Research and development of algorithms for solving
the two-dimensional irregular cutting stock problem

Maxim Poryvai*, mvporyvaj@Ivk.cs.msu.ru,
Andrei Chupakhin*, andrewchup @lvk.cs.msu.ru,
*Lomonosov Moscow State University,
Computational Mathematics and Cybernetics Department,
Moscow, Russia

Abstract—The cutting stock problem is relevant in many
industries. It is NP-hard, and in practice finding its exact solution
requires a lot of both time and computing resources. Therefore,
when solving the cutting problem in general, approximate algo-
rithms are often used, while exact algorithms are used only for
special cases. This paper presents the results of an analytical
review and a comparative analysis of various approaches to
solving the cutting stock problem based on classic heuristic and
brute force algorithms. Two algorithms for its solution have been
developed and implemented: a greedy algorithm and a simulated
annealing algorithm. An experimental study of the properties of
the developed algorithms was carried out, as well as a comparison
of the results of their work.

Index Terms—two-dimensional irregular cutting stock prob-
lem, packing problem, nesting problem.

I. INTRODUCTION

In many areas of the industry, for example, steel, leather,
and textile, the problem often arises of cutting out given free-
form blanks from large fragments of material. At the same
time, it is required to group the locations of the contours of
these blanks for cutting a fragment of material as tightly as
possible to minimize waste (unused parts of this fragment).
Thus, one of the studies [1] showed that saving only 1% of
waste from each initial piece of material can prevent significant
financial losses for any enterprise. Such problems are called
cutting stock problems, or nesting problems in the literature.

II. MOTIVATION

Nesting problems, as written above, are extremely important
in the industry. But they belong to the class of NP-hard
problems [2], so searching for their exact optimal solution is
not very efficient in practice. But it also makes it meaningful
to design, implement, try and compare new approximate
algorithms for general cases and to search for more special
cases to implement exact algorithms efficiently. This is what
motivated this research and, as a consequence, the writing of
this paper.

III. RELATED WORK

Cutting stock problems are NP-hard, which means that
it is reasonable to use heuristic algorithms to solve them.
Existing algorithms were considered: natural (evolutionary,
particle swarm, ant colony), tabu search, simulated annealing,
and other heuristics. Exact algorithms can be used in special
cases or small-sized tasks.

Cutting stock problems can vary significantly in terms of
input data depending on specific requirements, for example, in
terms of the parameters of the source material (the placement
area can be finite, semi-infinite, and infinite) and the desired
blanks (can be rectangles, convex / non-convex polygons, free-
form shapes, with holes and without, with the possibility of
rotation and reflection and without), restrictions on the remain-
der of the original fragment of the material (the remainder of
the area (if it is finite) may not be taken into account, or
additional conditions on the shape, size, etc. may be imposed
on it).

However, various subproblems solved in these problems can
be useful in solving any kinds of cutting stock problems. Let us
consider in more detail the various found methods for solving
cutting stock problems.

A. Natural Heuristic Algorithms

Quite a variety of solutions based on natural algorithms have
been considered.

Shalaby and Kashkoush presented the particle swarm
method in paper [3].

Thus, in their formulation of the problem, there is an area
of fixed width and infinite length in one direction (a half-
strip). Also, a set of arbitrarily shaped figures, but without
holes, is given. The shapes can be rotated 90 degrees in any
direction and 180 degrees. It is required to place all the shapes
in the given area so that the length of the resulting rectangle
is minimal.

In the beginning, a sequence of parts is randomly generated
for placement (in the appropriate order). Then an attempt is
made to place the parts by selecting them in a given order. The
entire placement area is divided into squares of fixed size.
Then all the parts are also approximated with similar parts
consisting of the same squares. Now each part is tried to place
so that it does not overlap with the already placed parts.

Then the best result is memorized and the process moves
on to the optimizing particle swarm method. In this method,
each “particle” is a location vector, and it also has a velocity
vector. At each step, appropriate formulas are used to update
values of these vectors for all particles from “swarm”. In this
way, the whole swarm moves as if to the optimal solution.

Applied to the problem, the arrangement vectors are the
orders of placement of the pieces in the previous step, that is,



they consist of integers from one to the number of pieces.
The velocity vectors are initially zeros. In the next steps,
additional restrictions are also imposed on velocity vectors
(module not more than half of the number of figures). The final
vector of particle positions will be real numbers of different
signs. The order of selection of figures on the placement
corresponding to a given particle is equal to the order of the
indices of the resulting position vector traversal in ascending
order. For example, for a placement vector (—1.0, 1.2, 0.5) the
sequence will be (1,3,2), where the index is the number of
the figure assigned initially. The maximum iterations of the
particle swarm method are set initially.

Singh and Ferres proposed in their paper [4] two evolution-
ary algorithms with completely different approaches to solve
the two-dimensional irregular nesting problem and compare
their results, showing that they are also completely different.
The authors have also developed a new approach to estimating
the quality of nesting maps, a new quality function for
filling the nesting map to be minimized (hereafter, the fitness
function).

In the problem, a rectangular area is given, divided into
squares of equal size. All shapes also consist of such squares.
There are 4 kinds of figures in all. They can be rotated
by angles multiple of 90 degrees, as well as reflected. It is
necessary to place the figures so that the value of the fitness
function is minimal.

The fitness function is designed so that its value equals the
sum of the empty squares, multiplied by 1000, plus the sum of
the coordinate differences between all possible pairs of empty
squares (the abscissa and ordinate differences are summed
separately). Such a fitness function allows the algorithm to
take into account not only the number of empty squares but
also the compactness of their locations.

The idea of the first evolutionary algorithm is that initially
the placement area is empty, and the pieces are tried to be
placed on it one by one (the initial “generation” is formed
randomly). In the crossover the offspring is obtained by
alternating parts from the parents, the first parent is chosen
randomly. A mutation is simply adding a random figure to a
random place on the placement area. If an error occurs 5 times
in a row, no mutation occurs.

The idea of the second evolutionary algorithm is that
initially the placement area is full, and there are many over-
lapping shapes (the initial “generation” is formed randomly).
Uniform crossover [5] is used in this approach. A mutation is
simply changing the orientation or type of one of the randomly
selected shapes.

Also, in each of the algorithms, the generations were con-
stantly checked for irreducibility to a suboptimal solution, i.e.
it was checked that the descendants were always as different
as possible by the value of the fitness function, too close ones
were eliminated leaving one of the doubles.

In Verhoturov’s paper [6] it’s proposed to solve the cutting
problem using the ant colony algorithm, as well as the algo-
rithm of simulated annealing.

The problem is considered in the following formulation:
there is a packing area W and a set of geometrical objects
P. It is assumed that the area of packing area is much larger
than the area of all geometrical objects in the sum. Let us
conventionally divide the region into an occupied part @,
where the figures are placed, and a remainder U. The essence
of the problem is to minimize the uncovered area of the
occupied part of the packing area, i.e. to place the given figures
as densely as possible on the infinite area of two-dimensional
space.

The author characterizes the quality of a nesting map (i.e.
the image of a packing area with geometrical objects located
on it) using the nesting coefficient defined as the ratio of the
total area of placed figures to the area of the occupied part
of the packing area.

The main idea of the ant colony algorithm is to implement
the principle of collective intelligence. To find the extremum of
the target function, the algorithm uses several agents (artificial
ants) in parallel, which accumulate statistical information dur-
ing the search. This information is accumulated in a publicly
available databank and used by the agents independently of
each other. Each agent acts according to the rules of the
probabilistic algorithm and when choosing a direction it is
guided not only by the increment of the target function but
also by the statistical information reflecting the prehistory of
the collective search. For the problem solved by the author, at
each step, each agent constructs a set of admissible solutions,
and then these solutions are compared for the presence of
repeated components — they will be of higher priority in the
next iterations.

The idea of the simulated annealing method is that a control
parameter — temperature — is introduced that affects the
magnitude of displacements between successive solutions to
the optimization problem. A high temperature, at which the
solution process begins, corresponds to large displacements,
and a low temperature corresponds to small displacements.
Large displacements are defined as such changes in solutions
that make large changes in the values of the target function,
and small displacements are small changes in the values of the
target function. Large moves at high temperatures mean that
the algorithm avoids a local minimum. The temperature slowly
decreases to the minimum value during the solution process.
Three types of displacements are used to change the location
of objects: moving an object to a new location, moving two
objects together, and changing the orientation of the object.

B. Other heuristic algorithms

Lopez-Camacho, Ochoa, Terashima-Marin, and Burke pro-
pose a different heuristic method for packing irregularly
shaped figures into rectangular containers (sheets) [7].

The set of inputs is the set of figures; the size of the side
of the square area (containers are square for simplicity); so is
the part of the container area, before filling which only one
piece per container is put, and at filling which it is tried to
either fill the container to the end with one piece or put 2 or
3 at once; boundary w is the step with which the allowed size



of the unused container space increases. The set of containers
is infinite. The goal is to minimize the number of containers
needed to place all the pieces (the pieces can be rotated by
angles divisible by ninety degrees from their original position).

The packing method consists of a combination of selection
and placement methods. The selection method is divided into
several parts. First, the parameters so and w are chosen. The
algorithms are then applied sequentially: before filling the
container at a fraction of sy one part is put each, and when
filled at sq algorithm tries to either fill the container to the end
with one part or put 2 or 3 parts at once to fill the container to
the end. If unsuccessful, the algorithm tries to fill the container
in the same way without using w of its volume, then 2w, and
so on. When filling a container, special algorithms are used to
determine intersection and overlapping parts. The intersection
of parts is defined as the intersection of any of their boundaries
so that if one part is completely inside the other, the algorithm
will not work. Therefore, a separate algorithm is then used to
determine overlap.

Important improvements in the proposed packing method
were: checking for special cases in almost all algorithms (for
example, if rectangles bounding the parts do not intersect, then
obviously the parts themselves do not intersect either), which
gives an increase in the average speed of the program, since
these special cases occur quite often for all cases; no retries
to place the part on the sheet after at least one failed attempt
(for CAD method this would be extremely time consuming,
but it does not give

Verhoturov in his article [6] also considers the method of
tabu search as a way to solve nesting problems.

The idea of the algorithm is not to stop at the local optimum
but to continue the search, guided by the same rules, banning
visits to already passed points from the neighborhood (reexam-
ination of similar options). However, if the older information
will not be removed from the list, then the performance of the
algorithm will fall with the increasing number of iterations.
Therefore, the length of the list of bans is limited from above
by some constant.

Each time a figure is moved to another place, it is first
looked at whether this figure is not in the list, and if it is, the
figure is rearranged. After shuffling, the piece is put on the
list. If the length of the list is already equal to the maximal
possible length by this moment, the first element of the list
(the one added before the others) is removed from it. The
essence of the search method with bans is that it most likely
makes no sense to rearrange a figure that has just (or just
recently) already changed its position because in practice this
often leads to a huge number of useless calculations.

C. Exact algorithms

Fischetti and Luzzi [8] in their paper propose to solve the
cutting stock problem by bringing it first to the mixed-integer
linear programming form. Mixed-integer linear programming
differs from integer linear programming in that the integer
condition must be satisfied for at least one input parameter,
not for all.

The problem is considered by the authors in the following
formulation. Given a set of polygonal figures, not necessarily
convex, each of which has a certain reference point and a
half-band with fixed width and potentially infinite length.
The problem is to place all the pieces on the half-band,
minimizing the length occupied by the pieces. This is identical
to maximizing an efficiency function equal to the ratio of the
total area of the pieces to the area of the final strip.

In this solution the authors use NFP (no-fit polygon) —
a polygon that encloses any fixed figure in the set; sliding
down it with an anchor point of an unfixed figure will not
lead to the intersection of these figures (we get a touch), but
moving into the interior by an infinitesimal value will lead
to the intersection. IFT (inner-fit region) is also used — a
polygon inside a fixed figure which, when slid by the anchor
point of an unfixed figure, produces an overlay of the given
figures, but which cannot be overlapped if we move outside
by an infinitesimal value.

The authors divide the external area of the figure into pieces
for convenience: each piece has one of the boundaries of one
of the sides of the figure and goes to infinity.

The authors set the problem of cutting in the formulation
of mixed-integer linear programming, setting the goal of
minimizing the function of the length of the strip and some
conditions (inequalities). Among them are the condition of
non-intersection of figures, the condition that for each placed
figure it is only one piece considered of the outer area of the
fixed figure, and others.

The problem is further solved using the branch and bound
method.

D. Review conclusions

Various approaches to solving cutting stock problems were
considered. Exact approaches, such as integer and mixed-
integer linear programming methods in combination with the
branch and bound method, are not scalable to a large number
of placed shapes: the upper bound does not exceed several
dozen figures. The ant colony algorithm and the particle swarm
algorithm have a large number of parameters, which negatively
affects the computation time of these methods. Evolutionary
algorithms need a lot of memory to store populations to work.
Algorithms not based on well-known analogs are more difficult
to study. Among the remaining algorithms, the simulated
annealing algorithm that has only two parameters and does
not require a lot of memory during its work was chosen first
to be implemented. It was also decided to develop a greedy
algorithm for further comparison of the results of the work.
The NFP method was chosen for non-intersecting placement.

Some references to the literature are not as new, but this is
because the essence of the algorithms applied to the cutting
stock problem is always about the same, but in new works the
essence of the algorithms often recedes into the background,
giving way to additional minor refinements. In the review
process, however, it was important to get ideas for applying
known algorithms to nesting problems; the more subtle points



related to implementation will be considered when the basic
algorithms are implemented.

IV. PROBLEM STATEMENT
A. Informal Statement of the Problem

There are an infinite number of rectangular sheets, the
length and width of each sheet are given and the same. There
is also a finite set of polygon shapes to be placed on the
sheets. The figures do not have holes and can be rotated
through angles that are multiples of 90 degrees from their
initial position.

It is required to find such a layout of figures that: a)
minimizes the number of sheets required to accommodate all
the figures, b) the placement is as dense as possible.

B. Mathematical Statement of the Problem

Let there be Q = {¢;,s = 1,...,M,...} - an infinite set
of rectangular sheets, the dimensions of each sheet are a,b,
a > b. The number of sheets used for figure placement will be
denoted as M. There is also a finite set of polygon shapes S =
{si,i = 1,...,n} to be placed on the sheets. Each polygon
s; is defined by a sequence of its vertices s;;,7 = 1,..., k;.
The figures do not have holes and can be rotated by a = 90t
(t € Z) degrees relative to their initial position.

If the figure s; is placed on the sheet g;, it will be written
as s; € q;.

Let us denote the convex hull for all placed figures on the
sheet ¢; as d;, and the envelope for the placed figures as e;.
The area function of the figure x will be denoted as sq(x).

It is required to find such a layout of figures on sheets that
minimizes a fitness function:

FF=1-(A-FF,+B-FF,)

M

1—1

2 (= X salsy))/sala)+(1= 30 sa(sy))/salem)
FFCL = = A Wi oM

M

2 (1= 52 sq(s5))/sa(ds)

FF, = A

F'F, function is equal to the average over all sheets of
the ratio of the area of all parts on the sheet to the area
of the sheet, so is essentially responsible for minimizing the
number of sheets. F'F} function equals the average over all
sheets of the ratio of the area of all parts on the sheet
to the area of the convex envelope bounding them, thus
responsible for the density of placement. Thus, the task of
multi-criteria optimization is reduced to the task of single-
criteria optimization.

At the moment, it has been decided to use the values
of coefficients A and B equal to 0.5, which leads to the
normalization of the values of the fitness function to the
segment [0, 1]. Therefore, the fitness function shows the quality
of the resulting placement of figures on the sheets. Generally
good coefficients are further planned to be chosen empirically.

C. Purpose of Research

The purpose of this study is to select the best algorithm
according to the criteria a)-b) specified in the meaningful
statement of the problem in each class of algorithms selected

as a result of the analytical review, experimental study of
algorithms, and comparison of the selected algorithms. The
choice and subsequent comparison of the algorithms will
be carried out according to the following main criteria: the
running time of the algorithms on input data of different sizes
(to determine the scalability of the algorithms) and the quality
of the resulting solution, which is determined by a fitness
function.

The result of this study will be a software library containing
implementations of algorithms from different classes, solving
the cutting stock problem in the above-mentioned statement,
implemented in the Python programming language (some
time-critical parts will be written using C++) and designed
in a common style, with a unified hierarchy of classes. It is
also possible to partially use code from open-source projects
and modify it.

V. IMPLEMENTATION
A. General Design

At the moment the library [9] is implemented in the
Python programming language because it allows to make the
development faster and clearer, although to the detriment of the
speed of the program. Nevertheless, some of the dependencies
from additionally used libraries can be transferred to C++, as
well as the rest of the code. Therefore it is planned to first
implement the library in Python, and then partly translate it
into C++.

Points (vertices) in the program are represented by tuples,
polygon shapes are represented by tuples of their vertices. The
set of shapes to be placed is initially specified by the shape:
number dictionary. Each of the figures is initially specified by
specific coordinates in the plane, but the actual placement of
each figure will undergo transformations (consisting of rota-
tions by a multiple of 90 and mirroring) and take into account
offsets (translations) relative to the origin of coordinates for the
initial figure coordinates. Therefore in the program, each figure
will be represented as a tuple of three elements: figures in
initial coordinates, coordinates of transformed figures in initial
coordinates and displacement. Each of the shape placement
sheets is a list of such three-element tuples corresponding to
the shapes.

The class diagram is shown in F'ig.1.

Sa Packing Gready

+ packing
+sort
+__init__{)

+ greedy()

+ packing + bin_size

+sort + polygons
+ init_femp + coeffs

+temp_decr_rate + remaining

+_init_() +bins +greedy_step()

+ simulated_annealing() +__init__()

+ make_a_swap_move() +nest_all()

+ nest_polygon_fo_a_bin{) +make_initial_nesting()

+ initial_polygon_nest{)

Fig. 1. Class diagram.

The main class of this library is the Packing class, whose
fields are: bin_size - tuple containing bins width end height,



bins - sheets from the previous paragraph, polygons - polygons
from the previous paragraph, without transformations and
translation, remaining - dictionary of remaining figures and
their counts, coeffs - fitness function coefficients.

Each of the algorithms has its own class: SA, Greedy.

The Greedy class has the following fields: packing - an
element of the Packing class, whose nesting map is built by
the algorithm, sort - the initial sorting type used: random or
in descending area order. The methods of the Greedy class:
greedy() - sorts the list of shapes and feeds the shapes one by
one into the greedy_step() method, where the current shape is
placed.

The SA class has the following fields: packing - an element
of the Packing class, the nesting map of which is built by the
algorithm, sort - the initial sorting type used. The methods
of SA class: simulated_annealing() - sorts the list of shapes,
generates the initial placement and contains the main loop
of the algorithm. The make_a_swap_move() method is called
inside this method, which randomly selects sheets and shapes
for moving and calls nest_polygon_to_a_bin() method which
makes the movement.

It is possible to visualize the resulting nesting map using
plot_packing() and plot_bin() functions, based on the Mat-
PlotLib module. An example of the visualization is shown in
Fig.2.

Fig. 2. Example of a result visualization.

The input data to the program are fed with a text file of a
special format (description in README.md on GitHub), and
the output file contains the text output of packing.bins.

In both algorithms placement strategy is bottom-left.

B. Greedy Algorithm

One of the simple but quite effective algorithms turned out
to be the greedy algorithm. In this library, it is implemented as
follows. First, all figures are sorted either in descending order
of area or in random order. Then the figures are placed on the
sheets in this order. Then a list of all possible transformations
is made for the current figure. Then the most appropriate
placement (according to the bottom-left strategy) is calculated
for each of the transformations of this figure on each of the
available sheets, using NFP [2], and the variant that gives the
largest fitness gain is chosen. If none of the transformations
of a given figure can be placed on any of the current sheets, it
is placed in the lower-left corner of the newly created sheet.

An example of the algorithm working process is shown in
Fig.3.

Fig. 3. Greedy method working example.

C. Simulated Annealing Algorithm

Another method currently implemented is the simulated
annealing algorithm. The algorithm is based on the simulation
of the physical process that occurs during the crystallization of
a substance, including the annealing of metals. It is assumed
that the atoms have already lined up in a crystal lattice, but
transitions of individual atoms from one cell to another are
still permissible. It is assumed that the process proceeds at
a gradually decreasing temperature. The energy function of
the system is also defined, and a stable lattice corresponds to
a minimum of this function. The transition of an atom from
one cell to another occurs exactly if it lowers the energy of
the system, and with some probability, if it does not, and this
probability is greater when the energy difference is closer to
zero and it also decreases with temperature decreasing.

In the current implementation of this method, an initial
placement is first generated, which differs from the greedy
algorithm in that the shapes are not transformed and are placed
only in the last of the current sheets each time. Next, the initial
temperature 7" and the step of temperature decreasing are set as
parameters. Energy of the system E = 1000000-(1— F'F'), so
it is normalized by [0, 1]. Then, until the temperature reaches
zero, a while loop is started, at each iteration of which 2
random figures from the current placement are selected and
swapped their placement sheets with each other (the specific
placement is also selected by the bottom-left strategy with



the NFP), also with the random transformation. If the shapes
cannot be swapped correctly, the temperature is reduced by a
tenth of a step. Otherwise, the difference of the energies AE
before and after the exchange is calculated. If it is negative,
the exchange is successful, and the temperature decreases by
the step value. If it is non-negative, the exchange occurs with
a certain probability: in case a randomly generated decimal
from the range [0, 1] is less or equal than exp(-AE/T).

VI. TESTING RESULTS

A special generator function was written to make the test
set. The following parameters for the generator function were
used for the experiments:

o sheet sizes: 70x100;

« different figures: rectangle 9x4, equilateral triangle of side
10, isosceles trapezoid with bases 9 and 5 and height 5;

« initial number of each of the figures: 10;

« final number of each of the figures: 505;

« incremental step of number of each figure: 5;

This set of parameters was applied to both algorithms and
to both sorting methods. Initial temperature equal to 500
and temperature decreasing step equal to 1 were used in
the SA algorithm. The running times of the algorithms on
these sets and the obtained values of the fitness functions are
shown in F'ig.4 and F'ig.5, respectively. The stability study
of the simulated annealing algorithm and the profiling of the
algorithms will be carried out after their refinement.

we | —— greedy (random)
greedy (descending area)
SA (random)

—— SA (descending area)
80O

600

Time to place (seconds)

//
7wl

o 200 400 600 800 1000 1200 1400
Total number of figures placed

Fig. 4. Working times of the algorithms.

VII. CONCLUSION

According to the results of testing the algorithms, it can be
concluded that the greedy algorithm at the moment gives a bet-
ter result, while the time of its work increases approximately
exponentially with the number of pieces placed. The strategy

09

08

07

Fitness-function value

i

w —— greedy (random)

greedy (descending area)
us SA (random)
—— SA (descending area)

0 200 400 600 800 1000 1200 1400
Total number of figures placed

Fig. 5. fitness function values of the algorithms.

of sorting shapes in descending area order shows itself better
than the random one.

The simulated annealing algorithm does not yet give the ex-
pected result, as can be seen in the graph. Perhaps the method
of transition to the new cutting map should be modified, as
well as the energy function.

Next, it is planned to refine the simulated annealing al-
gorithm and to implement more algorithms (e.g. a genetic
algorithm, a tabu search algorithm). Then some time-critical
parts of the library will be translated into C++ programming
language.

REFERENCES

[11 CEPI Key Statistics Report 2012, Confederation of European Paper In-
dustries, URL: https://web.archive.org/http://www.cepi.org/node/16197

[2] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness, W. H. Freeman and Company, San
Francisco, 1979, x + 338 pp.

[3] M. Shalaby , M. Kashkoush, “A Particle Swarm Optimization Algorithm
for a 2-D Irregular Strip Packing Problem,” American Journal of
Operations Research. 3. 268-278. 10.4236/ajor.2013.32024 (2013).

[4] G. Singh and H. Lavista Ferres, “2D Packing problem with irregular
shapes,” (2014). URL: https://usnd.to/LF30

[5] E. Eiben, J. E. Smith, “Introduction to Evolutionary Computing,” A,
Springer, 2003

[6] M. Verhoturov, “Zadacha nereguljarnogo raskroja figurnyh zagotovok:
optimizacija razmeshhenija i puti rezhushhego instrumenta,”, Vestnik
Ufimskogo gosudarstvennogo aviacionnogo tehnicheskogo universiteta,
vol. 9, no. 2, 2007, pp. 106-118

[71 E. Lopez, G. Ochoa, H. Terashima-Marin, E. Burke, “An effective
heuristic for the two-dimensional irregular bin packing problem,” An-
nals of Operations Research. 206. 241-264. 10.1007/s10479-013-1341-4
(2013).

[8] M. Fischetti, I. Luzzi, “Mixed-Integer Programming Models for the
Nesting Problem,” Journal of Heuristic, Vol. 15, No. 3, 2009, pp. 201-
226.

[9] 2D-irregular-stock-cutting-problem-multi-algorithm-solution. URL:
https://github.com/maxporyvay/2D-irregular-stock-cutting-problem-
multi-algorithm-solution



