÎ. 

Proposition 2.2 Given timed automata A and B. 

(A.B)Î  AÎ.BÎ, the Î-abstraction of the concatenation A and B 

is the concatenation of corresponding Î-automata AÎ and BÎ. 

III. SOLVING TIMED AUTOMATA EQUATIONS 

In this paper, we consider two types of automata equations 

over the concatenation operator: A.X  S and X.B  S where 

the timed automaton X is the unknown. We can also consider 

the corresponding inequalities X.B  S and A.X  S. 

The timed automaton Largest is called the largest 

solution to an equation A.X  S (X.B  S) if it contains every 
solution of the equation. 

We discuss two ways for solving these equations. 

A. Solving an equation by the use of submachines 

An algorithm for solving the equation A.X  S, has the 
following steps. 

1. For the timed automaton S with the initial state s0 we 

check whether there is a submachine A' with the initial 

state s0 that is equivalent to A. 

2. If such submachine A' exists, then it is necessary to add to 

the largest solution Largest each submachine of the 

timed automaton S with the initial state a, where a is the 

final state of the submachine A'. 

3. We construct the concatenation of the timed automata A 

and Largest. If the concatenation is equivalent to S then 

Largest is the largest solution to the equation A.X  S; 
otherwise, the equation is unsolvable. 

Proposition 3.1 The automaton with timeouts obtained in 

Step 2, is the largest solution to the inequality A.X ≤ S. 

The procedure for constructing a largest solution to the 

equation X.B  S is a bit different from the above. For initial 

state s0 of the timed automaton S, it is necessary to check 

whether there is a submachine X' with an initial state s0, such 

that X'.B  S. Each such submachine X' (if it exists) is added 

to the largest solution Largest. Finally, it is necessary to 

assure that the timed automata Largest.B and S are 
equivalent. 

B. Solving an equation using the abstractions 

Another way for solving the equation A.X  S (B.X  S) 
is to use the corresponding abstractions for which the left 
(right) quotient operation [4, 5] is well developed. 

Proposition 3.2 Timed automaton X' is a solution to the 

equation A.X  S if and only if Î-automaton X'Î is a solution 

to the equation AÎ.XÎ  SÎ. 

Proposition 3.3 Timed automaton X' is a solution to the 

equation B.X  S if and only if Î-automaton X'Î is a solution 

to the equation BÎ.XÎ  SÎ. 

Consider an example of finding a solution to a timed 

automata equation A.X  S. The timed automaton A and the 

corresponding Î-automaton AÎ are shown in Fig. 1. The timed 

automaton S and the corresponding Î-automaton SÎ are shown 
in Fig. 2. 



 

Fig. 2. (a) Timed automaton S; (b) Corresponding Î-automaton SÎ 

According to Proposition 3.2, in order to solve the 

equation A.X  S, we determine a solution to the equation 

AÎ.XÎ  SÎ. An algorithm for solving the equation AÎ.XÎ  SÎ, 
has the following steps or the left quotient can be utilized [5]. 

Consider the equation AÎ.XÎ  SÎ. It can be seen that the    

Î-automaton X'Î (Fig. 3(a)) is a submachine of the Î-automaton 

SÎ and the concatenation of the Î-automaton AÎ and X'Î is 

equivalent to the Î-automaton SÎ. Thus X'Î is the solution of 

the Î-automata equation AÎ.XÎ  SÎ. Next, we transform                

Î-automaton X'Î into the corresponding timed automaton X', 
which is the solution of the equation A.X  S. States (s1, 0) 

and (s4, 0) of Î-automaton X'Î correspond to states s1 and s4 in 

the timed automaton X'. States (s3, 0) and (s3, 1) of                        

Î-automaton X'Î correspond to the state s3 in the timed 

automaton X'. The sequence of transitions ((s3, 0), Î, (s3, 1)) 

((s3, 1), Î, (s4, 0)) corresponds timeout transition Ts3 = 2 from 

state s3 to state s4. Thus, we get timed automaton X' (Fig. 3(b)). 

The concatenation of the timed automaton A and the obtained 

timed automaton X' is equivalent to the timed automaton S. 

Thus, X' is the solution to the equation A.X  S. 

It should be noted that the solution of the equation 

A.X   S (X.B  S) describes the malicious input of the web 
service and can be used to sanitize input data from malicious 
content. Any submachine of the largest solution to the 

equation A.X  S (X.B  S) contains sequences whose 

concatenation with sequences of the automaton A (the 

automaton B) is unsafe. 

 

Fig. 3. (a) Î-automaton X'Î; (b) Corresponding timed automaton X' 

IV. DISCUSSION AND CONCLUSION 

In this paper, we considered the problem of solving timed 
automata equations over the concatenation operator. Such 
equations appear when checking the security of a web service, 
which is a hot topic. An approach for solving such equations 
based on the selection of appropriate submachines is 
proposed. However, this approach requires further research 
which is a part of our future work. An approach that is based 
on solving an equation over abstractions also needs additional 
research, especially would be interesting to evaluate the 
complexity of both approaches. Our future work also includes 
the application of the proposed approaches to checking the 
security of real web services. 

REFERENCES 

[1] E. Al-Masri, and Q.H. Mahmoud, “Investigating web services on the 
world wide web”, Proceedings of the 17th international conference on 

World Wide Web, 2008, pp. 795-804. 

[2] OWASP Top Ten, url: https://owasp.org/www-project-top-ten/ 

[3] F. Yu, M. Alkhalaf, and T. Bultan, “Generating vulnerability signatures 
for string ma-nipulating programs using automata-based forward and 

backward symbolic analyses,” Technical Report 2009-11, UCSB CS, 

2009. 

[4] L. Kari, “On language equations with invertible operations,” Theoret. 

Comput. Sci. 132 (1994), 129-150. 

[5] P. Linz, An Introduction to Formal Languages and Automata, Jones & 

Bartlett Learning, 2011. 

[6] O. Kondratyeva, Timed FSM strategy for optimizing web service 
compositions w.r.t. the quality and safety issues, Doctoral thesis, Paris 

Saclais, 2015. 

[7] J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, 

Languages and Computation, Addison-Wesley, 1979. 

[8] A. V. Aho and J. D. Ullman, The Theory of Parsing, Translation, and 

Compiling, Volume I: Parsing, Prentice Hall, 1972. 

[9] O. Kondratyeva, N. Yevtushenko, and A. Cavalli, “Parallel 
composition of nondeterministic finite state machines with timeouts”, 

Journal of Control and Computer Science of Tomsk State University, 

2:27, 2014, pp. 73-81.

 


	I. Introduction
	II. Basic definitions
	A. A Finite Automaton
	B. An Automaton with Timeouts

	III. Solving Timed Automata Equations
	A. Solving an equation by the use of submachines
	B. Solving an equation using the abstractions

	IV. Discussion and Conclusion
	References


