
Automated Object Storage Management Approach

with Operator SDK and Custom Resource Definition

Kirill Stonozhenko, Igor Nikiforov, Sergey Ustinov

Peter the Great St. Petersburg Polytechnic University

St. Petersburg, Russia

stonozhenko.km@edu.spbstu.ru, nikiforov_iv@spbstu.ru, usm50@yandex.ru

Abstract — The work is devoted to the study of automation

tools for managing stateful applications in the Kubernetes

environment, particularly object storage systems. A review of

existing management tools capable solving the set tasks is made.

A comparative description of the considered tools based on

review is given and a tool is selected that meets the introduced

criteria: popularity, support form Kubernetes, reactivity of

developed operator, additional features, and others.

An approach to automatic object storage management using

the Operator SDK and Custom Resource Definition is suggested.

As a result of comprehensive comparative analysis of tools

Kubebuilder, Juju, Metacontroller, Kudo and Operator SDK, the

last one was chosen as a base of approach implementation. The

architecture of the system for managing a containerized version

of storage systems based on the Kubernetes platform and

integrating the operator with a user monitoring system is

proposed.

The described approach is implemented in a software tool –

an operator of the object data storage system resource. The paper

describes the details of software implementation, the structure of

the storage custom resource descriptor, and methods for testing

the end system.

As a result, an object storage management system based on

the Kubernetes platform was created, which made it possible to

reduce both labor costs for supporting and maintaining the

system, and it’s cost by reducing dependence on hardware.

Moreover, described approach corresponds to such features of

modern object storages as multi-tier, erasure coding support,

geo-replication, cluster topology that is quite innovative among

existing automated storage management approaches on

Kubernetes platforms.

I. INTRODUCTION

The amount of information produced by humanity and

requiring storage is increasing every day - a study [1]

conducted by the consulting firm IDC (International Data

Corporation), specializing in information technology [2],

showed that approximately 1.7 Mb of data is generated every

second by single human, which in absolute terms is

approximately 40 zettabytes per second.

Modern personal computers allow storing up to several

terabytes of data, which, on the one hand, is a sufficient

amount of memory for the average computer user, but on the

other hand, a very modest value for large companies that

produce and process petabytes and even exabytes of data.

Social networks, file hosting, web applications and other

programs that communicate via the Internet can exchange

even a larger amount of information that require considerable

memory resources for storage.

In addition to information carriers, modern data storage

complexes should also contain computing devices capable of

performing multi-threaded continuous operations of writing,

reading, deleting, and modifying data. Along with this, data

storage systems are also responsible for the security and

integrity of stored information - access to data is provided only

to those users who have the appropriate rights, and if one or

more hardware storage nodes fail, the data must be restored

using the remaining copies.

All these requirements are implemented in object

storages [3], a distinctive feature of which is the storage of all

data in the form of objects located at the same logical level

and defined by a set of metadata. The absence of a hierarchy in

such sort of storages makes this solution infinitely scalable,

which allows deploying system on a group of independent

nodes called a cluster. The object-oriented nature of the

storage system indicates lack of data unit structure, so any data

format can act as a storage object and makes this type of

storage universal.

However, the above specifics of object storage systems as

a software solution dictates certain requirements for the

hardware, which increases the cost of equipment and, as a

result, reduces the potential customer base of the manufactured

complex.

Reducing the dependence between the hardware platform

and the software of the system could be solved by the well-

known virtualization technique [4] – creating an additional

software abstraction layer between the user application and the

hardware. However, until recently, existing solutions for

deploying virtual machines on a cluster were poorly aligned

with the idea of horizontal scaling and required a significant

pool of resources.

Everything has been changed with the advent of

containerization [4-7] - a way to allocate a lightweight set of

system resources to programs - and container orchestration

systems [8-10] - software that monitors the execution of

containers on a provided set of resources and is responsible for

maintaining a certain state of the cluster.

One of the most popular orchestration systems -

Kubernetes [11-13]. It is designed to run a huge number of

programs wrapped in containers on a set of nodes united in

one network, which allows scaling the cluster vertically and

horizontally without limits. One of the distinguishing features

of Kubernetes is the presence of a replication controller [14]

responsible for maintaining multiple copies of stateless

containers [11, 15]. Stateless programs can be web clients that

form user requests based only on input data, and simple web

servers that send responses to a request based only on its

content.

mailto:stonozhenko.km@edu.spbstu.ru
mailto:nikiforov_iv@spbstu.ru
mailto:usm50@yandex.ru

Along with stateless applications, Kubernetes terminology

also defines stateful applications that are forced to save their

state as they execute. Their replication can no longer be

performed by sequentially deleting a copy of the program and

recreating it in a new location. Work features of each

individual stateful application require the creation of a

separate custom replication controller, also called an

operator [16,17], which monitors the state of its replica set.

Now there are many tools for creating stateful application

operators in the Kubernetes environment. Some of them,

considered in this paper, have been used by stateful software

developers to create their own Kubernetes operators. Such

stateful software include databases, metric collectors, machine

learning programs, logging systems, and many others.

Transferring an object storage system to the Kubernetes

container platform and creating a separate operator for

monitoring the state of stateful components is an advanced and

relevant direction in the development of object storage, which

reduces the cost of storage development, testing,

implementation, and maintenance, and also provides the

ability to deploy the system on almost any set of hardware

resources.

In this paper, we consider an approach to automatic

management of object storage based on the use of the Operator

SDK framework and Custom Resource Definition.

II. RELATED WORKS

One of the main components of the developed approach for

managing object storage in the Kubernetes environment is an

operator - a kind of user resource controller. Developing an

operator from a scratch, just like its further maintenance as a

product, is a time-consuming and expensive process, which is

a consequence of both the complexity of the internal structure

of Kubernetes controllers and the rather frequent change of

Kubernetes API versions.

In this regard, many tools have been created for your own

Kubernetes custom resource operators’ implementation. Some

of these tools are described below.

Kubebuilder is a command line utility, providing functions

for extending the Kubernetes cluster API. The main purpose of

the program is to create custom resources [17] and controllers

for their monitoring. The utility is implemented and builds

controller code in Golang, the native language of the

Kubernetes infrastructure. The distinctive features of the

Kubebuilder project include the ability to include the

configuration and the versioning of the resource being defined.

An alternative to Kubebuilder is the Operator SDK, an

open-source toolkit whose main purpose is to build

Kubernetes operators. The set includes the operator-sdk utility,

which provides a list of commands for generating an operator

template for any type of custom resource. The operator itself

can be implemented both in Golang (using scripts from the

Kubebuilder library) and using Ansible playbooks -

configuration management scripts - or Helm charts. In

addition, the Operator SDK allows you to connect the

developed operator to the Operator Lifecycle Manager - a

separate operator lifecycle management program, whose tasks

include monitoring the use of system resources, saving

metadata about a specific version of the operator, simplifying

the deployment, deletion and testing of the custom operator.

Another tool for creating Kubernetes operators is Juju [18].

In Juju terminology, user resource controllers are called

"charms" [19]. Python is the preferred language for

implementing charms, but other scripting languages can be

used that include libraries for interacting with Juju. Along with

the “juju” and “charm” command line utilities, the Juju

package also downloads the Charmed Operator Lifecycle

Manager, similar to the Operator Lifecycle Manager from the

Operator Framework. But unlike the second program, the

controller supplied by Juju is the software required to run on

the cluster in parallel with user statements, which negatively

affects the performance and complexity of system developed.

You can also use Metacontroller [20], a Kubernetes API

extension developed by Google, to create custom operators.

The tool provides the ability to create bundles of controllers

and stateful web applications through a web-hook. These

applications implement custom resource management logic

and can be written in any language capable of handling JSON-

like objects, such as Jsonnet or Python. Google's suggestion is

a declarative way to create a Kubernetes operator, which

simplifies the development process, but increases the load on

the cluster due to the deployment of additional entities.

For a completely declarative way to create Kubernetes

operators, you can apply KUDO (Kubernetes Universal

Declarative Operator) – kubectl Kubernetes CLI plugin.

Statements developed with KUDO manage user resources by

defining tasks and plans in statement descriptors in YAML

format. The undoubted advantage is the ease of creating

controllers, however, the declarative method of setting

operators reduces the ability to manage resources - KUDO

allows you to deploy complex stateful applications but is not

able to respond to changes in the cluster.

A full comparison of the considered tools is presented in

Table. 1.

During the comparison, the Operator SDK was chosen as

the tool for creating the Kubernetes object storage operator, as

it meets our requirements more than others.

Table. I. COMPARISON OF OPERATOR DEVELOPMENT TOOLS

Criteria Kubebuilder Operator SDK Juju Metacontroller KUDO

Popularity (thousands of Google search results) 92 18 100 1 610 6 360 611

Requires additional controller level - - + + -
Support from k8s + + - + -

Additional opportunities + + - - -
Operator reactivity + + + + -

III. PROPOSED APPROACH DESCRIPTION

A. Approach features

The software of modern object data storage systems is a

combination of several services that implement various

functions. Among them are software components for

accounting for user roles of the storage system, providing

access to one or more interfaces of various levels, distributing

data between several geographically separated clusters, and

many others.

The main service of the system is the storage service, a

component responsible directly for encoding and saving user

data. Encoding is understood as the splitting of the input stored

information into several sets of transformed data, from which

it is possible to restore the original information. The number of

sets and the type of transformation depend on the selected data

encoding scheme. The key feature of this procedure is the

guarantee that when the received data sets are placed on

different nodes and one or more of them fails, the system is

able to restore all information on the remaining sets, after

some time recode the data and save them on the working

nodes.

The difference in data encoding schemes complicates the

process of managing several storage service replicas,

therefore, the main difficulty in designing an automated object

storage management system is focused on the replication of

this component.

Furthermore, none of modern approaches of storage system

management on virtualized deployments included extension of

Kubernetes replication controlling system in order to maintain

erasure coding schemes and geo-replication of stored data.

Storage service replication fully demands on orchestrator or

simple custom controller reconciliation logic [21, 22].

The main features of the developed approach include:

• Reducing labor costs in the implementation,

maintenance and operation of the system;

• Transition to implementation of storage on any

provided set of computing resources;

• Abstracting from the hardware component of the

system and shifting the responsibility for scaling and

replicating storage systems to the Kubernetes platform;

• Use built-in Kubernetes resources to create our own

event monitoring system.

The first three features of the approach are related to the

transfer of the system to a virtual Kubernetes platform. The

system requirements for the hardware are dictated by the very

platform, that takes responsibility for connecting the nodes

into a single network and deploying Kubernetes on the

resulting cluster. Also, the platform can provide a graphical

user interface of various levels for managing the network,

nodes, Kubernetes resources and interacting with executable

programs.

Elastic Cloud Storage (ECS) [23] from Dell Technologies

was chosen as the object storage to which the developed

automation approach is applied. While vSphere from VMware

and OpenShift from RedHat were the Kubernetes platforms

that should support deployment of containerized version of

object storage.

The fourth specified feature of the approach involves the

use of the event resource to monitor the state of storage

systems during service procedures - cluster maintenance

operations or changing storage system parameters. Examples

of service procedures include the following operations:

• Horizontal storage server expansion – increase of

service replicas number;

• Vertical storage server expansion – increase of

volumes number that bound to each replica;

• Object storage version upgrade;

• Volume or disk replacement;

• Entering maintenance mode of cluster node, etc.

During each of the presented service procedures

processing, the system must ensure the correct replication of

all components of the object storage and notify the user of all

changes in the state of the storage system.

B. Architecture

A Kubernetes operator is required [24] to organize

automatic management of object storage components when

deploying a system or performing service procedures. Its

principle of work is shown in Figure 1:

Fig. 1. System architecture

All software components of the system are executed on the

Kubernetes platform, that provides a graphical user interface

and a deployed Kubernetes orchestration system. The central

element of the orchestration system is the Control Plane.

Interaction with it is carried out through the Kubernetes API-

server, which accepts requests from any client - the native CLI

kubectl [13] or a program using the k8s-client library.

The object storages deployed on the platform, on the one

hand, are a set of Kubernetes services, each of which requires

the creation of a collection of Kubernetes resources, such as

volumes, pods, cluster-roles, replica sets [11] and others.

Control plane manages all these resources according to YAML

descriptors containing a description of the desired state of the

resource.

On the other hand, object stores are resources themselves

that are a user-defined extension of the Kubernetes API. Each

storage instance, like any resource, is described by its own

descriptor. But since the resource is user-defined, its descriptor

is called Custom Resource Definition [17], and its

management is carried out by a custom controller named

operator.

Object storage is managed by the operator upon the

occurrence of certain events associated with a change in the

state of nodes, volumes, or storage descriptors. These events

are triggered by the launch of service procedures that are

initiated by the user using the platform's graphical interface.

The operator manages the Kubernetes resources of the storage

system components by generating requests to the Kubernetes

API server [11].

The collaboration of the operator and the Kubernetes

control plane maintains the correct operation of the storage

system, which is accessed by the user through any provided

storage interface (HTTP, S3, etc.)

C. Operator and monitoring system interaction

Event Kubernetes-resource [11] allows you to monitor the

status of other cluster resources. Generation of events during

the operator's work can be useful both for tracking the current

state of the storage system by the end user, and for

implementing a reaction to some errors that occur during

object storage management.

If some error occurs during the execution of any service

procedure, it is not enough to inform the user about it.

Depending on its severity, the system should give

recommendations for its elimination, ask for help from the

system administrator or even from the support engineer

responsible for the implementation and maintenance of the

software product.

To implement the described logic, a Kubernetes event

monitoring system is required - an intermediate layer between

the events generated by the system components and all the

specified actors.

The general scheme of interaction between the operator

and the monitoring system is shown in Figure 2.

Fig. 2. Operator and monitoring system integration

IV. Implementation

A. Object storage descriptor design

To organize the processing of all components of the object

data storage system by the operator as a single whole, it is

necessary to implement a custom resource definition (CRD)

containing the settings of all services presented in a

containerized form.

Like all Kubernetes descriptors, the storage CRD contains

the following sections:

• Used Kubernetes API version (apiVersion);

• Kubernetes resource kind;

• Resource metadata;

• Resource specification (spec);

• Its current status.

Since the storage descriptor is a custom resource

definition, an extension of the standard Kubernetes API, then

apiextensions.k8s.io/v1 acts as the CRD version, and

CustomResourceDefinition as the resource type. Metadata

includes resource name, entity creation time, various labels

and annotations.

The specification of a resource is its main characteristic

since it contains all the desired settings for both the resource

itself and all its components. For instance, for the minimal

executable unit of a Kubernetes cluster - a pod - the

specification contains the launch parameters of all containers,

associated volumes, the name of the node on which the pod

want to be running, and other information. Object storage, on

the other hand, consists of dozens of components, for each of

which it is necessary to define a service, a replica set, a set of

stateful pods (statefulset) [11], or some other resources and

their characteristics. Therefore, the storage CRD specification

is the largest part of the descriptor.

CRD status contains current information about the state of

the resource, that allows you to compare it with the desired

state. The distinctive parameters stored in this section of the

descriptor of our storage system are:

• Phase that reflects storage current state;

• Components’ subsection containing brief information

about the current state of all storage components;

• Conditions [25] - a special extension of the resource

status that allows you to track the time, cause and status of

transitions between resource phases;

• Additional information used by the operator in the

course of managing the storage resource, such as information

about the nodes that are in maintenance state.

B. Reconcile loop implementation

Custom resource processing is implemented in software

using the Operator SDK. As mentioned earlier, the package

includes the operator-sdk utility, which is used to create, build,

run and test the custom resource operator.

The basis of the program is the reconcile loop [24], during

which the operator reads the descriptor of the controlled

resource and performs actions that bring it to a state

corresponding to the specification. In fact, this is the main task

of the controller. The cycle runs at a certain interval (for

example, once a minute) and checks whether the state of the

storage components corresponds to the status of the cluster or

the ongoing service procedure. Figure 3 shows the general

scheme for processing a user resource in a loop.

Fig. 3. Storage resource Reconcile loop

The storage processing logic encapsulated in Operator

allows us to track the state of the storage system using a phase

- a capacious description of the current status of the storage

system. The behavior of our user resource can be described by

the storage resource state machine, presented on Figure 4.

Fig. 4. Storage resource state machine

C. Monitoring system integration

In addition to the current storage phase, the end user can

monitor the flow of service procedures and their impact on the

operation of object storage components using events.

Developed separately from the operator, the event monitoring

system allows you to define the severity, the resource and

application involved, as well as the cause and message of the

event.

If the severity of the event is higher than normal (warning

or error), the system generates an issue, which, depending on

the settings, can be resolved by the user himself or sent for

investigation to the software product support service.

V. RESULTS

A. Testing methods

Testing of the implemented system is carried out at

different levels - at the level of the operator code and at the

level of the entire system.

To test the functional changes of the operator unit and

integration tests were created using the Gomega and Ginkgo

frameworks, the main scenarios of which include checking the

correct processing of the storage descriptor during various

service procedures.

Operator testing as part of the operation of the entire object

storage management system at the Kubernetes cluster level is

performed using the Jenkins automatic CI/CD pipeline, which

downloads software dependencies and the Operator SDK,

code syntax analysis, executes tests, builds the image and

uploads it to the registry. A pipeline is also implemented that

allows you to deploy an entire storage management system on

a provided virtual or bare-metal cluster. The resulting system

is ready for all kinds of end-2-end tests.

To monitor the absence of a decrease in the efficiency of

the object storage during system development, a cluster is

regularly allocated for load testing: various service procedures

are alternately performed for several days. At the same time,

object storages constantly take on the load - the main

operations are:

• creation and deletion of user with different roles;

• creation and deletion of namespaces;

• creation and deletion of buckets;

• write, read, modify and delete files to/from buckets;

• File metadata search.

To monitor the state of the storage during testing, the

Grafana metrics collection and visualization tool is used [26].

The main metrics collected include the execution time of

REST requests, the percentage of unsuccessful requests,

network bandwidth, etc.

B. Comparison to classic approach: automation

The main purpose of the developed object storage

management system on the Kubernetes platform is to increase

the degree of automation of storage management when

changing the configuration of both the physical cluster and the

storage system itself. To demonstrate the reduction in labor

intensity of storage management, a comparison was made of

the time to remove a disk from a cluster between a manual

approach and the proposed automated approach.

The list of actions for an engineer when removing a disk as

part of a classic deployment of object storage without the use

of container technologies includes points, presented below.

1. Simulation of disk outage on HAL level.

2. Waiting for data recovery with rest storage replicas.

3. Logic disk replacement from cluster with fabric CLI.

4. File system deletion.

5. Partition table formatting.

6. Disk wipe.

To remove a disk in the developed system, you must

perform the following operations in the UI of the container

platform:

1. Annotate unhealthy disk or volume.

2. Wait Service procedure to finish.

The average disk replacement time for the classical

approach is ~3 hours, and for the automated one it is

approximately 1 hour. In total, we have a gain in time of about

three times.

VI. CONCLUSION

Work on operator of the object data storage system helped

us to reach following important results.

Firstly, an approach of automated object storage

management system was introduced. Distinctive feature of the

approach is Kubernetes platform. Operator is used as a crucial

element of the system as it performs CRUD operations on

Kubernetes resources to manage components of storage that is

presented by its own Custom Resource Definition.

Secondly, the operator of the object data storage system

developed within the framework of this project was

successfully implemented into the storage management system

on the container platform. The operator not only manages the

storage components during service procedures, but also

generates a set of Kubernetes events displayed in the platform

UI and informing the user about the general state of the

storage.

Operator was implemented based on comprehensive

analysis of existing solutions: different tools to develop

operator of custom Kubernetes resources were studied that

helped us to form knowledge about different ways to build

custom controllers and to choose Operator SDK as the base of

operator development framework according to its benefits.

Finally, resulting system was compared with storage build

using classic approach, that let us to see such qualitative

changes as possibility to run new solution on wide specter of

container platforms, use different tools made in Kubernetes

infrastructure to improve storage system and reduce of cost of

outcome product as the responsibility of deployment,

replication and low-level system management lies on

orchestrator.

Manufactured software solution has shown increase in

performance and more wide set of functionalities in

comparison to classic object storage system, and was applied

to real enterprise object storage system.

On the basis of results further directions of project

development were suggested:

• new automation pipelines;

• use of new Operator Framework features;

• multiple Service Procedure support;

• introducing new CRD for service procedures.

One of them is the development of new automation

pipelines for configurable regression testing. The Robot

Framework and Jenkins capabilities allow us to add settings to

run a specific set of end-2-end tests for each service procedure.

On the one hand, this would reduce the load on the clusters

allocated for testing, and on the other hand, it would cover

many previously untested use cases.

Operator Framework was also improved and issued several

versions, which now allows us to add to the project such tools

as collecting metrics for the operator and all resource

controllers included in it. Analysis of the measured parameters

will help us to find solutions to improve the performance and

speed of the software and reduce the consumption of cluster

resources.

Moreover, one of the directions of future work on the

operator is the support of several parallel processed service

procedures. Modifications in the operator code and

specification of the storage resource would allow, for example,

updating the storage system version and simultaneously

deleting one of the cluster disks.

Furthermore, development of additional components of

storage management system showed us that they also need

some operator-side management during service procedure

handling. Introducing new service procedure CRD would

simplify monitoring of different service procedures that affect

not only storage services, but also components of the

management system.

REFERENCES

[1] J. Gantz, D. Reinsel. The Digital Universe in 2020: Big Data,

Bigger Digital Shadow s, and Biggest Growth in the Far East.

IDC IVIEW [Online]. Available:

https://www.cs.princeton.edu/courses/archive/spring13/cos598C/i

dc-the-digital-universe-in-2020.pdf [Accessed Mar. 24, 2022].

[2] International Data Corporation (IDC), “Changing the way the

world thinks about the impact of technology on business and

society”. [Online]. Available: https://www.idc.com/ [Accessed

Mar. 24, 2022].

[3] V. Yu. Shevtsov, E. S. Abramov, “The Analysis of Modern Data

Storage Systems”, NBI tehnologii, 2019, vol. 13, no. 1, pp. 25-30

(in Russian).

[4] R. Dua, A. R. Raja, D. Kakadia. Virtualization vs

containerization to support PaaS, in: Proc. of 2014 IEEE Int'l

Conf. on Cloud Engineering, IC2E'14, 2014, pp. 610 - 614.

[5] S. M. Nanyan, T. N. Nichushkina, “Virtual Docker containers:

purpose and application features”, Inzhenernyj Vestnik, 2015, no.

2, p. 2 (in Russian).

[6] J. Turnbull. The Docker Book, 2014, p. 338. [E-book] Available:

https://dockerbook.com/.

[7] D. Silakov, “Docker project. Manage virtual environments”,

Sistemnyj administrator, 2015, no. 3, pp. 10-14 (in Russian).

[8] D. Silakov, “Tools to manage multiple Docker containers”,

Sistemnyj administrator, 2015, no. 5 (150), pp. 11-15 (in

Russian).

[9] T. Uphill, J. Arundel, N. Khare, H. Saito, H.-C. Chloe Lee, Ke-J.

Carol Hsu, DevOps: Puppet, Docker, and Kubernetes. Packt

Publishing, 2017.

[10] Z. A. Orlov, “Study of scaling tools for container virtualization

systems”, Alleya nauki, 2017, vol. 2, no. 9, pp. 867-871 (in

Russian).

[11] M. Luksha, Kubernetes in action. DMK Press, 2018 (in Russian).

[12] S. Yaremchuk, “Get to know Kubernetes”, Sistemnyj

administrator, 2017, no. 1-2 (170-171), pp. 41-45 (in Russian).

[13] J. Shah, D. Dubaria, “Building modern clouds: Using docker,

kubernetes google cloud platform”, in: 2019 IEEE 9th Annual

Computing and Communication Workshop and Conference,

2019, pp. 184-189.

[14] D. Safronov, K. M. Stonozhenko, I. V. Nikiforov, “Automatic

load balancing between streaming data processing and cluster

internal tasks using Kubernetes”, in: Modern technologies in

programming theory and practice, Peter the Great St. Petersburg

Polytechnic University; Dell Technologies; EPAM Systems,

Polytech-Press, 2020, pp. 165-167 (in Russian).

[15] Kubernetes Deployment vs. StatefulSets. [Online] Available:

https://www.baeldung.com/ops/kubernetes-deployment-vs-

statefulsets [Accessed Mar. 25, 2022].

[16] Operator pattern. [Online] Available:

https://kubernetes.io/docs/concepts/extend-kubernetes/operator/

[Accessed Mar. 25, 2022].

[17] P. S. P. Shenoy, S. S. Vishnu, R. P. Kumar, S. Bailuguttu,

“Enhancement of observability using Kubernetes operator”,

Indonesian Journal of Electrical Engineering and Computer

Science, 2022, vol. 25, no. 1, pp. 496-503.

[18] D. Silakov, “JUJU project. Deploy complex applications with one

click”, Sistemnyj administrator, 2015, no. 10 (155), pp. 4-8 (in

Russian).

[19] Juju SDK Documentation. [Online] Available:

https://juju.is/docs/sdk [Accessed Mar. 25, 2022].

[20] Introduction to Metacontroller. [Online] Available:

https://metacontroller.github.io/metacontroller/intro.html

[Accessed Mar. 25, 2022].

[21] B. Shrishail, S. Ashish, G. Sagar, J. Chinmay. “A QOS-aware

secure personal cloud storage with ubiquitous access and smart

home extension”, in: 2015 International Conference on

Computer, Communication and Control (IC4), 2015.

[22] C. Wu, V. Sreekanti, J. M. Hellerstein. “Eliminating Boundaries

in Cloud Storage with Anna”, CoRR, 2018, vol. 1809.00089.

https://www.cs.princeton.edu/courses/archive/spring13/cos598C/idc-the-digital-universe-in-2020.pdf
https://www.cs.princeton.edu/courses/archive/spring13/cos598C/idc-the-digital-universe-in-2020.pdf
https://www.idc.com/
https://dockerbook.com/
https://www.baeldung.com/ops/kubernetes-deployment-vs-statefulsets
https://www.baeldung.com/ops/kubernetes-deployment-vs-statefulsets
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://juju.is/docs/sdk
https://metacontroller.github.io/metacontroller/intro.html

[23] Dell EMC ECS: powering a data-driven future. [Online]

Available: https://www.dell.com/en-us/dt/learn/data-

storage/ecs.htm [Accessed Mar. 25, 2022].

[24] A. S. Shemyakinskaya, I. V. Nikiforov, Hard drives monitoring

automation approach for Kubernetes container orchestration

system // Proceedings of the Institute for System Programming of

the RAS. – 2020. – Vol. 32. – No 2. – P. 99-106. – DOI

10.15514/ISPRAS-2020-32(2)-8.

[25] Extend the Kubernetes API with CustomResourceDefinitions.

[Online] Available: https://kubernetes.io/docs/tasks/extend-

kubernetes/custom-resources/custom-resource-definitions/

[Accessed Mar. 29, 2022].

[26] S. Yaremchuk, “Deploy monitoring Prometheus + Grafana”,

Sistemnyj administrator, 2017, no. 5 (174), pp. 36-44 (in

Russian).

https://www.dell.com/en-us/dt/learn/data-storage/ecs.htm
https://www.dell.com/en-us/dt/learn/data-storage/ecs.htm
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions/

