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Abstract—One of the key aspects of the correctness of the
memory subsystem of a microprocessor is its functioning in
accordance with the memory coherence protocol. This article
presents an approach to test program generation for memory co-
herence verification of ”Elbrus” microprocessors. Requirements
for memory coherence tests are considered. The memory map
structure allowing to describe the memory areas used in tests
and the types of accesses to these areas in a flexible way is
presented. The method of test program generation based on the
memory map structure is described. The method of automatic
memory map generation is proposed. Generated tests have been
used for verification of RTL models and FPGA-based prototypes.

Index Terms—system verification, memory coherence verifica-
tion, pseudorandom test generation, Elbrus

I. INTRODUCTION

Memory subsystems of modern microprocessors provide
support for various address spaces with address translation and
include various levels of cache memory, means of ensuring
data coherence, numerous buffers and switches [1]. To ensure
consistency of caches states, the computing nodes of the sys-
tem are combined into a single system and exchange messages
in accordance with a cache coherence protocol [2]. All this
determines high combinatorial complexity of verification [3],
which sharply restricts the use of formal methods to individual
bottlenecks or devices.

To increase the probability of reproducing various dynamic
situations that occur when many devices are functioning
simultaneously in the system, increasing the number of tests
is necessary. In order to automate the development of test
scenarios and their implementations in the form of ready-made
test programs, automatic test generation is actively used. In
this case, the source code of the test program is generated
randomly, considering the specified parameters [3]. Parameter-
ization allows fitting tests to reproduce certain situations with
certain sets of random parameters [4]. The selection of test
generation control parameters is performed at the development
stage of each tool separately and is determined by the test
generation algorithm.

Currently, MCST JSC is designing multi-core micropro-
cessors with general-purpose cores of ”Elbrus” architecture
version 6. The development of ”Elbrus” architecture has led
to significant additions to the instruction set architecture and
changes in the operation of devices included in the memory
subsystem. In particular, the transition to a new coherence
protocol affected the functionality of existing memory ac-
cesses. This led to inapplicability of the existing test generation
algorithm to verify the memory subsystem of the developing
microprocessors. For these reasons, development of a new
algorithm for generating memory coherence tests and its
implementation in the form of a pseudo-random Assembly test
generator was required. This article discusses a new approach
that is the basis for solving this problem.

II. ”ELBRUS” ARCHITECTURE OVERVIEW

”Elbrus” architecture introduces a set of memory types
determining the system behavior of memory accesses. The
system behavior of memory access is characterized by a com-
bination of specified properties. Each memory type describes
a unique combination of these properties.

Memory access instructions are represented by instructions
of store and load types. The size of addressing memory frag-
ment and the source/destination register format are determined
by the memory access instruction format. ”Elbrus” architecture
uses an operation code extension – memory address specifica-
tor (MAS) for each memory access instruction. MAS defines
the additional specific properties of the memory access, the
method for storing data in different cache levels and affects
the memory type. Thus, the set of memory accesses types is
determined by the following formula:

T ⊆ I × F ×M (1)

where:
T – set of memory accesses types,
I – set of memory access instruction types,
F – set of memory access instruction formats,
M – set of MAS.



According to the generally accepted classification ”Elbrus”
is a VLIW (Very Long Instruction Word) architecture [5]. Each
VLIW contains a set of instructions. Instructions placed in the
same VLIW are executed in parallel.

In ”Elbrus” architecture VLIW consists of 6 instruction
channels. The sets of instructions supported by each channel
are different. Memory access instructions are supported by
only 4 instruction channels. However, store instructions are
supported by only 2 of these channels. The use of certain
memory access types is moreover supported by only certain
channels. Due to architectural restrictions, the placement of
several instructions in the same VLIW is limited.

Modern ”Elbrus” microprocessors are Systems-on-a-Chip
(SoC) with multiple unified general-purpose cores. The unified
general-purpose core includes private level 1 instruction cache
(L1I), level 1 data cache (L1D) and level 2 cache (L2). SoC
of various configurations are being developed. The number
of unified general-purpose cores, the presence of shared level
3 cache (L3), the number of interprocessor communication
channels (IPCC), the number of memory controllers and
other options are defined by the SoC configuration. Multiple
microprocessors can be combined in a multiprocessor system
with coherent shared memory based on ccNUMA principle by
IPCC.

Among the innovations of ”Elbrus” instruction set version
6 can be noted: the introduction of additional memory access
properties, the transition to new memory types, the introduc-
tion of additional MAS with extended caching hints and the
elimination of Input-Output memory space coherence support.
In addition, hardware innovations include the transition to a
unified general-purpose cores, cache memory policies modifi-
cation and optimization for unaligned memory accesses. The
coherence protocol has also been significantly changed.

III. TEST REQUIREMENTS

The following requirements for generated tests were formed.
Since ”Elbrus” microprocessors contain multiple cores and

can be combined in a variety of multiprocessor configurations,
memory coherence tests should be designed for verification
of multiprocessor systems. Before the execution of a test se-
quence, the system under test should be initialized. In order to
check different operating modes of memory subsystem devices
and cover more dynamic situations, the implementation of
pseudo-random initialization of memory subsystem devices
settings within acceptable limits is necessary. The system ini-
tialization procedure should end with a cores synchronization
procedure to ensure that all of the cores of the system under
test are ready for execution of a test sequence.

The existing test development environment provides a uni-
fied parameterized system initialization program and imple-
mentations of commonly used test procedures, such as cores
synchronization and exit code output to the using test bench.
Using the test development environment is a great way to
simplify test development.

After the exetution of the system initialization procedure
each core executes a test sequence of instructions. In the

case of memory subsystem verification tests, the test sequence
should contain memory access instructions of various memory
access types and perform the operation of cores with shared
memory. In order to check the functionality of individual cache
memories, the organization of memory access sequences at
addresses that lead to cache lines eviction is necessary. To
test the memory coherence mechanisms, a stream of parallel
requests to the same cache memory lines from different cores
should be formed. In addition, the generation of VLIWs with
various combinations of memory access instructions needs to
be supported in order to check the VLIWs execution.

The test sequence of instructions for each core should end
with a self-check procedure that checks the correctness of
register values and data in the tested memory areas. This
approach allows using tests to verify RTL models, FPGA-
based prototypes [6], and to test manufactured chips. The in-
tention is to use self-checking code generator for the self-check
procedures generation. This tool is based on the functional
model of the system under test and allows to generate the code
for comparing registers with the reference values obtained as
a result of the test execution by the functional model [7] [8].

Debugging of generated tests is supposed to be performed
using a functional model of the system under test and a trace
comparator. The results of the test execution on the functional
model and RTL model are the executed instructions traces.
Firstly, to achieve a successful test execution on the functional
model is necessary. This is followed by debugging the test on
RTL model. To speed up the search for differences between the
functional model and RTL model executed instruction traces
the trace comparator should be used. Due to the unavailability
of the execution instruction trace, debugging tests on the
FPGA-based prototype is difficult. For this reason the test exit
code should localize the failed self-check code statement. The
reasons for the test fail can be both the test errors and the
system under test errors.

IV. SHARED MEMORY INTERACTION

The operation of multiple cores with shared memory allows
using maintain memory coherence mechanisms and detecting
errors in their implementations. There are two ways of sharing
memory: true sharing and false sharing. Both of them are
presented on Fig. 1.

True sharing is the operation of multiple cores with overlap-
ping memory fragments. The implementation of true sharing
in tests is limited due to the need to ensure deterministic test
execution. To ensure determinism of the true sharing usage,
synchronization of code execution by the cores before and after
each modification of the overlapping memory fragments is
necessary. Since the cores synchronization procedure requires
multiple memory accesses from each of the synchronized cores
and blocks the test sequence execution, using of true sharing
can lead to high overhead costs.

False sharing is the operation of multiple cores with non-
overlapping memory fragments. One of the cores is designated
for each memory fragment – the core-owner. Only the core-
owner can operate with its own memory fragments. Since



Fig. 1. Methods of memory sharing.

cache lines change their states according to the coherence
protocol, this way of sharing memory allows loading memory
coherence mechanisms without the overhead of ensuring the
determinism: multiple cores use the same cache line, however,
the order of memory accesses of the core-owner is guaranteed
by the hardware according to the used memory type and other
cores do not affect the content of the memory fragment.

In comparison with true sharing, false sharing does not
provide real operation with shared data. Thus, some ways of
changing the cache lines states are not checked. In addition,
using true sharing can change the dynamics of the test execu-
tion.

For these reasons, the combination of both approaches was
proposed: mainly to organize data separation in tests by false
sharing, but at the same time to implement operation with
common data in some volume. This is achieved by forming
a testing sequence from a parameterized number of sections.
The full test structure is shown in Fig. 2. At the beginning
of each section, all of the cores are synchronized. After
synchronization procedures, a random sequence of VLIWs
with different combinations of memory access instructions
is generated for each core. Within each section of the test
sequence, cache lines are split between the cores using false
sharing in different ways. Therefore, when switching between
test sections occurs, some memory fragments are passed to
other cores-owners for management. Thus, the operating with
shared memory fragments by several microprocessor cores is
implemented in cores synchronization procedures and during
transitions between the test sections.

V. DESCRIPTION OF MEMORY ACCESSES

A special structure – a memory map has been developed to
describe memory accesses. The memory map contains a list of

Fig. 2. Test structure.

address ranges corresponding to memory fragments and maps
the memory fragments to their parameter sets:

[abegink , aendk ] 7→ {Ik, Fk,Mk, ck, r
st/ld
k , puk}, k = 1,K (2)

where:
abeginn – the address of the nth memory fragment beginning,
aendn – the address of the nth memory fragment ending,
In – the nth set of memory access instruction types,
Fn – the nth set of memory access instruction formats,
Mn – the nth set of MAS,
cn – the nth core-owner,
r
st/ld
n – the nth store-to-load ratio,
pun – the nth priority of use,
K – the number of the memory fragments in the memory
map.
All addresses are presented in terms of bytes. The memory
map describes non-overlapping memory fragments:

abegin1 ≤ aend1 < abegin2 ≤ aend2 < . . . < abeginK ≤ aendK (3)

Adjacent memory fragments with equivalent parameter sets
are combined into a single memory fragment in the memory



map. Priorities of use memory fragments allow managing the
frequency of memory accesses to each memory fragment, as
well as store-to-load ratios control the frequency of using
different types of memory accesses. This allows to configure
spatio-temporal profiles of cores with different memory areas
in a flexible way [9].

The need to ensure a deterministic state of memory imposes
restrictions on the combination of using memory access types.
Using coherent and non-coherent memory accesses to the
memory fragments located in the same cache line generally
results in an undefined cache line memory value. For this
reason, the set of valid memory access types for each memory
fragment should be selected for deterministic reasons.

A memory map is used to describe the requests generated
in a test section. For multi-section tests, a separate memory
map for each section of the test should be used. In this case,
ensuring deterministic transitions between the test sections by
adding additional procedures to the test is necessary.

VI. CODE GENERATOR

The code generator implements the described in the memory
maps memory accesses as a ready-made Assembly test in
accordance with the test structure presented in Fig. 2.

At the beginning of the test, the code generator defines
initialization parameters for the parameterized system initial-
ization program. Depending on the test generation parameters,
default or random settings for memory subsystem devices can
be used.

The test sequence is executed in a loop. The number of
iterations of the loop is parameterized. Due to the operation
of the cache memory, different dynamic of the test program
execution at different iterations is achieved. Consequently,
with a slight increase in the size of the test, the execution
time and the number of situations being tested can be increased
many times. This is convenient when performing a test on an
FPGA-based prototype, where the test load time is significant.

Memory access instructions are generated based on the
memory map of the current test section. The algorithm for
generating a test sequence using a memory map runs indepen-
dently for each core. To check the correctness of the store-to-
load bypass in the L1D cache, random generation of the load
instruction corresponding to the previous store instruction by
address, format and MAS is provided. Random generation
of ”wait” instructions is also implemented. For core c the
algorithm consists of the following steps:

1) Retrieving the set A of memory fragments owned by
core c;

2) An empty VLIW creating;
3) Constructing a memory fragments probability distribu-

tion based on the priorities of use pu for memory
fragments a ∈ A;

4) If bypass-load is scheduled to be inserted into this
VLIW, restore the memory access type t, the memory
access address ã and go to step 13;

5) With specified probability of wait instruction generation
randomly choose an instruction from the set of accept-
able wait inctructions and go to step 14;

6) Random choice of the memory fragment am ∈ A ac-
cording to the constructed memory fragments probability
distribution;

7) Constructing a store-to-load probability distribution
based on the store-to-load ratio r

st/ld
m ;

8) Random choice of the instruction type i ∈ Im according
to the constructed store-to-load probability distribution;

9) Retrieving the set F̃m ⊂ Fm of suitable memory access
instruction formats f : size(f) ≤ size(am),∀f ∈ F̃m;

10) Retrieving the set Tm of suitable memory access types
using (2) in accordance with the requirements of the
instruction set architecture:

Tm ⊂ i× F̃m ×Mm (4)

11) Random choice of a memory access type t ∈ Tm;
12) Random choice of the memory access address ã ∈ am

considering the memory access alignment and the bor-
ders of am;

13) Selecting the data register for the generated memory
access instruction;

14) Placing the generated instruction in the current VLIW
or in a new empty VLIW if the placing in the current
VLIW is impossible;

15) If i is store, with the specified probability of store-to-
load bypassing save the memory access address ã, the
memory access type t and randomly choose the VLIW
to bypass-load insertion based on the specified VLIW
skipping range;

16) Repeating steps 4-16 until the specified number of
memory access instructions is reached.

The register and memory random values initialization code
is placed in the beginning of the first section of the test
for each core. In this case, a prohibition is introduced on
the generation of load instructions, only uninitialized memory
fragments are written with store instructions of the maximum
possible format.

The mode of generation of unaligned addresses is optional,
its use is determined by the generation parameters of the test.

Code generation for each test section is performed inde-
pendently using different memory maps. The code generator
ensures the correctness of the transition between test sections.
If the memory access types of a cache line are changed from
coherent to non-coherent, the cache line should be flushed out
of all the caches when switching between the test sections.
Before starting a new test section, the code generator places
the cores synchronization procedure and a sequence of cache
line flush instructions for such cache lines. Changing the
memory access types of a cache line from non-coherent to
coherent does not violate determinism; therefore, no additional
code is generated in this case. As a result of using this
approach, the functionality of evicting the specified cache lines
is additionally checked.



The final step of the test is checking whether the register and
memory values match the reference values. The self-checking
code is generated independently for each core. The memory
map of the last section of the test is used as a description
of requests. In this way, each core checks its own memory
fragments. If a discrepancy between the test data and the
reference data is detected, the test execution is terminated with
the output of diagnostic information to the user (exit code or
debug printing when executed on an FPGA-based prototype).

VII. AUTOMATION OF THE MEMORY MAPS FORMATION

Memory maps are a large and detailed description of mem-
ory accesses. Manual compilation of memory maps requires
high labor costs. In practice, describing memory requests in
high detail, up to fragments, is not always necessary. In order
to minimize the effort involved in creating memory maps for
large memory areas with the same allowed memory access
types, this process has been automated.

The user is given the opportunity to describe memory maps
at a more general level: the description is made for arbitrary
memory areas. In accordance with each memory area Ak the
parameter set are placed:

Ak 7→ {Ik, Fk,Mk, Ck, Sn, r
st/ld
k , puk}, k = 1,K (5)

where:
In – the nth set of memory access instruction types,
Fn – the nth set of memory access instruction formats,
Mn – the nth set of MAS,
Cn – the nth set of cores-owners,
Sn – the nth set of memory fragment sizes,
r
st/ld
n – the nth store-to-load ratio,
pun – the nth priority of use,
K – the number of described memory areas.
No restrictions are imposed. The resulting parameter set of
overlapping memory areas is a union of the overlapping
memory areas parameter sets. All conflicts will be resolved
automatically. If the conflicts cannot be resolved, test genera-
tion ends with an error message.

Then the symbol A is used for the described memory areas
set. The algorithm for generating a memory map consists of
the following steps:

1) Splitting of the memory area set A into K frag-
ments Ãk ∈ A, k = 1,K of cache line size
and alignment with the parameter set inheritance as

{Ĩk, F̃k, M̃k, C̃k, S̃n, r̃
st/ld
k , p̃uk};

2) Analysis of the MAS sets M̃k, k = 1,K for simulta-
neous presence of coherent and non-coherent types of
MAS in Mk sets;

3) Elimination of coherent or non-coherent types of MAS
in a random way for each Mk set, which contains
coherent and non-coherent MAS simultaneously;

4) Splitting the fragments Ãk, k = 1,K into fragments
akn ∈ Ãk, n = 1, N(k) of S̃k sizes in a random way,
where N(k) is a resulting number of memory fragments
akn in Ãk;

5) Mapping the memory map parameter set

{Ĩk, F̃k, M̃k, c̃nk, r̃
st/ld
k , p̃uk} with random core-owner

c̃nk ∈ C̃k to each memory fragment akn.
The result of this algorithm is a memory map that describes
the memory requests for a test section.

The memory maps are generated independently for each
section of the test using the presented algorithm. Ensuring
true sharing of memory and variations in request types used in
different sections of the test is achieved due to the randomness
of the memory map generation algorithm. The code generator
provides determinism support during transitions between the
test sections.

To check the functionality of individual caches, memory
areas are selected based on the organization of the target cache.
Requests to lines with the same indexes lead to evictions from
the cache memory, and the number of lines used must exceed
the associativity of the target cache memory. To automate
the compilation of memory areas aimed at creating evictions
in various cache memory levels, a memory areas generator
has been developed. The memory areas generator allows
generating a memory area that corresponds to a given number
of lines of the target cache level with the same indexes and
different tags.

VIII. RESULTS

A method for describing memory accesses using a memory
map was developed. The test generator of self-checking As-
sembly tests for memory coherence verification of ”Elbrus” ar-
chitecture microprocessors implementing the memory accesses
described in the memory maps was developed in C++.

The memory areas generator and the memory maps gen-
erator have been developed for the convenience of creating
memory maps that used for checking the functionality of indi-
vidual cache memories. Automating the formation of memory
maps allows reducing the volume and complexity of describing
the memory maps. In this case, the user can simultaneously
use an arbitrary number of memory areas generators and
manually specify memory areas. Moreover, the parameters
for generating memory maps can be set separately for each
obtained memory area. The implementation of the described
tools for automating memory maps generation does not lead
to the loss of the ability to describe requests at the fragment
level, but in some cases significantly simplifies the process of
configuring the test generator.

Currently, the developed test generator is used for veri-
fication of RTL models and FPGA-based prototypes of de-
veloping microprocessors with general-purpose cores of ”El-
brus” architecture version 6. As a result of using the test
generator, 74 logical errors were detected in the follow-
ing hardware units: L1D-cache, L2-cache, L3-cache, Trans-
lation Lookaside Buffer (TLB), Memory Access Unit (MAU),
On-Chip Network (OCN), Home Memory Unit (HMU), Mem-
ory Controller (MC), EFUSE. In addition, 3 malfunctions were
found in the hardware of the FPGA-based prototype. These
malfunctions are not errors of the original design and are spe-
cific only to the implementation of the FPGA-based prototype.



Logical errors were manifested in the following manner: data
corruption, deadlock, RTL assertion failure (available only in
RTL-simulation).

Conducting verification on the FPGA-based prototype al-
lows using tests with a large number of the test sequence
itterations (> 100) and, therefore, obtaining a variety of the
test sequence execution dinamics, which is difficult to achieve
with RTL-simulation. For this reason, some logical errors were
found only during verification on the FPGA-based prototype.
Detailed statistics on detected logical errors are presented in
table I.

The plan for further development of the test generator
consists of work in the following areas:

• Test scenarios development;
• Support for virtual addressing;
• Development of algorithms for verification of memory

consistency.

TABLE I
STATISTICS ON DETECTED LOGICAL ERRORS

Number of logical errors
Unit Detected on the FPGA-based prototype Total

L1D-cache 2 19
L2-cache 1 10
L3-cache 2 10

TLB 0 5
MAU 0 13
OCN 0 4
HMU 0 6
MC 1 6

EFUSE 0 1
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