
Design Patterns for a Knowledge-Driven Analytical

Platform Core

Viktor Zayakin
Business Informatics Department

HSE University
38 Studencheskaya str., Perm, 614070,

Russian Federation
vszayakin@yandex.ru

Lyudmila Lyadova
Business Informatics Department

HSE University
38 Studencheskaya str., Perm, 614070,

Russian Federation
lnlyadova@gmail.com

Evgeny Rabchevsky
SEUSLAB LLC

111 Shosse Kosmonavtov, Perm,
614066, Russian Federation

e.rabchevskiy@seuslab.ru

Abstract — The development and support of knowledge-

based systems for experts in the field of social network analysis

(SNA) is complicated because of the problems of viability

maintenance that inevitably emerge in data intensive domains.

Largely this is the case due to the properties of semi-structured

objects and processes that are analyzed by data specialists using

data mining techniques and others automated analytical tools.

In order to be viable a modern knowledge-based analytical

platform should be able to integrate heterogeneous information,

present it to users in an understandable way and to support tools

for functionality extensibility. In this paper we introduce an

ontological approach to information integration and propose

design patterns for developing analytical platform core

functionality such as ontology repository management, domain-

specific languages (DSLs) generation and source code round-

trip synchronization with DSL-models.

Keywords — information integration, knowledge bases,

databases, system viability, analytical platforms, open data,

data analysis

I. INTRODUCTION

The development of knowledge-driven analytical systems
in data-intensive domains (e. g. social network analysis) is
inevitably accompanied by problems of maintaining viability
of those systems. Such class of intelligent systems shares
common properties of development and support processes that
result in common design challenges.

Firstly, logical models of knowledge bases (KB) and
databases (DB), used by intelligent system for modeling the
analyzed objects and processes, as well as to describe the ways
of their physical representation, are constantly expanding and
being modified, which creates problems of information
integration. To a large extent, this is due to the properties of
semi-structured objects and processes being analyzed, as well
as the intensive use (gathering, processing, generation, etc.) of
data.

Secondly, a wide range of specialists are involved in the
development of intelligent system such as domain experts,
knowledge engineers, data analysts, software engineers, etc.
Each of these groups of specialists may interpret the integrated
information differently, depending on the domain context in
which they operate. Thus, it is crucial for analytical platform
to successfully solve problems of interpreting same data
according to different data and domain models.

Thirdly, the analytical platforms that are used in data-
intensive domains are required to be extensible and allow
users to implement or specify algorithms for data processing
(including the use of data mining and machine learning
techniques) themselves. Considering that the majority of end
users (in particular, domain experts) do not have programming

skills needed to implement such functionality, this creates
problems of platform's extensibility and requires providing
users with domain-specific modeling tools.

For developing a consistent and comprehensive solution to
the mentioned groups of problems in this paper we identify
common design challenges that arise in the process of
development of knowledge-driven analytical platforms in
data-intensive domains. As a result, this research proposes a
conceptual ontological approach to information integration
based on rules as well as design patterns for knowledge-driven
analytical platform core functionality based on OWL 2 models
of its abstract syntax.

II. REQUIREMENTS AND DESIGN CHALLENGES

Tools for development of viable knowledge-driven
systems should be able primarily to integrate heterogeneous
information, support changes traceability in data and
knowledge models and interpret information according to the
domain model that is understandable to the data consumer [1].
However, the development of an analytical platform is not
feasible for an ordinary developer, since it involves the
development of methods for solving specialized problems and
the design of domain models that could include fuzzy
relationships, fuzzy terms, temporal and spatial knowledge. In
this regard, the solution of such a complex problem should be
focused primarily on the creation of core tools, invariant to the
domains in which they are used and that could be used to
implement base functionality of a platform [2].

The following common requirements can be applied to the
development tools of knowledge-driven analytical platforms
in data-intensive domains:

1. Ensuring extensibility of logical models when
descriptions of new sources of the information, such as data
sources and domain models are included. It also requires
automatic checks of logical integrity of the integrated model.

2. Ensuring integration of subject data with results of
their analysis when algorithms of automated data processing
(e. g. data mining techniques) are applied.

3. Providing tools for independent interpretation of data
and results of their processing according to different domain
models.

4. Ensuring traceability of changes in metamodels to
support the relevance of semantic annotation of stored
information.

5. Providing tools for declarative specification of data
processing as well as input/output data structures used to
extract/write data from/into DBs before/after executing data
processing algorithms.

6. Providing tools for integration of data and knowledge

models with software modules which implement data
processing algorithms.

Related work in the field of knowledge-driven analytical
platforms development includes the development of
approaches to information integration and data federation. The
vast majority of existing approaches are based on ontologies
[3]. These approaches combine ontological descriptions of
integrated sources and the descriptions of mappings and
transformations between ontologies and information sources
into a multifaceted ontology [4, 5].

Existing approaches are specifically designed to
independently model and integrate various aspects of an
intelligent system, namely, data structures (databases, event
logs, texts), domains, data processing tasks, domain-specific
languages, etc. This approach also provides a straightforward
extension of the integration model, allowing to embed a new
ontology by describing axiomatic relations between its
elements and elements of previously formed ontologies. The
implementations of multifaceted ontology-based information
integration are used to design data architecture for networked
enterprises [6], integrate spatial DBs [7], construct or
transform queries to distributed DBs [8, 9, 10], describe and
form datasets for machine leaning tasks [11].

Based on the analysis of modern tools for the development
of knowledge-driven analytical platforms, following common
design challenges could be stated:

1. Integration of information (data sources models, data
processing problems descriptions, domain models) at the level
of source metamodels which are described independently of
each other. It allows for metamodels to be described by
different teams or to be imported from the Web and reused in
the process of system development and maintenance.

2. Automated interpretation of data based on formal
description of logical constraints and domain rules. It allows
to use single inference subsystem to restructure data according
to different models which helps to deduplicate and/or reduce
the volume of stored information.

3. DSL integration for specification of data processing
modules for gathering, preprocessing, analyzing and
interpreting data. It requires the development of DSM
subsystem. In exchange this provides users with tools to
extend the functionality of the platform independently of its
developers.

4. Integration of problem solvers based on declarative
specifications of platform modules. It allows to generate
specified versions of scripts and applications and to call them
by providing a declarative description of input data, and
parametrized attributes.

5. Composition of data processing modules into pipelines
based on input and output data structures descriptions. It
allows to automatically infer in which sequence data
processing modules can be called. This can be used to
orchestrate data processing tasks and manage data flows by
such systems as Apache NiFi.

III. ONTOLOGICAL APPROACH TO INFORMATION

INTEGRATION

The problem of information integration appears to be
central in knowledge-driven analytical platform development.
Without solving this problem, it is problematic to provide
users with data to analyze in a transparent and comprehensible
way which creates difficulties for them when choosing

analytical techniques, methods and tools for data to be
processed. Considering that in data-intensive domains data
models are iteratively evolving it is crucial to develop an
approach to information integration which would serve as a
framework for managing multiple sources description.

Though existing approaches [6-11] allow to model and
integrate source descriptions, they are restricted in terms of
managing different versions of the same models resulting in
changes traceability difficulties. For this reason, we introduce
an ontological approach to information integration which
helps to overcome described problem.

The proposed approach to information integration helps to
organize information that is used in the processes of applying
methods of automated data analysis and interpreting the
results of analysis using expert knowledge of domain (Fig. 1).

The main idea of the approach is to model various
information sources (using relevant terminology for context of
the source) independently using ontologies. Then, elements of
integrated ontologies are linked (or mapped) together using
production rules or logical restrictions which allows automatic
inference using semantic reasoners (e. g. Pellet, ELK,
HermiT, etc.). There is a set of languages that could be used
to formally describe ontologies and rules such as OWL 2,
SWRL and RIF.

This approach can be called interpretive. Initially,
ontology individuals are annotated according to the concepts
in the ontology that describes some data source. When used to
solve analytical problem, individuals are interpreted in terms
of an ontology that models the conceptual scheme of this
problem, according to the rules or logical restrictions.
Similarly, the results of the analysis which are annotated using
the concepts of the problem ontology, then are interpreted in
the context of the ontology that models domain defined by
experts and conceptualized by knowledge engineer.

Fig. 1. The model of process of data analysis and interpretation

The process of data analysis and interpretation includes
following steps:

1. A data analyst, based on the analytical problem being
solved, determines the method for solving it.

2. A software engineer implements algorithms for
selected method(s).

3. A domain expert and a knowledge engineer formulate

rules and logical restrictions for interpreting the results of data
analysis based on the possible outputs of the analysis methods.

4. A domain expert formulates new knowledge about the
domain after interpreting the results.

5. Corresponding knowledge models then can be refined
by a knowledge engineer by describing new patterns based on
the extracted knowledge.

Knowledge base (Fig. 2) is structurally divided into three
groups of ontologies according to the type of modeled
information:

1. Knowledge about data and data sources (Data Source
ontologies). They may include information about data types,
data storage formats, relations arity, attributes, etc.

2. Knowledge about data processing problems that use
subject data to infer new facts and extract new knowledge
(Problem ontologies). They may include information about
the structure of input and output data for data processing
procedures (e. g. data mining algorithms), links to externally
executed scripts, the sequence of procedure calls, etc.

3. Domain knowledge (Domain ontologies). They may
include concepts of the domain, as well as axiomatic
statements that model the limitations of the domain.

Fig. 2. The basic structure of knowledge base

In practice, the proposed approach allows to avoid data
duplication. Data interpretation is determined while
processing user query according to the context defined by
ontologies. At the same time, it is possible to trace which facts
and at what stage of processing was fetched or inferred. Facts
gathered from a source (for example, from a specific social
network) would be annotated using an ontology that describes
this source. The results of data analysis (for example, the
identifiers of duplicated objects) would be annotated using
concrete problem ontology. This increases the transparency of
the data and allows to present the same information to
different platform users according to the terminology they are
familiar with.

Moreover, the proposed approach allows to manage and
integrate different versions of ontologies to ensure traceability
of changes in the same fashion as different types of ontologies
which is not supported by existing approaches. We can simply

copy an old version of ontology, modify it and define new
rules and logical restrictions to bind elements of two versions
of the same ontology.

IV. DESCRIPTION OF DESIGN PATTERNS

A. An Approach to Analytical Platform Development

According to [13], in order to develop a modern
knowledge-driven analytical platform it is crucial to define its
core functionality and to create tools which will allow to
implement its base modules for gathering, preprocessing,
analyzing and interpreting data. Then it will be possible to
extend platform specifying new functionality by adapting its
base modules.

In this paper we propose (Fig. 3) that new modules of an
analytical platform are specified by users using a set of visual
domain-specific languages generated on top of ontologies
which are integrated in the knowledge base [5]. As a result,
using generated DSLs, users who are not familiar with
programming will be able to specify the modules and
functions of the platform adapting existing functionality to
their specialized problems [14]. At the same time, to support
the uniformity of the resources description, DSLs themselves
can also be represented as ontologies.

Fig. 3. An Approach to Analytical Platform Development

An approach to information integration, in that regard, is
used to describe data structures of inputs and outputs that
could be queried from fact base and passed into platform
modules instances. Besides, analytical platform modules’
ontologies form base functionality of concrete analytical
platform (for instance, platform for social network analysis)
to be implemented using core functionality of a platform and
could import, reuse and extend integrated information
ontologies as well.

In order to execute approach to analytical platform
development core functionality should allow to:

 manage ontologies;

 generate DSLs and visual editors for them;

 synchronize DSL-models with source code of the
platform modules;

 execute problem solvers;

 manage problem solvers pipelines;

 etc.

Thus, it is important to develop design patterns for the
common core of different analytical platforms which could be
developed using this approach. The specification of OWL 2
language [12] is used for this purpose. It contains the set of
UML class diagrams and allows to extend them introducing
new elements (which are highlighted in bold) to form the
patterns.

B. Pattern for Importing Ontologies

The pattern for importing ontologies (Fig. 4) describes the
taxonomy of integrated sources descriptions, as well as the
types of logical restrictions that can be used to link elements
of several ontologies.

Fig. 4. The model of the pattern for integrating ontologies

Ontology which describes an integrated source of
information is modeled by InformationOntology class which
has three subclasses (DataSourceOntology,
ProblemOntology, DomainOntology) according to every type
of ontologies in the knowledge base. In order to identify
ontology and all its versions IRIs are used.

Elements of ontologies (classes, object properties,
datatype properties, etc.) are linked using either SWRLRules
or Axioms that could be modeled using OWL 2 expressive
capabilities. SWRLRules are one of the ways to define
ontological mappings and logical restrictions within ontology.
Just like axioms, they can be interpreted by reasoners (e.g.,
Pellet) to obtain new facts based on the information that
gathered from data sources and stored in the fact base.

C. Pattern for Ontology-Based Metamodeling

The pattern for ontology-based metamoding (Fig. 5) is
intended to be able to create metamodels are defined in the
form of ontologies for describing DSLs and input/output data
structures for problem solvers on top of integrated in
knowledge base ontologies.

For each Ontology could be defined SubOntology that
specify it. It is used to choose elements of the specified
ontology that will form a model of an integrated DSL. It is
constrained that SubOntology only can specify existing
elements on an ontology, which is why elements added into
SubOntology can only be SubEntities (e. g. subclasses and
subproperties).

AssertionSubOntology which is the subtype of
SubOntology is also used to specify ontologies but only by
adding individuals and assertions involving them. It allows to
ensure that new elements and axioms in
AssertionSubOntology do not change the structure of
metamodel that is defined by specified ontology.
AssertionSubOntologies are supposed to be used to define
concrete models according to the DSL and specify data
structures of inputs and outputs for platform modules.

Fig. 5. The model of the pattern for ontology-based metamodeling

D. Pattern for Integrating DSLs

The pattern for integrating DSLs (Fig. 6) specify the
ontological metamodeling pattern for generating and
integrating DSLs to create languages to specify data
processing modules in order to formally describe and manage
the architecture of the analytical platform.

Fig. 6. The model of the pattern for integrating DSLs

Classes and properties of ontologies that are specified by
SubOntology can used to form DSLMetaModel, and
DSLConcreteModel is used to define models using DSL.
DSLConcreteModel is a subclass of AssertionSubOntology,
thus, added elements of DSL-models are individuals. The
definition of DSLEnities as ontology classes and properties

allows to integrate them for inference of new facts which
could be then automatically conceptualized in terms of
InformationOntologies.

E. Pattern for Integrating Problem Solvers

The pattern for integrating problem solvers (Fig. 7)
describes the structure of entities that are used to implement
data processing modules of a platform using generated DSLs.
The implementation of this pattern requires to coordinate the
processes of designing platform modules using DSL,
implementing algorithms for problem solvers, and modeling
the structure of input and output data for the problems to be
solved by platform modules.

Fig. 7. The model of the pattern for integrating problem solvers

A set of DSLConcreteModels is used to describe an
architecture of a platform’s Modules which are interpreted by
platform’s core. Every Module includes ProblemSolvers that
are executed by the core. Each ProblemSolver are linked to
the Problem description which is defined by some
ProblemOntology. DataStructureOntology specifies input and
output data structures of a Problem which allows to infer if
one Problem can be solved following another one when
defining a data processing pipeline.

V. FUNCTIONALITY OF ANALYTICAL PLATFORM CORE

It is assumed that the developed design patterns can be
used to develop the analytical platform core. In order to
demonstrate the principal possibility of creating such a
subsystem, in this section we describe the functionality of the
core.

We propose that the knowledge engineer is responsible for
managing the ontology repository (Fig. 8). He can create
ontologies in a form of files corresponding to the OWL 2 with
the assignment of a URI for the ontology and all its elements
(classes, properties, etc.). Once created, the ontology file
should be available for opening externally in an ontology
editor (e.g., Protege) to directly fill the ontology with axioms
and rules.

It is also possible to create the special kinds of ontologies
based on the existing ones. As was mentioned, a subontology
(Create a Subontology) allows definition of a new element
(class, property) if it is located within the existing taxonomies
of an original ontology. In an assertion subontology (Create
an Assertion Subontology) it is strictly individuals that are
available for creation, as well as the assignment of property
values to them.

In the process of creating a subontology, the knowledge
engineer selects a part of the taxonomies of classes and
properties that are transferred to the subontology. This
requires performing a reasoning to restore domains and ranges
of properties if they are represented by classes that are
removed from the taxonomy of the original ontology.

In addition, it is crucial to be able to Validate a
subontology to verify the consistency of the creation of any
elements in a subontology (or an assertion subontology)
within the taxonomies of the original ontology.

If it is needed to use an existing ontology it can be
imported into the repository (Import ontology) from a remote
server or a local file. After the import, a duplicate ontology is
created separately within repository not to cause any conflict
with files in the internal file system of the host operating
system. For the purpose of building ontologies using existing
ones there is a use case Reference an ontology, which allows
elements of an existing ontology to be reused in the selected
ontology.

Fig. 8. The functionality of managing the repository of ontologies

According to an approach to analytical platform
development, the software architect can use the platform core
to create DSLs (Fig. 9) which provides users with tools to
specify platform modules in a declarative way using visual
editors. Using the pattern for integrating DSLs we can easily
define which elements of selected ontologies (i. e. which parts
of taxonomies) form a concrete DSL metamodel using the
level of abstraction that is provided by subontologies.

It is proposed that classes of the ontology that describe a
DSL are used to represent classes of model elements (node
types), object properties are used to depict relationships
between classes (edge types) and datatype properties are used
to list classes’ attributes. Thus, a concrete model that is created
according to DSL can only contain elements, edges between
them and attribute values that can be represented as an
assertion subontology.

In addition, the core allows the software engineer to
generate source code of platform modules. For instance, we
can transform an ontology as a set of classes that are translated
to Python 3 programming language to be used as a blueprint
of a problem solver.

Similar to DSL metamodels, the data engineer (Fig. 10)
can define metamodels of input and output data structure
(Describe data structure for a problem) as a subontologies.
Then, based on them the data analyst can describe and extract

a dataset that is passed into a problem solver when the problem
is being solved. Also, he has the possibility to validate the
dataset according to the metamodel that defines its structure.
When the data processing task is completed, validation can
also be applied to the result of data processing.

Fig. 9. The functionality of integrating DSLs and problem solvers

Fig. 10. The functionality of managing problem solving

 Using the core users (namely, data analysts) can extend
the platform functionality by simply specifying DSL models
of a new module that is relied on a problem solver. This helps
to reduce their dependence on software engineers and increase
an adaptivity of a platform resulting in its improved viability.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we proposed an ontological approach to
information integration that allows to integrate different types
of ontologies which are relevant to data-intensive domains
(data source metamodels, problem descriptions, domain
models). An interpretive approach to integration helps to
avoid data duplication, ensure changes traceability of

ontologies and automatically interpret data and the results of
data analysis to provide them to different groups of users
according to terminology that they are familiar with.

In order to create a basis for solving the design challenges
of developing knowledge-based analytical platforms we
presented design patterns based on the models of OWL 2
language. It is expected that the developed models will be used
to implement analytical platform core functionality that will
help to provide users with the tools to extend platform
functionality with minimal reliance on software engineers.

Further work in this field is aimed at implementing
software prototypes of the platform’s core functionality based
on described patterns and ontological approach to information
integration.

REFERENCES

[1] V. V. Gribova, F. M. Moskalenko, V. A. Timchenko, E. A. Shalfeeva.
Sozdanie zhiznesposobnyh intellektual'nyh sistem s upravljaemymi

deklarativnymi komponentami. Informacionnye i matematicheskie

tehnologii v nauke i upravlenii, 2018, no. 3 (in Russian).

[2] V. V. Gribova, E. A. Shalfeeva. Sistemy na osnove ontologicheskih

baz znanij kak osnova dlja sozdanija sovremennyh sistem
iskusstvennogo intellekta. Vosemnadcataja Nacional'naja

konferencija po iskusstvennomu intellektu s mezhdunarodnym

uchastiem KII-2020, 2020, pp. 12-19 (in Russian).

[3] M. Alizadeh, M. H. Shahrezaei, F. Tahernezhad-Javazm. Ontology
Based Information Integration: a Survey. arXiv preprint

arXiv:1909.12372, 2019.

[4] L. N. Lyadova, V. S. Zayakin, M. A. Smirnov. Formirovanie
sobytijnyh rjadov s ispol'zovaniem mnogoaspektnyh ontologij.

Tehnologii razrabotki informacionnyh sistem TRIS-2020, 2020, pp.

297-303 (in Russian).

[5] L. N. Lyadova, N. M. Suvorov, V. A. Vasiljuk. Arhitektura DSM-

platformy, osnovannoj na znanijah. Tehnologii razrabotki

informacionnyh sistem TRIS-2020, 2020, pp. 304-311 (in Russian).

[6] Ju. F. Tel'nov, V. A. Kazakov, V. M. Trembach. Razrabotka sistemy,

osnovannoj na znanijah, dlja proektirovanija innovacionnyh processov
sozdanija produkcii setevyh predprijatij. Biznes-informatika, 2020, vol.

14, no. 3 (in Russian).

[7] S. V. Pavlov, O. A. Efremova. Ontologicheskaja model' integracii
raznorodnyh po strukture i tematike prostranstvennyh baz dannyh v

edinuju regional'nuju bazu dannyh. Ontologija proektirovanija, 2017,

vol. 7, no. 3 (25), pp. 323-333 (in Russian).

[8] M. Asfand-E-Yar, R. Ali. Semantic Integration of Heterogeneous

Databases of Same Domain Using Ontology. IEEE Access, 2020, vol.

8, pp. 77903-77919.

[9] G. Xiao, D. Hovland, D. Bilidas, M. Rezk, M. Giese, D. Calvanese.
Efficient Ontology-Based Data Integration with Canonical IRIs.

European Semantic Web Conference, Springer, Cham, 2018, pp. 697-

713.

[10] S. I. Chuprina, I. S. Postanogov. Koncepcija obogashhenija

unasledovannyh informacionnyh sistem servisom zaprosov na
estestvennom jazyke. Vestnik Permskogo universiteta. Matematika.

Mehanika. Informatika, 2015, vol. 2, pp. 78-86 (in Russian).

[11] V. S. Kumar, P. Cuddihy, K. S. Aggour. NodeGroup: A Knowledge-
Driven Data Management Abstraction for Industrial Machine

Learning. Proceedings of the 3rd International Workshop on Data

Management for End-to-End Machine Learning, 2019, pp. 1-4.

[12] OWL 2 Web Ontology Language Structural Specification and

Functional-Style Syntax (Second Edition) [Online]. Available:
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/

[Accessed: 07-Apr-2022].

[13] V. V. Gribova, A. S. Kleshchev, F. M. Moskalenko, V. A. Timchenko,
E. A. Shalfeeva. Rasshirjaemyj instrumentarij dlja sozdanija

zhiznesposobnyh sistem s bazami znanij. Programmnaja inzhenerija,

2018, vol. 9, no. 8, pp. 339-348 (in Russian).

[14] L. N. Lyadova, V. S. Zayakin, M. A. Smirnov. Arhitektura sistemy

analiza dannyh, poluchaemyh iz Internet-istochnikov. Informatizacija

i svjaz', 2021, no. 8, pp. 48-52 (in Russian).

	I. Introduction
	II. Requirements and Design Challenges
	III. Ontological Approach to Information Integration
	IV. Description of Design Patterns
	A. An Approach to Analytical Platform Development
	B. Pattern for Importing Ontologies
	C. Pattern for Ontology-Based Metamodeling
	D. Pattern for Integrating DSLs
	E. Pattern for Integrating Problem Solvers

	V. Functionality of Analytical Platform Core
	VI. Conclusions and Future Work
	References

