
An algorithm of test generation from functional

specification using Open IE model and clustering

K. S. Kobyshev1, S. A. Molodyakov2
Peter the Great Saint-Petersburg Polytechnic university

High School of Programming Engineering
1kobyshev2.ks@edu.spbstu.ru, 2molodyakov_sa@spbstu.ru

Annotation. The practice of automatic test covering is

widespread now. Usually, framework and tests are developed

separately, and framework functions are used in tests. We

proposed an algorithm to generate E2E tests from functional

specification. The algorithm includes the following main steps:

test scenarios forming from specification; test scenarios splitting

to sentences that will be translated to the one final code line;

sentences transformation to syntax tree using pretrained OpenIE

model; test steps comparison with testing functions using

Word2Vec model; given semantic tree transformation to the

Kotlin language code. The algorithm feature is an application of

syntax tree to generate tests and framework interfaces. The

paper contains the description of protype of system automatically

generating Kotlin language tests from natural language

specification.

Key words: automatic test, natural language processing,

clustering, E2E test, word2vec, Kotlin.

I. INTRODUCTION

The practice of automatic test is widespread now. The
covering can be implemented on different levels of testing
pyramid: unit tests, integration tests, API (Application
programming interface) tests, E2E (End-to-End) tests [1]. The
program autotest covering lets to decrease complexity of code
refactoring process, also tests can be used as primary code
documentation according to Test-Driven Development
methodology [2].

Framework is an approach that allows to optimize the
development process of API and E2E tests, that are used in
enterprise systems often [3]. Usually, framework and tests are
separately developed, and framework functions are used in
tests.

II. PROBLEMS OF EXISTING TESTING AUTOMATION SOLUTIONS

When programming system is quite complex, analysts
prepare a document describing system behavior called
functional specification. Usually, in case of complex and long
living project, the functionality should be delivered by short
iterations (release cycles) or build should be delivered
immediately after functionality implementation. In this case it
is necessary to check not only the new functionality, but also
existing earlier, necessary to complete the automated
regression testing. Consider the testing automation methods
presented in Table I and define their disadvantages.

TABLE I. TESING AUTOMATION METHODS

Ch-cs/approach Classic BDD

Verification

methods

Neural

network

training

Test

structuredness
- ++ ++ --

Analyst

partipiation
-- ++ ++ --

Test
configuration

automation

-- -- ++ +

Cyclomatic
complexity

resistance

++ ++ -- ++

 Reliability of
applied method

+ + ++ --

According to the classic testing automation method, analyst
prepare the functional specification that is used for automatic
test preparation by QA engineers (Quality Assurance engineer).
Automatic tests are prepared manually. This method forces
analyst and QA engineers to work separately. Participation of
analysts is minimal and interaction between analysts and QA
engineers is done over the document – functional specification.
Also, QA engineers are responsible of test framework structure
support. This approach excludes the full automation of test
preparation.

The BDD approach (Behavior-Driven Development) is a
test framework interfaces preparation by analyst with using of
domain-oriented language [4]. Analysts prepare structure of
test framework and QA engineers implements the test
framework. This approach allows to achieve the best test
structuredness. Unfortunately, this approach like classic
approach, excludes the full automation of test preparation.

Algorithms of formal verification methods are collected to
the one group in the Table I. These algorithms allow to
completely check the program correctness according to
functional specification requirements, made with, for example,
language of temporal logic [5]. The performance of verification
process significantly degrades with increasing of cyclomatic
complexity of program. The formal verification process is a
check of all possible program states, which can cause the
“combinatorial explosion”. Therefore, the formal verification
usually applied for prototype of program instead of the source
program.

Pic. 1. The proposed solution for automatic test generation

 Also, there is an approach based on the training of neural
network [6]. Authors proposed to train neural network by
random input data for program and given from its output data.
This approach does not take in account analyst participation
and testing is based on already prepared program. But this
approach cannot guarantee the reliability because it is
impossible to make the completely correct trained neural
network model. Also, it is impossible to continue the model
training with new program changes.

So, the following problems were found out during the
existing methods analysis:

• Chaotic state, absence of test structure.

• Analysts work separately from QA engineers, absence
of correct unified understanding of expected system
behavior. Their work can be done only through
documents, functional specification, consisted of non-
strict natural language sentences.

• Automated test configuring is done in manual mode
and requires significant labor resources.

• Low testing system performance with increasing of
cyclomatic program complexity.

• Absence of guarantee that automatic testing system is
completely correct.

An algorithm allowing to avoid enumerated disadvantages
was proposed in the research.

III. TEST DEVELOPMENT AUTOMATION

Consider the solution proposed in the current research and
schematically presented in Pic. 1. We proposed to build the
development process in the following way:

• Analysts prepare functional specification in a form of
natural language scenario set.

• Natural language test scenarios are transformed to the
autotest code and interfaces of test steps by the
proposed automatic software tool.

• QA engineer implements given test step interfaces on
Kotlin programming language.

Consider the proposed solution in detail.

IV. TEST GENERATION ALGORITHM STEPS

Consider the work of proposed test generation algorithm on
high level (schematically presented on Pic. 2). The proposed
method includes the following steps:

1. The functional specification chapter is taken as a test class
name, and test scenario name is taken as a test method
name.

2. The test scenario is divided to sentences. Each sentence will
be transformed to the one line of final code.

3. Each sentence is transformed to the syntax tree using the
pretrained OpenIE model [7].

4. Test step, parameter group and separate parameter names
are associated with test step, parameter group and
parameter types using Word2Vec model [8, 9].

5. The given semantic tree is transformed to the Kotlin
language code.

Consider steps 3, 4, 5 in detail.

V. ALGORITHM OF SYNTAX TREE PREPARATION

OpenIE model is used to build the syntax tree from test
scenario sentence [7]. Before OpenIE processing, the text data
should be prepared by the following algorithms: tokenization
[10], lemmatization [11], part-of-speech definition [12],
building the dependency tree D [13]. Triplets are formed with
using of OpenIE according to the expression (1), where s is a
subject, R is a relation, o is an object:

 (1)

In some cases, an object contains a set of several
interconnected natural language words. The object can be
presented in a form of a part of dependency tree, therefore
according to the expression (2):

 (2)

This view allows to present the object as a hierarchic

Pic. 2. Steps of the proposed algorithm

structure of different parameters, that will make automatic tests
more descriptive. The dependency tree can be presented by
expressions (3) and (4), where P are tree nodes, and V are
leaves. In other words, these leaves are values V of parameters
P. And parameters P can include other parameters P or values
V, so o can be presented in a form of hierarchic structure, so
tests will contain trees of parameters P with values V:

For now, when the current step is done, found subjects,

relationships, parameter sets, and values are not associated with
any types. In the next step, they will be classified to form
interfaces of test framework.

VI. TEST ELEMENT TYPE DEFINITION

As a result of the previous step, we got a hierarchically
connected subjects s, relationships R, parameter sets P, values
V. Each s, R, P, V is associated with some source natural
language word or word set. Any natural language word can be
presented in a form of coordinates vector in semantic space.
Close s, R, P, V can be grouped to clusters associated with test
framework interfaces.

For now, there are many ways to get natural language word
coordinates in semantic space. The most used for today models
presenting word semantic coordinates are: RNNLM [14],
word2vec [8], GloVe [15], fastText [16]. The GloVe model
was used in the proposed method because this model takes in
account in significant degree word cooccurrence frequency,
that is important for our clustering.

As it was discussed earlier, we got a syntax tree D and a set
(s, R, P, V). Also, before clustering, we have a set (sс0, Rс0, Pс0,
Vс0), associated with a cluster set (s0`, R0`, P0`, V0`) found
earlier on clustering of previous test scenario sentence words.

Each subset s, R, P, V is divided to clusters separately.
Consider an example in the Pic. 3 in two-dimensional space,
when clusters s1

c, s2
c already found from previous test scenario

sentences and for now we want to parse 3 remaining sentences
and define their s, R, P, V types or clusters.

After parsing of three remaining sentences, as a result,
algorithm extracts subjects s3, s4, s5 from these three sentences.

Clusters of these subjects are defined in the following way. So,
we get a point in the two-dimensional semantic space. If there

are no clusters in radius r from the given point, then the cluster
with radius r will be placed at this point and the point will be a
cluster center. If the point is in the other cluster zone, then this
point will be associated with that cluster. If the point is not in
cluster, but the r-radius circle from this point intersects with
any cluster, then the point will be associated with the closest
cluster.

We can see on the Pic. 3 that clusters s1
c, s2

c were found at
the beginning. Then algorithm accepted the point s3, that was
associated with the cluster s3

c, because the r-radius circle from
this point is not intersected with any existing r-radius clusters.
The r-radius circle of point s4 is intersected with cluster s3

c, that
is why it was associated with the cluster s3

c. The point s5 was
associated with the cluster s1

c because it was inside of the r-
radius circle of this cluster.

The last remaining step is to get the Kotlin language code
from the given semantic tree.

VII. SEMANTIC TREE TRANSFORMATION TO THE KOTLIN

LANGUAGE CODE

The last step is to get the Kotlin language code from the
given typed semantic tree. As a result, we will get an autotest
on the domain-oriented language and interfaces of the test
framework. Consider transformation rules presented in the
Table II, where you can see examples of the parsed sentence in
the “before” column and prepared automatic test code fragment
in the “after” column.

TABLE II. SEMANTIC TREE TRANSFORMATIONS

Transformation

rule
Before After

Subject

User paid free

package
User - subject

user {

 …paid free package...
}

Subject

grouping

User paid free

package. User
got payment

bill.

user {

 ...paid free package, got

payment bill…
}

Relationship
User paid free

package

user {

 paid(…)

}

Object
User paid free

package

user {
 paid(Package(…))

}

Parameter
User paid free

package

user {
 paid(Package(type=…)

}

Value
User paid free

package

user {
 paid(Package(type=FREE)

}

Test scenario

Payment flow:

User paid free

package. User
got payment

bill.

@Test
fun paymentFlow() {

user {

 paid(Package(type=FREE)
 got(PaymentBill())

 }

}

The found subject is transformed to the lambda expression
with context. QA engineer should implement the context class.
If the same subject is appeared in two test scenario sentences,
then those subject lambda expressions will be grouped to the
one lambda expression. The found relationship is transformed

Pic. 3. Clusterization on two-dimensional projection of semantic space

to the method call, and that method should be implemented.
Parameters are transformed to the class field names. Values are
transformed to the primitive types of the Kotlin language or
Strings. Then all code is wrapped to the test method having the
name like the test scenario name.

VIII. PROTOTYPE OF THE PROPOSED SOLUTION

A prototype of the proposed solution was implemented on
Java language. The developed system uses pretrained OpenIE
model in a form of Maven package manager dependency called
Stanford NLP. A pretrained GloVe model was used. This
model was given from Wikipedia of 2014 year and Gigaword
text corpuses. The model contains 400 thousand words and
their coordinates in 100-dimensional space and takes 822 Mb
of memory. The GloVe model was stored and indexed in
Mongo database. For now, the prototype gives true results for
simple test scenarios, however, we found that it does not work
correctly in some complex test scenarios including multiple
words in subjects and relationships. Therefore, we need to
investigate more and improve clustering stage of the proposed
algorithm for now.

IX. CONCLUSION

We proposed the algorithm for automatization of test
development that allows to provide high test structuredness, the
unified understanding of system behavior of analysts and QA
engineers, to achieve the high reliability and resistance to
cyclomatic complexity of test system. Automatic tests and test
framework interfaces on Kotlin language are formed from
natural language test scenarios, and QA engineers should
implement interfaces of test framework. In the future, we want
to test accuracy, speed, recall of the developed algorithm, also
we want to improve the clustering stage of the proposed
algorithm.

REFERENCES

[1] N. Radziwill “Freeman Gr. “Reframing the Test Pyramid for Digitally
Transformed Organizations”. Software Quality Professional. 2020. vol.
22, №4. pp. 18-25.

[2] It. Karac and B. Turhan. “What Do We (Really) Know about Test-
Driven Development?” IEEE Software. 2018. vol. 35. №4. pp. 81-85.
DOI:10.1109/MS.2018.2801554

[3] M. A. Fountoura. “Systematic Approach for Framework Development”.
Rio de Janeiro, 1999. 165 p.

[4] M. Irshad, R. Britto and K. Petersen. “Adapting Behavior Driven
Development (BDD) for large-scale software systems”. Journal of
Systems and Software. 2021. №17. 20 p. DOI:
10.1016/j.jss.2021.110944

[5] W. Wasira. “Existing Tools for Formal Verification and Formal
Methods”. MS Computer Science, Lewis University. 2020. DOI:
10.13140/RG.2.2.12162.22721.

[6] A. D. Danilov and V. M. Mugatina. “Verification and testing of complex
software products based on neural network models”. Vestnik VGTU
[VSTU Bulletin]. 2016. vol. 12. №6. pp. 62-67. (in Russian)

[7] G. Angeli, M. Premkumar and Chr. Manning. “Leveraging Linguistic
Structure For Open Domain Information Extraction”. Proceedings of the
53rd Annual Meeting of the Association for Computational Linguistics
and the 7th International Joint Conference on Natural Language
Processing. Bejing, 2015. №1. pp. 344-354. DOI: 10.3115/v1/P15-1034.

[8] M. Long and Z. Yanqing. “Using Word2Vec to process big text data”.
2015 IEEE International Conference. 2015, San-Jose. №10. DOI:
10.1109/BigData.2015.7364114.

[9] A. D. Kovalev, I. V. Nikiforov and P. D. Drobincev. “Automated
approach for semantic search in software documentation based on
Doc2Vec algorithm”. Informaciono-upravlayuscshiye sistemi
[Information control systems]. 2021. №1 (110). pp. 17-27. (in Russian)

[10] R. M. Garcia-Teruel and H. Simon-Moreno. “The digital tokenization of
property rights. A comparative perspective”. Computer Law & Security
Review. 2021. vol. 41. №2. pp. 1-16. DOI:10.1016/j.clsr.2021.105543.

[11] B. Vimala and E. Lloyd-Yemoh. “Stemming and Lemmatization: A
Comparison of Retrieval Performances”. Lecture Notes on Software
Engineering. 2014. №2. pp. 262-267. DOI:
10.7763/LNSE.2014.V2.134.

[12] S. Chotirat and P. Meesad. “Part-of-Speech tagging enhancement to
natural language processing for Thai wh-question classification with
deep learning”. Heliyon. 2020. vol. 7. №10. DOI:
10.1016/j.heliyon.2021.e08216.

[13] R. Zmigrod, T. Vieira and R. Cotterell. “On Finding the K-best Non-
projective Dependency Trees”. ACL/IJCNLP. 2021.
DOI:10.18653/v1/2021.acl-long.106.

[14] G. Lecorve and P. Motlicek. “Conversion of Recurrent Neural Network
Language Models to Weighted Finite State Transducers for Automatic
Speech Recognition”. 13th Annual Conference of the International
Speech Communication Association 2012.

[15] J. Pennington, R. Socher and Chr. Manning. “Glove: Global Vectors for
Word Representation”. EMNLP. 2014. №14. pp. 1532-1543. DOI:
10.3115/v1/D14-1162.

[16] I. N. Khasanah. “Sentiment Classification Using fastText Embedding
and Deep Learning Model”. Procedia Computer Science. 2021. №189.
pp. 343-350. 10.1016/j.procs.2021.05.103.

