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Abstract — The development and support of knowledge-

based systems for experts in the field of social network analysis 

(SNA) is complicated because of the problems of viability 

maintenance that inevitably emerge in data intensive domains. 

Largely this is the case due to the properties of semi-structured 

objects and processes that are analyzed by data specialists using 

data mining techniques and others automated analytical tools. 

In order to be viable a modern knowledge-based analytical 

platform should be able to integrate heterogeneous information, 

present it to users in an understandable way and to support tools 

for functionality extensibility. In this paper we introduce an 

ontological approach to information integration and propose 

design patterns for developing analytical platform core 

functionality such as ontology repository management, domain-

specific languages (DSLs) generation and source code round-

trip synchronization with DSL-models. 

Keywords — information integration, knowledge bases, 

databases, system viability, analytical platforms, open data, 

data analysis 

I. INTRODUCTION 

The development of knowledge-driven analytical systems 
in data-intensive domains (e. g. social network analysis) is 
inevitably accompanied by problems of maintaining viability 
of those systems. Such class of intelligent systems shares 
common properties of development and support processes that 
result in common design challenges. 

Firstly, logical models of knowledge bases (KB) and 
databases (DB), used by intelligent system for modeling the 
analyzed objects and processes, as well as to describe the ways 
of their physical representation, are constantly expanding and 
being modified, which creates problems of information 
integration. To a large extent, this is due to the properties of 
semi-structured objects and processes being analyzed, as well 
as the intensive use (gathering, processing, generation, etc.) of 
data. 

Secondly, a wide range of specialists are involved in the 
development of intelligent system such as domain experts, 
knowledge engineers, data analysts, software engineers, etc. 
Each of these groups of specialists may interpret the integrated 
information differently, depending on the domain context in 
which they operate. Thus, it is crucial for analytical platform 
to successfully solve problems of interpreting same data 
according to different data and domain models. 

Thirdly, the analytical platforms that are used in data-
intensive domains are required to be extensible and allow 
users to implement or specify algorithms for data processing 
(including the use of data mining and machine learning 
techniques) themselves. Considering that the majority of end 
users (in particular, domain experts) do not have programming 

skills needed to implement such functionality, this creates 
problems of platform's extensibility and requires providing 
users with domain-specific modeling tools. 

For developing a consistent and comprehensive solution to 
the mentioned groups of problems in this paper we identify 
common design challenges that arise in the process of 
development of knowledge-driven analytical platforms in 
data-intensive domains. As a result, this research proposes a 
conceptual ontological approach to information integration 
based on rules as well as design patterns for knowledge-driven 
analytical platform core functionality based on OWL 2 models 
of its abstract syntax. 

II. REQUIREMENTS AND DESIGN CHALLENGES 

Tools for development of viable knowledge-driven 
systems should be able primarily to integrate heterogeneous 
information, support changes traceability in data and 
knowledge models and interpret information according to the 
domain model that is understandable to the data consumer [1]. 
However, the development of an analytical platform is not 
feasible for an ordinary developer, since it involves the 
development of methods for solving specialized problems and 
the design of domain models that could include fuzzy 
relationships, fuzzy terms, temporal and spatial knowledge. In 
this regard, the solution of such a complex problem should be 
focused primarily on the creation of core tools, invariant to the 
domains in which they are used and that could be used to 
implement base functionality of a platform [2]. 

The following common requirements can be applied to the 
development tools of knowledge-driven analytical platforms 
in data-intensive domains: 

1. Ensuring extensibility of logical models when 
descriptions of new sources of the information, such as data 
sources and domain models are included. It also requires 
automatic checks of logical integrity of the integrated model. 

2. Ensuring integration of subject data with results of 
their analysis when algorithms of automated data processing 
(e. g. data mining techniques) are applied. 

3. Providing tools for independent interpretation of data 
and results of their processing according to different domain 
models. 

4. Ensuring traceability of changes in metamodels to 
support the relevance of semantic annotation of stored 
information. 

5. Providing tools for declarative specification of data 
processing as well as input/output data structures used to 
extract/write data from/into DBs before/after executing data 
processing algorithms. 

6. Providing tools for integration of data and knowledge 



models with software modules which implement data 
processing algorithms. 

Related work in the field of knowledge-driven analytical 
platforms development includes the development of 
approaches to information integration and data federation. The 
vast majority of existing approaches are based on ontologies 
[3]. These approaches combine ontological descriptions of 
integrated sources and the descriptions of mappings and 
transformations between ontologies and information sources 
into a multifaceted ontology [4, 5]. 

Existing approaches are specifically designed to 
independently model and integrate various aspects of an 
intelligent system, namely, data structures (databases, event 
logs, texts), domains, data processing tasks, domain-specific 
languages, etc. This approach also provides a straightforward 
extension of the integration model, allowing to embed a new 
ontology by describing axiomatic relations between its 
elements and elements of previously formed ontologies. The 
implementations of multifaceted ontology-based information 
integration are used to design data architecture for networked 
enterprises [6], integrate spatial DBs [7], construct or 
transform queries to distributed DBs [8, 9, 10], describe and 
form datasets for machine leaning tasks [11]. 

Based on the analysis of modern tools for the development 
of knowledge-driven analytical platforms, following common 
design challenges could be stated: 

1. Integration of information (data sources models, data 
processing problems descriptions, domain models) at the level 
of source metamodels which are described independently of 
each other. It allows for metamodels to be described by 
different teams or to be imported from the Web and reused in 
the process of system development and maintenance. 

2. Automated interpretation of data based on formal 
description of logical constraints and domain rules. It allows 
to use single inference subsystem to restructure data according 
to different models which helps to deduplicate and/or reduce 
the volume of stored information. 

3. DSL integration for specification of data processing 
modules for gathering, preprocessing, analyzing and 
interpreting data. It requires the development of DSM 
subsystem. In exchange this provides users with tools to 
extend the functionality of the platform independently of its 
developers. 

4. Integration of problem solvers based on declarative 
specifications of platform modules. It allows to generate 
specified versions of scripts and applications and to call them 
by providing a declarative description of input data, and 
parametrized attributes.      

5. Composition of data processing modules into pipelines 
based on input and output data structures descriptions. It 
allows to automatically infer in which sequence data 
processing modules can be called. This can be used to 
orchestrate data processing tasks and manage data flows by 
such systems as Apache NiFi. 

III. ONTOLOGICAL APPROACH TO INFORMATION 

INTEGRATION 

The problem of information integration appears to be 
central in knowledge-driven analytical platform development. 
Without solving this problem, it is problematic to provide 
users with data to analyze in a transparent and comprehensible 
way which creates difficulties for them when choosing 

analytical techniques, methods and tools for data to be 
processed. Considering that in data-intensive domains data 
models are iteratively evolving it is crucial to develop an 
approach to information integration which would serve as a 
framework for managing multiple sources description. 

Though existing approaches [6-11] allow to model and 
integrate source descriptions, they are restricted in terms of 
managing different versions of the same models resulting in 
changes traceability difficulties. For this reason, we introduce 
an ontological approach to information integration which 
helps to overcome described problem. 

The proposed approach to information integration helps to 
organize information that is used in the processes of applying 
methods of automated data analysis and interpreting the 
results of analysis using expert knowledge of domain (Fig. 1). 

The main idea of the approach is to model various 
information sources (using relevant terminology for context of 
the source) independently using ontologies. Then, elements of 
integrated ontologies are linked (or mapped) together using 
production rules or logical restrictions which allows automatic 
inference using semantic reasoners (e. g. Pellet, ELK, 
HermiT, etc.). There is a set of languages that could be used 
to formally describe ontologies and rules such as OWL 2, 
SWRL and RIF. 

This approach can be called interpretive. Initially, 
ontology individuals are annotated according to the concepts 
in the ontology that describes some data source. When used to 
solve analytical problem, individuals are interpreted in terms 
of an ontology that models the conceptual scheme of this 
problem, according to the rules or logical restrictions. 
Similarly, the results of the analysis which are annotated using 
the concepts of the problem ontology, then are interpreted in 
the context of the ontology that models domain defined by 
experts and conceptualized by knowledge engineer. 

 
Fig. 1. The model of process of data analysis and interpretation 

The process of data analysis and interpretation includes 
following steps: 

1. A data analyst, based on the analytical problem being 
solved, determines the method for solving it. 

2. A software engineer implements algorithms for 
selected method(s). 

3. A domain expert and a knowledge engineer formulate 



rules and logical restrictions for interpreting the results of data 
analysis based on the possible outputs of the analysis methods. 

4. A domain expert formulates new knowledge about the 
domain after interpreting the results. 

5. Corresponding knowledge models then can be refined 
by a knowledge engineer by describing new patterns based on 
the extracted knowledge. 

Knowledge base (Fig. 2) is structurally divided into three 
groups of ontologies according to the type of modeled 
information: 

1. Knowledge about data and data sources (Data Source 
ontologies). They may include information about data types, 
data storage formats, relations arity, attributes, etc. 

2. Knowledge about data processing problems that use 
subject data to infer new facts and extract new knowledge 
(Problem ontologies). They may include information about 
the structure of input and output data for data processing 
procedures (e. g. data mining algorithms), links to externally 
executed scripts, the sequence of procedure calls, etc. 

3. Domain knowledge (Domain ontologies). They may 
include concepts of the domain, as well as axiomatic 
statements that model the limitations of the domain. 

 
Fig. 2. The basic structure of knowledge base 

In practice, the proposed approach allows to avoid data 
duplication. Data interpretation is determined while 
processing user query according to the context defined by 
ontologies. At the same time, it is possible to trace which facts 
and at what stage of processing was fetched or inferred. Facts 
gathered from a source (for example, from a specific social 
network) would be annotated using an ontology that describes 
this source. The results of data analysis (for example, the 
identifiers of duplicated objects) would be annotated using 
concrete problem ontology. This increases the transparency of 
the data and allows to present the same information to 
different platform users according to the terminology they are 
familiar with. 

Moreover, the proposed approach allows to manage and 
integrate different versions of ontologies to ensure traceability 
of changes in the same fashion as different types of ontologies 
which is not supported by existing approaches. We can simply 

copy an old version of ontology, modify it and define new 
rules and logical restrictions to bind elements of two versions 
of the same ontology. 

IV. DESCRIPTION OF DESIGN PATTERNS 

A. An Approach to Analytical Platform Development 

According to [13], in order to develop a modern 
knowledge-driven analytical platform it is crucial to define its 
core functionality and to create tools which will allow to 
implement its base modules for gathering, preprocessing, 
analyzing and interpreting data. Then it will be possible to 
extend platform specifying new functionality by adapting its 
base modules. 

In this paper we propose (Fig. 3) that new modules of an 
analytical platform are specified by users using a set of visual 
domain-specific languages generated on top of ontologies 
which are integrated in the knowledge base [5]. As a result, 
using generated DSLs, users who are not familiar with 
programming will be able to specify the modules and 
functions of the platform adapting existing functionality to 
their specialized problems [14]. At the same time, to support 
the uniformity of the resources description, DSLs themselves 
can also be represented as ontologies. 

 

Fig. 3. An Approach to Analytical Platform Development 

An approach to information integration, in that regard, is 
used to describe data structures of inputs and outputs that 
could be queried from fact base and passed into platform 
modules instances. Besides, analytical platform modules’ 
ontologies form base functionality of concrete analytical 
platform (for instance, platform for social network analysis) 
to be implemented using core functionality of a platform and 
could import, reuse and extend integrated information 
ontologies as well. 

In order to execute approach to analytical platform 
development core functionality should allow to: 

 manage ontologies; 



 generate DSLs and visual editors for them; 

 synchronize DSL-models with source code of the 
platform modules; 

 execute problem solvers; 

 manage problem solvers pipelines; 

 etc. 

Thus, it is important to develop design patterns for the 
common core of different analytical platforms which could be 
developed using this approach. The specification of OWL 2 
language [12] is used for this purpose. It contains the set of 
UML class diagrams and allows to extend them introducing 
new elements (which are highlighted in bold) to form the 
patterns. 

B. Pattern for Importing Ontologies 

The pattern for importing ontologies (Fig. 4) describes the 
taxonomy of integrated sources descriptions, as well as the 
types of logical restrictions that can be used to link elements 
of several ontologies. 

 
Fig. 4. The model of the pattern for integrating ontologies 

Ontology which describes an integrated source of 
information is modeled by InformationOntology class which 
has three subclasses (DataSourceOntology, 
ProblemOntology, DomainOntology) according to every type 
of ontologies in the knowledge base. In order to identify 
ontology and all its versions IRIs are used. 

Elements of ontologies (classes, object properties, 
datatype properties, etc.) are linked using either SWRLRules 
or Axioms that could be modeled using OWL 2 expressive 
capabilities. SWRLRules are one of the ways to define 
ontological mappings and logical restrictions within ontology. 
Just like axioms, they can be interpreted by reasoners (e.g., 
Pellet) to obtain new facts based on the information that 
gathered from data sources and stored in the fact base. 

C. Pattern for Ontology-Based Metamodeling 

The pattern for ontology-based metamoding (Fig. 5) is 
intended to be able to create metamodels are defined in the 
form of ontologies for describing DSLs and input/output data 
structures for problem solvers on top of integrated in 
knowledge base ontologies. 

For each Ontology could be defined SubOntology that 
specify it. It is used to choose elements of the specified 
ontology that will form a model of an integrated DSL. It is 
constrained that SubOntology only can specify existing 
elements on an ontology, which is why elements added into 
SubOntology can only be SubEntities (e. g. subclasses and 
subproperties). 

AssertionSubOntology which is the subtype of 
SubOntology is also used to specify ontologies but only by 
adding individuals and assertions involving them. It allows to 
ensure that new elements and axioms in 
AssertionSubOntology do not change the structure of 
metamodel that is defined by specified ontology. 
AssertionSubOntologies are supposed to be used to define 
concrete models according to the DSL and specify data 
structures of inputs and outputs for platform modules. 

 
Fig. 5. The model of the pattern for ontology-based metamodeling 

D. Pattern for Integrating DSLs 

The pattern for integrating DSLs (Fig. 6) specify the 
ontological metamodeling pattern for generating and 
integrating DSLs to create languages to specify data 
processing modules in order to formally describe and manage 
the architecture of the analytical platform. 

 
Fig. 6. The model of the pattern for integrating DSLs 

Classes and properties of ontologies that are specified by 
SubOntology can used to form DSLMetaModel, and 
DSLConcreteModel is used to define models using DSL. 
DSLConcreteModel is a subclass of AssertionSubOntology, 
thus, added elements of DSL-models are individuals. The 
definition of DSLEnities as ontology classes and properties 



allows to integrate them for inference of new facts which 
could be then automatically conceptualized in terms of 
InformationOntologies. 

E. Pattern for Integrating Problem Solvers 

The pattern for integrating problem solvers (Fig. 7) 
describes the structure of entities that are used to implement 
data processing modules of a platform using generated DSLs. 
The implementation of this pattern requires to coordinate the 
processes of designing platform modules using DSL, 
implementing algorithms for problem solvers, and modeling 
the structure of input and output data for the problems to be 
solved by platform modules. 

 
Fig. 7. The model of the pattern for integrating problem solvers 

A set of DSLConcreteModels is used to describe an 
architecture of a platform’s Modules which are interpreted by 
platform’s core. Every Module includes ProblemSolvers that 
are executed by the core. Each ProblemSolver are linked to 
the Problem description which is defined by some 
ProblemOntology. DataStructureOntology specifies input and 
output data structures of a Problem which allows to infer if 
one Problem can be solved following another one when 
defining a data processing pipeline. 

V. FUNCTIONALITY OF ANALYTICAL PLATFORM CORE 

It is assumed that the developed design patterns can be 
used to develop the analytical platform core. In order to 
demonstrate the principal possibility of creating such a 
subsystem, in this section we describe the functionality of the 
core. 

We propose that the knowledge engineer is responsible for 
managing the ontology repository (Fig. 8). He can create 
ontologies in a form of files corresponding to the OWL 2 with 
the assignment of a URI for the ontology and all its elements 
(classes, properties, etc.). Once created, the ontology file 
should be available for opening externally in an ontology 
editor (e.g., Protege) to directly fill the ontology with axioms 
and rules.  

It is also possible to create the special kinds of ontologies 
based on the existing ones. As was mentioned, a subontology 
(Create a Subontology) allows definition of a new element 
(class, property) if it is located within the existing taxonomies 
of an original ontology. In an assertion subontology (Create 
an Assertion Subontology) it is strictly individuals that are 
available for creation, as well as the assignment of property 
values to them. 

In the process of creating a subontology, the knowledge 
engineer selects a part of the taxonomies of classes and 
properties that are transferred to the subontology. This 
requires performing a reasoning to restore domains and ranges 
of properties if they are represented by classes that are 
removed from the taxonomy of the original ontology. 

In addition, it is crucial to be able to Validate a 
subontology to verify the consistency of the creation of any 
elements in a subontology (or an assertion subontology) 
within the taxonomies of the original ontology.  

If it is needed to use an existing ontology it can be 
imported into the repository (Import ontology) from a remote 
server or a local file. After the import, a duplicate ontology is 
created separately within repository not to cause any conflict 
with files in the internal file system of the host operating 
system. For the purpose of building ontologies using existing 
ones there is a use case Reference an ontology, which allows 
elements of an existing ontology to be reused in the selected 
ontology. 

  
Fig. 8. The functionality of managing the repository of ontologies 

According to an approach to analytical platform 
development, the software architect can use the platform core 
to create DSLs (Fig. 9) which provides users with tools to 
specify platform modules in a declarative way using visual 
editors. Using the pattern for integrating DSLs we can easily 
define which elements of selected ontologies (i. e. which parts 
of taxonomies) form a concrete DSL metamodel using the 
level of abstraction that is provided by subontologies. 

It is proposed that classes of the ontology that describe a 
DSL are used to represent classes of model elements (node 
types), object properties are used to depict relationships 
between classes (edge types) and datatype properties are used 
to list classes’ attributes. Thus, a concrete model that is created 
according to DSL can only contain elements, edges between 
them and attribute values that can be represented as an 
assertion subontology. 

In addition, the core allows the software engineer to 
generate source code of platform modules. For instance, we 
can transform an ontology as a set of classes that are translated 
to Python 3 programming language to be used as a blueprint 
of a problem solver. 

Similar to DSL metamodels, the data engineer (Fig. 10) 
can define metamodels of input and output data structure 
(Describe data structure for a problem) as a subontologies. 
Then, based on them the data analyst can describe and extract 



a dataset that is passed into a problem solver when the problem 
is being solved. Also, he has the possibility to validate the 
dataset according to the metamodel that defines its structure. 
When the data processing task is completed, validation can 
also be applied to the result of data processing. 

 
Fig. 9. The functionality of integrating DSLs and problem solvers 

 
Fig. 10. The functionality of managing problem solving 

  Using the core users (namely, data analysts) can extend 
the platform functionality by simply specifying DSL models 
of a new module that is relied on a problem solver. This helps 
to reduce their dependence on software engineers and increase 
an adaptivity of a platform resulting in its improved viability. 

VI. CONCLUSIONS AND FUTURE WORK  

In this paper we proposed an ontological approach to 
information integration that allows to integrate different types 
of ontologies which are relevant to data-intensive domains 
(data source metamodels, problem descriptions, domain 
models). An interpretive approach to integration helps to 
avoid data duplication, ensure changes traceability of 

ontologies and automatically interpret data and the results of 
data analysis to provide them to different groups of users 
according to terminology that they are familiar with. 

In order to create a basis for solving the design challenges 
of developing knowledge-based analytical platforms we 
presented design patterns based on the models of OWL 2 
language. It is expected that the developed models will be used 
to implement analytical platform core functionality that will 
help to provide users with the tools to extend platform 
functionality with minimal reliance on software engineers. 

Further work in this field is aimed at implementing 
software prototypes of the platform’s core functionality based 
on described patterns and ontological approach to information 
integration. 
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