Detection of remote code execution vulnerabilities

using abstract

Roman Kholin
Faculty of Computational Mathematics and Cybernetics
Lomonosov Moscow State University
Leninskie Gory, Moscow, 119991, Russian Federation
romankholin94 @seclab.cs.msu.ru

Abstract—*“Remote code execution” attacks are among the
most dangerous types of attacks, they can lead to the disclosure of
confidential data, unauthorized deletion of data, device control
interception and other vulnerabilities, so it is important to be
able to find vulnerabilities in programs as quick as possible
along the program’s life cycle. The vulnerabilities search is time-
consuming, so there is a serious scientific and industrial effort to
automate the process as much as possible.

We propose a method for generalized code injection vulnerabili-
ties detection for a wide class of injections with help of symbolic
execution (one of the methods of abstract interpretation).

Index Terms—concolic testing, JavaScript, SMT, web applica-
tions security.

I. INTRODUCTION

Code injection is the exploitation of a computer bug that
is caused by processing invalid user input. The reason of
possibility of the remote code execution is that there are
functions in the program that may execute code in some
programming language (for example, “eval” function in
JavaScript, “echo” function in the php or the function for
executing database query “mysql_query” in the php), and this
code can be generated dynamically so user input can get into
it, i.e. a “injection” into code via user input can occur. SQL
injection is “injection” into the code that infiltrates the input
of the “query to the database” functions (for example, the
input “mysql_query” in PHP); code injection is an “injection”
into the code that tamper the input of the function “eval”
(“eval” mean to “execute” code; there are such functions, for
example, in JavaScript and PHP programming languages). In
this paper functions like mentioned above are called “sensitive
functions”, and the argument they take will call “request to
sensitive function”.

“Fig. 17 shows vulnerable JavaScript backend code for
the web application. Here, db.each is a sensitive function,
"SELECT * FROM users WHERE name = "’ + query.name
+ 77’ is a request to a sensitive function, and the input data
gets into the query via query.name. We can make such a
query that query.name becomes equal to ’OR’ a’="a and after
that information about all rows of the table will be returned,
which was not explicitly provided by the service logic.

We propose to generalize the problem of detecting code
injection vulnerabilities for a wider class of injections
and to search them using one of the methods of abstract

interpretation

Dennis Gamayunov
Faculty of Computational Mathematics and Cybernetics
Lomonosov Moscow State University
Leninskie Gory, Moscow, 119991, Russian Federation
gamajun @seclab.cs.msu.su

1 http.createServer(function(request, response) {

2 var uri = url.parse(request.url, true).pathname;
3 var query = url.parse(request.url, true).query;
4 if (uri == "/by-name') {

5 var db= new sqlite3 .Database(userlnfoDB.db");
6 db.serialize (function () {

7 db.each('SELECT * FROM users WHERE name = "'
8 + query.name + "', function(err, row){
9 newDoc = row.id + " " 4 row.card_number;
10 1)

)

12 db. close ();

13 response.writeHead (200);

14 response . write(newDoc, 'binary');

15 response.end();

16

}
17 }).listen (8080, host);

Fig. 1. Vulnurable to sql-injection code on JavaScript

interpretation — symbolic execution [1], [2]. To do this,
we will search sensitive functions in programs and what
input data to submit to the input of the program (in the
case of a web application, what request to do to the web
application), so that the program run with this input data
also reaches the given sensitive function and executes it. In
this work, a prototype implementation for various database
drivers and Node]JS was made. To implement a prototype
solution to the problem, we modified the JavaScript test
case generation tool “ExpoSE” [3], [4] using the JavaScript
code instrumentation tool “Jalangi2” [S5]-[7]. With the help
of concolic execution, it is possible to traverse all the paths
of program execution, if the number of such paths is finite;
if the number of such paths is infinite, then it is possible
to traverse a significant part of them. Passing through
the branch statements, we collect the constraints on the
input data using concolic execution. Using these constraints
and SMT solvers (eg “Z3” [8]), it is possible to generate
attack input data that satisfies new, not yet passed program
execution paths. Having reached the sensitive function, we
can generate a query that leads us to this point in the program.

The structure of this article is as follows: the Overview
provides a description of the technologies and the standard

techniques that we use here; in Implementation we present the
algorithm of our prototype solution; in Evaluation, we describe
stand applications and the results of working of our tool on
them; in the Related Work subsection, we present similar
frameworks and techniques that we have found; in Future work
we describe ideas for improving our tool; in Conclusion we
summarize the results of the study.

II. OVERVIEW

In this section we briefly describe the frameworks and
technologies used in the paper.

A. Jalangi2

Jalangi2 is a framework for writing dynamic analyses for
JavaScript. Jalangi2 instruments the program-under-analysis to
insert callbacks to methods defined in Jalangi2. An analysis
writer implements these methods to perform custom dynamic
program analysis. Jalangi2 performs analysis during the exe-
cution of the program. “Fig. 2” contain an example of the code
after instrumentation. Write, Read, Binary, Literal, PutField,
GetField, Branch, Methods - the name of the callbacks that
can be implemented in your analysis (this is not a complete
list).

x=y+1 = x = Write(“x”, Binary(‘+,Read(“y”, y), Literal(1), x)
af=b.g = PutField(Read(“a”, a), “f", GetField(Read(“b", b), “g"))
if (a.f()) ... = if (Branch(Method(Read(“a”, a), “f")())) ...

Fig. 2. Simplified demonstration of Jalangi2 instrumentation of code

B. 73

73 is Theorem Prover, a cross-platform satisfiability modulo
theories (SMT) solver. Satisfiability modulo theories (SMT) is
the problem of determining whether a mathematical formula
is satisfiable. It generalizes the Boolean satisfiability problem
(SAT) to more complex formulas involving real numbers,
integers, and/or various data structures such as lists, arrays, bit
vectors, and strings. Formulas may not have a decision proce-
dure, or the task of formula satisfaction may be NP-hard, but
in practice, solvers perform well due to the heuristics that are
implemented in their algorithms. One of the most important
achievements of modern SMT solvers is their ability to resolve
formulas over string data types - i.e. simulate a lot of primitive
operations on string variables (concatenation, slicing, inserting
a substring into a string, etc.) and find specific examples of
strings that satisfy a set of logical formulas on variables that
use these operations. Moreover, the most advanced versions of
modern SMT solvers also support checking whether a certain
word belongs to a given language described by a regular
grammar, among the operations available in the SMT solver.

C. Concolic Execution

Concolic Execution (a portmanteau of concrete and
symbolic) is a hybrid software verification technique that
performs symbolic execution, a classical technique that
treats program variables as symbolic variables, along a
concrete execution (testing on particular inputs) path.
Symbolic execution is used in conjunction with an automated
theorem prover or constraint solver based on constraint logic
programming to generate new concrete inputs (test cases)
with the aim of maximizing code coverage. Initially, symbolic
(and concolic) tools were developed only for compiled
programming languages (like “DART” [9], “CUTE” [10],
“KLEE” [11] for C languge), but over time they added
support for interpreted programming languages.

The program can be represented as a binary tree - the
so-called computational tree (see “Fig. 3”). Each vertex
is the execution of a conditional statement, each edge is
the execution of a sequence of commands that are not a
conditional statement, each path from the root divides the
set of input data into equivalence classes. One of the goals
of concolic execution is to provide one instance for each
such equivalence class, i.e. generate a test - the input data on
which the program will go through a unique path from the
root to the leaf.

The concolic execution algorithm can be described as

A}\
AP
CEC A ¥

.

Fig. 3. Example of a figure caption.

F

(8]

e

follows:

At the beginning, a random data set is generated and added
to the queue. Then, until the queue becomes empty, the input
data set is popped from the queue, the program is executed
on this input data set, the execution trace is recorded, fixing
all passed branch points in the program and all operations

written on the program variables along this path. In this
case, specific operations are executed on concrete values
of variables, and symbolic ones are executed on symbolic
variables. This allows for each specific path to describe the
constraints on the variables (path constraints), which lead to
the execution of the program along a specific path. In this
case, the constraints have the format of a logical formula,
which uses the logical operations “and”, “or” and a set of
some of the simplest operations on variables: comparisons,
simple arithmetic operations, simple operations on strings
(concatenation, slicing, deletion whitespace characters on the
left and right, etc.).

When passing a branch point, we try to build an alternative

path for executing the program:

1) we consider a set of path constraints up to a given branch
point, select the part of the formula that describes the
choice of the execution path at a given point. If we
have already tried to generate a set of input data for
such a program execution path, then we finish building
an alternative program execution path; otherwise we
continue

2) We build a new set of constraints on variables, using the
negation of the last condition;

3) we resolve this set of constraints on variables by find-
ing a set of specific values of symbolic variables that
satisfies all the conditions of path constraints;

4) add the resulting set of input data to the queue.

The most important and critical part of this process, how-
ever, is the ability to effectively model operations on symbolic
variables (reducing their effort to a set of simple atomic
operations) and resolve the resulting sets of logical formulas
(path constraints) for all types of variables used in the program.
The main method for such resolution of formulas in the field
of dynamic program analysis is currently the Satisfiability
Modulo Theory, which was described above.

D. ExpoSE

ExpoSE is a dynamic symbolic execution engine for Node.js
applications. ExpoSE automatically generates test cases to
find bugs and cover as many paths in the target program as
possible. ExpoSE bypasses all program execution paths by
using a concolic execution technique, implementing callbacks
in Jalangi2, and using Z3 as a solver to generate new input
data.

III. IMPLEMENTATION

At this stage of development, our prototype solution is
looking for a hotspot using the concolic execution technique
implemented by the ExpoSE tool. We find a call of the
crateServer function of the nodejs http standard library [12].
This function takes as input the function f(request, response)
- a request processing function, where request is an object
of the http.IncomingMessage class that describes the request,
response - an object of the http.ServerResponse class that
describes the server response (for more details, you can read in

the documentation here). Instead of executing the crateServer
function, we run the function f(request’, response’), where
request’ and response’ are objects that model a server request
and a server response. The main thing in request’ is the
concolic “url” and “methods” variables that model the input.
Since the analysis is performed dynamically, before calling
the next function in the program, we can check whether it is
a hotspot. If it is really a hotspot, then we can restore the
request, which, by sending it to the server, we will get to a
given point in the program with such a state of the variables.
By passing this url to sqlmap [13], we can verify whether it
is possible to transfer such data to this hotspot that they lead
to a vulnerability.

IV. EVALUATION

To evaluate the prototype, several stand web applications
were made. When creating them, we pursued the following
goals: they should have sql-injection, code-injection; stands
must use different database drivers; stands should be written
on different web-frameworks. We got the following stands:

1. The application keeps a list of users of some site. The
application has a main page, as well as 3 more that are
linked from the main page: /users - a list of users, /by-id -
a page with information about a user that has a specific id
parameter, /by-name - a page with information about user
having a particular concrete name parameter. When following
the /by-name link, the name parameter is passed, which is
processed on the server in a vulnerable way - without any
checks, it is part of the SQL query that searches the database
for the desired user. Because of this, any information can be
extracted from the database, which leads to a SQL injection
vulnerability. When following the /by-id link, the id parameter
is passed, which is processed on the server in a vulnerable
way - without any checks, it is input to the eval command,
which allows remote code execution on the server and leads
to a code-injection vulnerability. The application is written
based on the built-in framework, as well as the third-party
mysql library, which is driver and designed to work with the
mysql DBMS.

2. The application keeps a list of users of some site. The
application has a main page, as well as another one, which is
linked from the main page: /users - a page with information
about the user, which has a specific username parameter. When
following the /users link, the username parameter is passed,
which is processed on the server in a vulnerable way - without
any checks, it is part of the SQL query that searches the
database for the desired user. Because of this, any information
can be extracted from the database, which leads to a SQL
injection vulnerability. The application is written based on the
built-in framework, the framework for creating express web
applications, as well as the third-party sqlite3 library, which
is driver and designed to work with the sqlite DBMS.

V. RELATED WORK

In this review, we focused on dynamic methods of program
analysis and vulnerability search.
Wasserman et al. [14] formally defines what a vulnerability

where_clause

bfactor
""—-_._‘_‘__\“
cond

value

3
\

'John AND cardtype =2

value

WHERE uname =

Fig. 4. Example of a ”good” query.

where_clause

bterm

\

bfactor

vamwe

o .\ \comp|

*”’\ s\

WHERE uname = 'John' AND cardtype = 20R 1 =1

bfactor

cond

val
vaiue alue

Fig. 5. Example of a “bad” query.

is based on the following consideration: “good” (“Fig. 4”)
queries have the same parse trees, ’bad ~ are non-good
(“Fig. 5°) parse trees. If during any execution of the program
the requests will have the same AST, then there is no
injection in this place, otherwise - maybe, so there may
be false positive results. The paper provides an algorithm
on how to understand from the input data whether they
lead to an injection. The algorithm is exact in the sense that

if it gives the result ’no injection”, then it really does not exist.

The following paper by Wasserman et al. [15] provides a
conservative algorithm for checking that there are no injections
in the program (conservative in the sense that if the algorithm
says that there is no injection, then there is definitely no
injection. False-positive results are possible). The algorithm
is as follows:

1) for each hotspot, we build a context-free grammar of the
language, consisting of strings that can fall into the input
of this hotspot (the language that the grammar defines is
larger than the real language, which consists of strings
that can fall into the input of this hotspot);

2) build a grammar of “bad” lines (i.e. injections);

3) we check that two languages have no intersection. This
method was done on the basis of the algorithm from
Minamide [16], who made their own algorithm based
on the work of Reps et al. [17]-[21] on the reachability
of the language of the grammar.

The method was implemented for the PHP language.

Exploit generation was presented in the following paper by
Wasserman et al. [22] The algorithm is as follows:

1) using the concolic execution method, we traverse the
program;

2) if we encounter a hotspot while bypassing the program,
then we build the grammar of the language for which
member strings may work as input to the hotspot (due
to the fact that we use concolic execution and not static
methods, this grammar is calculated more accurately);

3) we intersect this language with the language of “bad”
strings;

4) if the intersection is not empty, then we take any string
from the resulting language, which will be exploit.

It also uses the methods from Minamide [16] and Reps et al.
[17]-{21]

The method was implemented for the PHP language.

In Kieyzun et al. [23] concolic execution is considered to
cover various paths in the program and detect vulnerabilities
and mutation of input parameters in order to select an attack
vector that leads to the exploitation of a vulnerability. As
vulnerabilities, injections of SQL commands and first-order
JavaScript code (first-order SLQi and XSS) and injection
of second-order JavaScript code (second-order XSS) are
considered. This work is interesting not only for the
combination of techniques used to detect vulnerabilities,
but also for the active use of third-party existing tools, as
well as for the first in the literature automatic detection of
second-order XSS vulnerabilities using the concolic database.

VI. FUTURE WORK
There are several directions for further development of our
tool:
1) We evaluated our tool only with synthetic examples. The
fact, is that it is quite difficult to automatically apply

tool to some real-world web applications due to their
code size and complexity. As one of the future steps,
it is possible to test our tool with open source web
applications

2) When finding a hotspot, we do not use information
about what requests can come to the input of this
hotspot, although we actually do have them - thanks
to concolic execution, we have all the constraints on
this data available. It would be possible to implement
an approach close to the one proposed by Wasserman
et al. team, but we expect loss of precision due to the
fact that the input data arriving at the hotspot input is
not always described by a context-free grammar.

3) Extend our model to find XSS and other code injection
classes.

4) The request’ and response’ models in our solution are
not precise, they only have a few parameters. Their
refinement would increase the reliability of our tool.

VII. CONCLUSION

In the paper, we presented a prototype web application
vulnerability search tool based on abstract interpretation, and
also presented a description of the stands on which this tool
was tested.

ACKNOWLEDGMENT

The results of the project “Automatic search for vulnera-
bilities in web applications based on big data processing”,
carried out as part of the National Technology Initiative
Competence Center Program “Big Data Storage and Analysis
Center”, supported by the Ministry of Science and Higher
Education of the Russian Federation under the Agreement of
the Lomonosov Moscow State University with the National
Technology Initiative Project Support Fund dated August 15,
2019 No 7/1251/2019.

REFERENCES

[1] J. C. King, “Symbolic execution and program testing,” Communications
of the ACM, vol. 19, no. 7, pp. 385-394, 1976.

[2] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi,
“A survey of symbolic execution techniques,” ACM Computing Surveys
(CSUR), vol. 51, no. 3, pp. 1-39, 2018.

[3] B. Loring, D. Mitchell, and J. Kinder, “Expose: practical symbolic
execution of standalone javascript,” in Proceedings of the 24th ACM
SIGSOFT International SPIN Symposium on Model Checking of Soft-
ware, 2017, pp. 196-199.

[4] B. Loring, D. Mitchell, and J. Kinder,, “Sound regular expression
semantics for dynamic symbolic execution of javascript,” in Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2019, pp. 425-438.

[5]1 K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: a tool framework
for concolic testing, selective record-replay, and dynamic analysis of
javascript,” in Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, 2013, pp. 615-618.

[6] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A selective
record-replay and dynamic analysis framework for javascript,” in Pro-
ceedings of the 2013 9th Joint Meeting on Foundations of Software
Engineering, 2013, pp. 488—498.

[7] “Jalangi2: Dynamic analysis framework for javascript.” [Online].
Available: https://github.com/Samsung/jalangi2

[8] L. d. Moura and N. Bjgrner, “Z3: An efficient smt solver,” in Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2008, pp. 337-340.

[9]

[10]

(11]

(12]
[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

(21]

[22]

[23]

P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated
random testing,” in Proceedings of the 2005 ACM SIGPLAN conference
on Programming language design and implementation, 2005, pp. 213—
223.

K. Sen, D. Marinov, and G. Agha, “Cute: A concolic unit testing engine
for ¢,” ACM SIGSOFT Software Engineering Notes, vol. 30, no. 5, pp.
263-272, 2005.

C. Cadar, D. Dunbar, D. R. Engler ef al., “Klee: unassisted and automatic
generation of high-coverage tests for complex systems programs.” in
OSDI, vol. 8, 2008, pp. 209-224.
“Node.js v17.8.0 documentation.”
https://nodejs.org/api/http.html

“sqlmap: automatic sql injection and database takeover tool.” [Online].
Available: https://sqlmap.org/

Z. Su and G. Wassermann, “The essence of command injection attacks
in web applications,” Acm Sigplan Notices, vol. 41, no. 1, pp. 372-382,
2006.

G. Wassermann and Z. Su, “Sound and precise analysis of web
applications for injection vulnerabilities,” in Proceedings of the 28th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2007, pp. 32-41.

Y. Minamide, “Static approximation of dynamically generated web
pages,” in Proceedings of the I14th international conference on World
Wide Web, 2005, pp. 432-441.

T. Reps, M. Sagiv, and S. Horwitz, Interprocedural dataflow analysis
via graph reachability. Datalogisk Institut, Kgbenhavns Universitet,
1994.

T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural dataflow
analysis via graph reachability,” in Proceedings of the 22nd ACM
SIGPLAN-SIGACT symposium on Principles of programming languages,
1995, pp. 49-61.

D. Melski and T. Reps, “Interconvertbility of set constraints and context-
free language reachability,” ACM SIGPLAN Notices, vol. 32, no. 12, pp.
74-89, 1997.

T. Reps, “Program analysis via graph reachability,” Information and
software technology, vol. 40, no. 11-12, pp. 701-726, 1998.

D. Melski and T. Reps, “Interconvertibility of a class of set constraints
and context-free-language reachability,” Theoretical Computer Science,
vol. 248, no. 1-2, pp. 29-98, 2000.

G. Wassermann, D. Yu, A. Chander, D. Dhurjati, H. Inamura, and Z. Su,
“Dynamic test input generation for web applications,” in Proceedings
of the 2008 international symposium on Software testing and analysis,
2008, pp. 249-260.

A. Kieyzun, P. J. Guo, K. Jayaraman, and M. D. Ernst, “Automatic
creation of sql injection and cross-site scripting attacks,” in 2009 IEEE
31st international conference on software engineering. 1EEE, 2009,
pp.- 199-209.

[Online]. Available:

