Investigation of adversarial attacks on pattern recognition neural

networks

Denis Vladimirovich Kotlyarov, student of the North Caucasian Federal University,

denl4kotlyarov@yandex.ru
Gleb Dmitrievich Dyudyun, student of the North Caucasian Federal University,
gleb.dudun@gmail.com

Natalya Vitalievna Rzhevskaya, student of the North Caucasian Federal University,

natalia070901@gmail.com
Maria Anatolyevna Lapina, Associate Professor, Department of Information Security of Automated
Systems, mlapina@ncfu.ru
Mikhail VIadimirovich Babenko, Head of the Department of Computational Mathematics and
Cybernetics

North Caucasian Federal University

Abstract. This article discusses the algorithm for creating a neural network based on pattern
recognition. Several types of attacks on neural networks are considered, the main features of such
attacks are described. An analysis of the Adversarial attack was carried out. The results of
experimental testing of the proposed attack are presented. Confirmation of the hypothesis about the
decrease in the accuracy of recognition of the neural network during the implementation of the attack
by an attacker was obtained.

Keywords: Neural network, machine learning, pattern recognition, artificial intelligence,
attack algorithm, information security, Adversarial attack, malicious machine learning.

Introduction

In modern times, such concepts as "neural network", "artificial intelligence™ and other end-to-
end technologies are used in various fields, such technologies are tightly integrated into our lives and
are often used everywhere. Now nobody is surprised by the use of search algorithms from various
advanced companies. Even the older generation now often uses voice assistants, without thinking that
these are yet another “brainchild” of a neural network. In fact, a neural network can now do quite a
lot: generate scientific reports, write poetry or a song, draw a picture that is not much different from
the real one, the main thing is to train it correctly.

But such a network can serve both good and evil, depending on the purpose of the developer.
So, for example, when recognizing images, an attacker can purposefully introduce errors into the
recognition process, trying to force the system to incorrectly recognize the image being processed [1].
As a result, so-called spoofing attacks appear. Often, such attacks can be used in cases where an
attacker seeks to disguise himself as another person and thereby commit illegal actions.

Literature review

At present, it is difficult to unambiguously define neural networks. After analyzing the study
of several authors, we can say that a neural network or ANN is a learning system, which is a certain
mathematical model built on the principle of human neurons, as well as its software implementation
[3, 4]. Ivanyuk V.A. claims that artificial neural networks can be used to create intelligent decision-
making systems, simulation modeling, expert systems [3].

mailto:den14kotlyarov@yandex.ru
mailto:gleb.dudun@gmail.com
mailto:natalia070901@gmail.com
mailto:mlapina@ncfu.ru

A neural network is a mathematical model made up of interconnected nodes that work together
to solve a problem. The nodes are arranged in layers, and each node performs a simple mathematical
operation on the input to produce the output [5].

Kachagina K.S. in her research gives a range of applications of a neural network in everyday
life. So in this study, we can highlight that the ANN is already used in security organizations, law
enforcement agencies, at various factories and much more [4]. Therefore, it is very important to
organize the security of these systems, since further the scope of neural systems will only grow.

It should be noted that the main tasks of neural networks are reduced to:

— Classification, that is, the separation of a certain object with a certain attribute from
others.

— Prediction, this task often serves the interests of the financial world.

— Recognition, which will help to simplify the work, for example, for law enforcement
agencies.

— Solving problems without a teacher.

In recent years, there has been an introduction into information and telecommunication
systems as a means of identification, and often authentication of users [1]. According to experts, the
introduction of such technologies often brings with it massive discontent from the outside. The reason
for this was that the neural network is imperfect. Such a system has a number of vulnerabilities that
will be used to disable it [4].

Since each person is unique, by spoofing biometric data, attackers can describe such data
mathematically and use it as input to machine learning algorithms in order to automate the recognition
process, and then use such ANN to replace their identity.

There are many attacks on neural networks that prevent the system from working properly. An
attacker can carry out large-scale attacks without being noticed. For example, in biometric systems,
an attacker can intentionally introduce errors into the process of recognizing biometric data. Ensuring
the security of such systems is an important issue.

Article [10] describes how adversarial attacks work by exploiting vulnerabilities in neural
networks that can be easily fooled by small noises or modifications to the input data that are
imperceptible to humans, but can cause the network to misclassify the input data.

Consider some types of attacks on biometric systems that disrupt the recognition process [1]:

Fast Gradient Sign Method - an attack with noise overlay on the image with each new
iteration. This attack is quite effective when constantly analyzing the image. This type of attack is
practically unrealizable in the absence of direct access to data.

Using Infrared LEDs to Change Human Facial Features

Overlaying black or white stickers on the image for incorrect recognition

The use of devices that allow you to identify a person for another.

Hostile attacks are a growing concern in the field of artificial intelligence because they can be
used to trick neural networks into misclassifying inputs.

One of the first studies on Adversarial Attacks was carried out by Szegedy [15], who showed
that neural networks can be fooled by small noise inputs. Since then, a large amount of research has
been done on this topic, including the development of new attack methods and defense strategies.

One of the most common types of contention attacks is the Fast Gradient Sign Method
(FGSM), which was introduced by Goodfellow [13]. This method involves calculating the gradient of
the loss function with respect to the input data and then modifying the data in the direction of the
gradient to maximize the loss. Many subsequent studies have relied on this method, including the
iterative FGSM (IFGSM) attack presented by Kurakin [14].

Article [10] also explains various types of hostile attacks, such as targeted and non-targeted
attacks, and provides examples of real-life applications of hostile attacks, such as manipulating the
systems of unmanned vehicles.

Other types of attacks that have been developed include the Jacobian-based saliency map
attack [17], which uses the Jacobian matrix to determine the most sensitive input features, and the
deep fool attack (Moosavi-Dezfooli et al., 2016), which generates small perturbations, which
minimize the distance between the original input and the misclassified output.

Various strategies have been proposed to protect against these attacks. Adversarial learning
involves augmenting the training data with adversarial examples to make the neural network more
robust [16], while defensive distillation involves training a separate network to detect adversarial
examples [17]. Other protection strategies include randomization, input transformation, and gradient
masking [12].

Despite these defense strategies, adversary attacks remain a major threat to machine learning
systems. As noted by Akhtar and Mian [11], attacks by the adversary can have serious consequences
in the real world, such as causing self-driving cars to misinterpret road signs or medical systems to
misdiagnose diseases.

In addition, article [10] discusses some of the techniques that have been developed to defend
against adversary attacks, including adversary training and defensive distillation.

In recent years, researchers have also studied the impact of adversarial attacks on object
detection systems [18], semantic segmentation (Xie et al., 2017), and generative models (Samangouei
et al., 2018). These studies have shown that enemy attacks are effective against these systems and
have proposed new defense methods to improve their reliability.

Despite significant progress in the development of adversarial attacks and defenses, there are
still open issues that require further research. One of these tasks is the development of effective and
reliable methods of protection. Another challenge is understanding the vulnerabilities of deep learning
models to attack by malicious actors and finding ways to fix them.

Several studies [13, 15, 18] have examined the effectiveness of adversarial attacks on various
types of machine learning models, including convolutional neural networks (CNNS), recurrent neural
networks (RNNs), and autoencoders. For example, Xu et al. (2020) have shown that adversarial
attacks can be effective against RNN-based text classifiers even if the attacks are generated using a
different language model.

To protect against enemy attacks, researchers have proposed various defense strategies. One
common defense strategy is adversarial learning, which involves training a model on adversarial
examples in addition to regular training data [16]. Other security strategies include gradient masking,
which involves hiding gradients from an attacker [17], and feature compression, which involves
preprocessing input data to remove redundant features [19].

Several recent studies have also explored the use of generative models such as Generative
Adversarial Networks (GANSs) to generate adversarial examples [18]. These models can be used to
create more realistic examples of competitive actions that are harder to detect and more difficult to
defend against.

Biometric authentication systems, which use physiological or behavioral characteristics to
verify people's identities, have become increasingly popular in recent years. However, these systems
are not immune from attacks, and neural networks are used to carry out attacks on biometric data [19].

One common type of attack on biometrics is presentation attacks, also known as spoofing
attacks, where an attacker uses a fake or artificial biometric to impersonate a legitimate user. Neural
networks have been used to create attacks with a realistic representation of various biometric
modalities, including fingerprints, face recognition, and voice recognition.

For example, Wang et al. (2019) used a convolutional neural network (CNN) to generate
realistic fingerprints that can be used to fake fingerprint recognition systems. Similarly, Nguyen [21]
used a generative adversarial network (GAN) to generate synthetic facial images that can be used to
fake facial recognition systems.

Other research has focused on using neural networks to launch attacks on biometric data by
exploiting vulnerabilities in the biometric system. For example, Li et al. (2019) proposed a method
for generating adversarial examples for fingerprint recognition systems by distorting the input
fingerprint image using a gradient-based optimization method. The resulting fingerprint of the attacker
can be used to avoid detection by the biometric system.

To protect against attacks on biometric data, researchers have proposed various defense
strategies, including the use of liveness detection techniques to detect attacks on presentations and the
use of deep neural networks to increase the resilience of biometric systems to attacks. For example,
Tan et al. [22] proposed a deep neural network liveliness detection method for detecting presentational
attacks in face recognition systems.

Materials and research methods

Using the MNIST dataset as an example, we can consider the principle of building a certain
neural network, and then explore its vulnerability. Based on the research of V.A. lvanyuk, any neural
network is mathematically a superposition of regression functions that describe the relationship
between the values of the inputs and outputs of the network [3].

The input layer receives data in the form of features or input variables, which are then passed
to the first hidden layer. Each node in the hidden layer performs a linear transformation of the input
using weights and biases and then applies a non-linear activation function to produce a non-linear
output. This output is then fed as input to the next level, and the process is repeated until the final
output is obtained.

Starting the study, it is worth saying that the basic element of such systems is the so-called
neuron. It is necessary in order to create a programming model. A neuron in an ANN is an artificial
analogue of a real neuron, only represented as a simple mathematical function that determines the
rules for generating an output signal based on input data [3]. In the work of K.S. Kachagina stated that
a neuron is an imaginary black object with several input and one output hole [4].

A neural network can be represented mathematically as a function f(x; 0), where x is the input,
0 are the network parameters (weights and biases), and f(x; 0) is the output of the network.

The weights and biases in the neural network are adjusted during training to optimize network
performance. This is done by minimizing the cost function, which measures the difference between
projected output and actual output. The backpropagation algorithm is used to update the weights and
biases in such a way as to reduce the loss function.

A neural network consists of layers of interconnected nodes, and the calculation of the output
of each node can be represented mathematically as (1):

z=w-'x+b (D

where z — weighted sum of input parameters x, w — scale vector, b — displacement vector.
The output of a node is calculated by applying a non-linear activation function to a weighted
sum, which can be represented mathematically according to (2):

a=g(z) (2)

where g is the activation function.
The node layer output is calculated as follows (3):

at = g(z") (3)
where a® — exit of the first layer, z1— weighted sum of first layer inputs, g is the activation function.

The output of the last layer is the output of the neural network, which can be used for prediction
or classification.

During training, the weights and biases of the neural network are adjusted to minimize the cost
function, which measures the difference between the predicted output and the actual output. This is
done using gradient descent, where the gradient of the cost function with respect to weights and biases
is computed, and the weights and biases are updated accordingly.

The backpropagation algorithm is used to efficiently compute the gradient of the cost function
with respect to the weights and biases of the network.

Thus, the mathematical logic of a neural network includes calculating the weighted sum of the
input data for each node, applying a non-linear activation function, and propagating the output through
the layers of the network to obtain the final output. The network weights and biases are optimized
during training to minimize the cost function using gradient descent and backpropagation.

It is worth deciding on the neural network training algorithm:

1. Import libraries

2. Data checking

2.1 Checking for Lost Values
2.22.2 Data normalization

3. Modeling

4. Getting a result

The neural network analyzes the biometric data by learning patterns and features from the
input data during the training process. It can then use these learned features to predict new biometrics.
For example, a facial recognition neural network can learn to recognize certain facial features and
patterns, such as eye position or mouth shape, and use that information to identify people in new
images. Similarly, a fingerprint recognition neural network can learn to recognize the unique ridges
and patterns on a fingerprint and use that information to verify a person's identity.

Let's analyze this algorithm on a specific example.

It is necessary to create and train a neural network based on the MNIST database that will
recognize handwritten numbers.

ererd pland the
experinert Sat
Sae ae Sape twa Saethes
@mectionof "W“" fmrd et
Keras libraries eanrg ranng tranng
< ;
= Difcbese TR {Acapy of the Dth qpoch o the reurd retwark, already
Q@rredion traingon || || taingon (| | E | e {trained onintact ceta, is invdved in trairing. The
i udstated dita udstated deta | dstartion mecrerismis described in the dagram
Cedting sandes
(dvidng the detaset Savirg reural "Deta goa' Saving reural "Deta gpochs_normd” Saving the paraneters o 'Deta epodts_era”
ito parts) (gre 9 retwork detaa each| drectary an retwork cetaa each| drectay on Gage the rewral netwaork at drectary an Goge
training stage (epoch) Qxge Drive training stage (epoch), Oive each stage of training. Dive

i

Testing the trained neurd
retwork, cd adating the
acarary praveter

Rating the effidency of
the reural netwark by
the acauracy

peraveter

b

{ Eda)
\ stapl/

i

Testing the trained neurd
retwork, cd adating the
acarary praveer

Riilcer grapts of the

effidercy o the reural

retwork interns of the
acouray paraveter

{ Eol
\ stap2 /

I

Testing the trained neurd
retwork, cd adating the
CoLrancy peraveter.

Adtirg the effidency d
the reural netwark by
the acaracy
peraneter.

e
{ Edar
\ stae3,/

Fig 1. General structure of the experiment algorithm

It is necessary to create and train a neural network based on the MNIST database that will
distinguish between handwritten numbers.

The following libraries and modules have been used:

Numpy is a library for working with multidimensional arrays and matrices [27].

Keras is a framework for building and training neural networks. It is part of the Tensorflow
library and allows you to create neural network models using a set of high-level abstractions.

Import the NumPy library and give it the alias "np". We import the MNIST dataset from the
Keras library. MNIST contains images of numbers from 0 to 9, which will be used to train the neural
network [28].

Sequential is a neural network model in which layers are added sequentially one after the other.
Dense and Flatten layers from the Keras library. Adam is an optimizer from the Keras library.
Optimizers are used to adjust the neural network weights during training.
SparseCategoricalCrossentropy is a loss function from the Keras library. The loss function is a metric
that evaluates how well a neural network performs on a classification task.

Matplotlib is used for data visualization. ModelCheckpoint is a class that allows you to save
model weights during training. The load_model function from the Keras library is used to load a saved
model from a file [28].

Next, we connect Google Drive to Google Colab. Google Drive is used to save the model and
other files.

The shutil module in Python provides a high-level interface for working with files and
directories. It contains functions for copying, moving, renaming and deleting files and directories.

import numpy as np

from tensorflow.keras.datasets import mnist

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Flatten

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.losses import SparseCategoricalCrossentropy

import matplotlib.pyplot as plt

from tensorflow.keras.callbacks import ModelCheckpoint

from keras.models import load model

from google.colab import drive

drive.mount ('/content/gdrive')

import shutil

We load the MNIST dataset and split it into training and test data, where x_train and x_test
— numpy arrays containing images of handwritten digits. Each image is a 28x28 matrix of pixels. Each
pixel corresponds to a value from 0 to 255 (various shades of black, white and gray)

y trainandy test —numpy arrays containing labels for the corresponding images in the
training and test sets. The label is an integer from 0 to 9 that corresponds to the handwritten digit on

the corresponding image.
(x_train, y train), (x test, y test) = mnist.load data()

N Denarstration of

|
|
| stageof the eqerinert. Dreset @rtert
L |
Denorstrated detaset
Xnam|Y norm

v

Q- soreen auput of Imege
Tesar.

v

CGrvat the terse intoan
inece.

v

< Qn screen auput o Inege

Fig 2.The structure of the algorithm of the module for demonstrating the contents of the Mnist
dataset
For clarity, we derive one of the elements x_train and y train inthe form in which they
are stored in tuples. Take element number 277.
print(x _train[277])

print(y train[277])

L @« &« # # & @& @& @# @& & @& 2 @& & & & @ @
a & @ @ & & &a 8 @ &
[@ & & % &4 & a & & & & @2 @& @8 & 2 @ @
a4 © & @® &4 & @a 8 & &)
[@ © & & &4 & @8 ©® & & @& @8 © & ®© @& @ O
&4 @ @ @ & & &a a8 a3 ¥
[&# & & & & & @ & 2 & & @ @ &5 I 754 54 355
1w W & &« & & 8 ° @ @&
[o 0 L) L] a L L L] @ @& I% 1T Fa Ihe IR N Ny 34N
%y nEw T & @ @ a @& @ a7
[@ & @ @ @ a @ @ & &3 243 33 350 JR3 283 IRD IR 2%)
I I8 143 Y &4 @ @ @ @ &
[@ @& @& @& @ & @8 @ @& 1% 393 355 £F LEF SE S8 G4 18
4y 5% 24% 215 @ @ @ © @ &]
[@ & & @& & & @ @ @17 241 213% 4 @ & @ @& &3
ISP IFI IS IF @ & @ @ @ a7
[@ 0 & & 4 a2 @ @ @ i1 a T @ L Ed L L
35 333 38 4y 4 @ @ @ @ @]
[@ &« & # a4 a a & & & 4 @ & @& # @& & &3
MY ML 4 & @ @ @ &)
[# & & # @& &a @& » & &« @& @8 B & & @& @ &2
My ik 34k 17 @ @ @8 » & 2]
[# & & & & & &a & =2 & & @ @ @& = T @ &2
I ISI IS TR @ @ @ @ @ @]
[@ & & & & & @& @& & & @& @« @2 @& @& @& ¢ i
MY MM 2 @8 @ @ @ o ° @)
[@ & @& @& & & @& ©® © @& @& @& 2 B & & B i3
I3 151 4 5 @ @ @ @ @ &)
[@ @ & @& @ @ 317 % 5% 9% ©F 154 23 &6 & I5 I35 3%
=y 18s & & @& a a & @ @]
[@& @ L @ 11 3£1 25% 258 TSN DOF ISR IR D3 EES 108 IS5 IS5
I ETR & @ & & a @ @ &
[@ @& @& @& @1 1732 353 3% 338 128 49 138 3%0 783 353 IRD IFH 35D
My ¥ @& @ &4 & @8 @ & &)
[& @& @& 74 T3 353 =3 45 5% & @& B8 &5 280 255 3 4y 255
%y 1 @ @ & & @ @ a &
[& & @& $S1IFIIF 37 & 2 & & @ T IE} I5I IFD IS0 IS
N I1F L) ® a L) o L] * @2
[@ © @ 91 %% 179 =8 3 @ @ %3 1%9 IS8T DL J4N FEQ DXL I
BN ML 83 @ @ @ a @ @ @]
[@ @ @ 91 7531 333 353 200 140 148 o473 I3 250 4B LB I7 & 23
5 245 191 9% @ @& @8 @ @& a]
[& @& @& 931 43 353 2353 253 253 253 253 253 22 2F% @& @ @ 157
Iy 2% 2y 11 @ @ @8 ° @ a]
[&% @& @& 713 386 351 351 352 I3 351 304 B9 3 @ & @ @& 1%
1T 31F T & & & @ @ @ a7
[@ &« & # & & @ @& @ & &4 @ @ @& # & @ @
§ 0 g i £ o @ [[) L 3]
I i a [] [a] a a [] E]] [] -] -]] ']] =]
4 @ @& @ &4 & a a8 8 ¥
[# & & # & &a &8 » & & @& B B & = 2 @ @
4 & @ @ @ @ a » a3 2]
[& & & & & @ a@ & 2 & & @ @ @& = 2 @ 3
@ @ @ @ @ a a @& @ a7
I i] n [] [] a a L]] [] L] [] [] -] -] [] [] w (]
4 © @® @® @ @& @ @8 & &)1}

Fig 3.0Output of element 277

Display the image of the element x train[277] in black and white (white is 0 and black is
255).

plt.axis ('off') —thisis a function that hides the coordinate axes on the image.

plt.imshow(x train([277], cmap='binary')

plt.axis('off")

(-@.5, 27.5, 27.5, -8.5)

Fig 4.Image of element 277

Let's normalize the pixel values to bring the values from 0 to 255 to the range from 0 to 1. This
is done by dividing each pixel value by 255. Pixel normalization improves the performance of the
model, as it facilitates training and reduces the time required for processing data.

X _train = x train / 255.0

X _test = x _test / 255.0

At the next stage, we split the training and test datasets into two equal parts. The first part will
be used for the first training of the neural network, and the second part will be distorted and used in
the second training.

Sruwtured the
cregted &t sanples

X picture sdection
Y- labd sdection

A 4

A 4 v
Xnom|Ynam Xrug Yirue Xera | Yera
e e e S
Xrorngran) | Y Xrongest) | Y Arue tran Hrue test Xerrar_tran < Xara_tet
norndran) rornitest) Ytrue tran Yirue test Yerrar_tran Yeraor_test

Fig 5.Scheme of splitting the dataset into samples

Xtrue train, Xerror train = np.split(x train, 2)

Ytrue train, Yerror train np.split(y train, 2)

Xtrue test, Xerror test np.split(x_test, 2)

Ytrue test, Yerror test np.split(y test, 2)

For clarity, we display the number of elements in each data set

xtrue train), Xerror train), Ytrue train), Yerror train), Etrue test), Xerror test), rtree test), Yerror test)

B0 R e L

Fig 6.Displaying the lengths of tuples

We import the os module, which provides functionality for interacting with the operating
system, such as creating, deleting and moving files and directories, getting information about file
paths, and much more.

Create the necessary folders on Google Drive if none exist.

In data epochs epoch files will be saved so that later you can analyze the work of the neural
network.

import os

if not os.path.exists('/content/gdrive/My Drive/neyro'):

os.makedirs ('/content/gdrive/My Drive/neyro')

if not os.path.exists('/content/gdrive/My Drive/neyro/data epochs'):

os.makedirs ('/content/gdrive/My Drive/neyro/data epochs"')

Define the architecture of the model.

(Lo)
Interrel neurd ret dgorithm
besed on Keras dgrithns,

formed on Mhist's cetaset. Inporting of Keras
Libraries
ad Mist citaset

v

Cedinglaygs d a
reurd netwark and
('develqaing, two
convdutiordl, "outpLt”).

Main training loop
Nnber of iteratios=Nunber of epachs

v

Ardlysis cyd e Nner o
iterationrs=Nunber of imeges inthe
sanple

¢ PFdue caoveted Itothe array ¢
(tersar)arrange size — 28/ 28 Inport deta for
e lad — ReA vaue of the nunber Inthe fracessing
pcture ¢
@nversion o imported array (tensar) into the linear
aray

v

Processing the array deta

v

Defining the processing resut dass (performed by the last, linear ayer
o the reural netwark)

v

Gnyerison o the most likdy resut with the inege labd value
(benchnark conparison)

v

Predsion value calcu aion
(Sper seCtegoricd Gossertrapy error function*

v

Neuron weight cditration
(Gadert descart)*

[

Fig 7. The structure of the algorithm of the internal mechanism of the neural network

Using the method of experiment, the optimal structure of the neural network and the
parameters of its training were selected.

The first layer - Flatten converts a two-dimensional array (28, 28) into a one-dimensional array
(dimension 784) so that it can be fed to the input of the neural network.

The second layer - Dense with 100 neurons and the ReLU (Rectified Linear Unit) activation
function uses a linear operation followed by a non-linear activation function. The ReLU activation
function returns 0 for negative values and the value itself for positive ones.

A\ 4

Y

The third layer is Dense with 50 neurons and the ReL.U activation function.
The fourth layer is Dense with 10 neurons and softmax activation function. softmax converts
neuron values into probabilities summing up to 1.0 and is used for multi-class classification [29].
model = Sequential ([
Flatten (input shape=(28, 28)),
Dense (100, activation='relu'),

Dense (50, activation='relu'),

Dense (10, activation='softmax')

1)

We compile the model with the necessary parameters.

The first optimizer parameter defines the optimization method that will be used to train the
model. In this case, the optimizer adam is used at the rate of learning (1earning rate) equal to 0.01.

Second parameter 1oss defines the loss function to be used during model training. Here we
use categorical cross entropy (SparseCategoricalCrossentropy).

Third parameter metrics defines the metrics that will be used to evaluate the model. In this
case, we will use only the accuracy metric (accuracy).

model.compile (optimizer=Adam(learning rate=0.01),

loss=SparseCategoricalCrossentropy (),

metrics=["'accuracy'])

Create a checkpoint object that is used to save the state of the model as a file in a
folder data epochs after each learning epoch.

checkpoint = ModelCheckpoint ('/content/gdrive/My Drive/neyro/data epoch
s/epoch {epoch:02d}.h5")

Train the model on training data xtrue train with appropriate
labels ytrue train. Specify the number of epochs 10. For one training iteration, we take the batch
size 100.

shuffle=True Specifies that the training dataset will be shuffled before each epoch to avoid
the possibility that the model might remember the order of the training examples.

callbacks=[checkpoint] indicates that the object checkpoint will be used as a callback
to save the state of the model after each epoch.

Learning outcomes are saved to an object history. After training the model, history will
contain information about the change in the loss function and accuracy metrics during model training.

epochs = 10

history = model.fit (Xtrue train, Ytrue train, epochs=epochs, batch size

=100, shuffle=True, callbacks=[checkpoint])

[+ Epoch 1/1@
308/ 308 [=====s====s===s==ss===s========] - 2% 4ms/step - loss: @.2914 - accuracy: @.9111
Epoch 2/18
308/300 [=ssssssssssssssssssssssessssss] - 1% 4Ams/step - loss: 8.1421 - accuracy: 8.9578@
Epoch 3/18
0@/ 300 [=====sss=sssssssssssssss=s====] - J5 GmMs/5tep - loss: @.1874 - accuracy: @.9679
Epoch 4/18

3B/ I [==============================] - 2§ Gms/step - loss: 8.1088 - accuracy: 0.9677
Epoch 5/1@
308/ 308 [=====s====s===========s========] - 23 Smz/siep - loss: @.8834 - accuracy: 8.973%8

Epoch 6/18
308/300 [====ss==ssssssssssssssssssss=s] - 1% 4mMs/step - loss: 9.0B49 - accuracy: 8.9748
Epoch 7/18
308/300 [wssszsssssszsssssssssssssssses] - 15 4ms5/step - loss: 9.8639 - accuracy: ©.9812
Epoch 8/18

388/308 [==========s===s===s=============] - 15 4ms/step - loss: @.869% - accuracy: B.9788
Epoch 9/1@
308/ 308 [=========s===s===s===ssz=======| - 13 4mz/sTep - loss: 2.8632 - accuracy: 9.9584
Epoch l@/1@
I8/ 300 [=========s===s==ss===ss=======] - 1% 4ms/step - loss: 0.8662 - accuracy: ©.9887

Fig 8. Data output after the first training

Let's evaluate the model on test data
After the first training, we got an accuracy of 0.9542 on test data

test loss, test acc = model.evaluate(Xtrue test, Ytrue test)
print({"Test accuracy:', test_acc)

157/157 [===s=======s======s============| - @5 2ms /step - loss: B.2238 - accuracy: @.9542
fest accuracy: B.9542088293173169

Fig 9. Accuracy of training on test data

Derive the graphs of the first training
plt.plot (history.history['loss'])

plt.title('Training Loss'")

plt.xlabel ('Epoch'")

plt.ylabel ('Loss"'")

plt.show ()

plt.plot (history.history['accuracy'])
plt.title('Training Accuracy')
plt.xlabel ('Epoch'")

plt.ylabel ('Accuracy"')

plt.show ()

Training Loss
0.30 4

020 4

Loss

0.15
,
0.10 4 T
¥} _I. L g
Epach
Fig 10. Graph of losses
Training Accuracy
0.98 4 P S
97 -~ N
096 4
U095 ,-'I
4 0944 f
R
a2 .".
/
0919))
4] ; -I'I] [i]
Epasch

Fig 11. Graph of accuracy

Thus, the neural network was trained to recognize handwritten numbers on the MNIST dataset.

The next stage of work consists in distorting the dataset, that is, simulating the intervention of
an attacker, and then analyzing the results after retraining the neural network.

The task is to find a way to calculate malicious interference in the operation of the neural
network.

Let's put forward a hypothesis that one of the signs of interference in the neural network may
be the difference in performance and accuracy to the trained neural network from the original one.

Let us test this hypothesis on a practical problem.

Before training the model on a distorted dataset, we will make a copy of the 10th epoch file
and train the model loaded from it in exactly the same way, but on the second half of the

dataset (xerror trainu Yerror train), but without changing anything in it.
source file = '/content/gdrive/My Drive/neyro/data epochs/epoch 10.h5"'

destination file = '/content/gdrive/My Drive/neyro/data epochs/epoch 10
_copyl.h5"

Copying a file to a new path

shutil.copyfile(source file, destination file)

model = load model('/content/gdrive/My Drive/neyro/data epochs/epoch 10
_copyl.h5")

#Model compilation with Adam optimizer, SparseCategoricalCrossentropy
loss function and accuracy metric.

history = model.compile (optimizer=Adam(learning rate=0.01),

loss=SparseCategoricalCrossentropy (),
metrics=["'accuracy'])

Creating a folder to save training data after each epoch

import os

if not os.path.exists('/content/gdrive/My Drive/neyro/data epochs conti
nue') :

os.makedirs ('/content/gdrive/My Drive/neyro/data epochs continue')

Saving the model after each epoch to folder data epochs error

checkpoint = ModelCheckpoint ('/content/gdrive/My Drive/neyro/data epoch
s continue/epoch {epoch:02d}.h5")

Training the model on the second half (not yet distorted) of the dataset

epochs = 10

history = model.fit (Xerror train, Yerror train, epochs=epochs, batch si

ze=100, shuffle=True, callbacks=[checkpoint])

Epoch 1/18

380/300 [==============================] - 35 &ms/step - loss: B©.1726 - accuracy: 8.
Epoch 2/18
380/ 300 [s=sss=s=s===ss=sss==ssososssoooao 1 - 2s 6ms/step - loss: ©.8972 - accuracy: 8.
Epoch 3/18
300/300 [==============================] - 25 oms/step - loss: ©.89@1 - accuracy: @.
Epoch 4/1@
380/30@ [ss=ss=ss===s=s===================] - 25 6ms/step - loss: ©.8867 - accuracy: 9.
Epoch 5/1@
300/308 [==============================] - 25 8ms/step - loss: 8.8787 - accuracy: @.
Epoch &/18
3P0/ 308 [==============================] - 25 Bms/step - loss: ©.8646 - accuracy: 8.
Epoch 7/18
300/308 [====s=====s=s==s=s=s==ss=s=s=====] - 25 6Gms/step - loss: 8.8633 - accuracy: @.
Epoch 8/10
380/300 [s=s=s==s===s========s============] - 25 6ms/step - loss: 8.8571 - accuracy: 9.
Epoch 9/1@
380/30@ [=ssss=s==ssss=================] - 25 6ms/step - loss: ©.8468 - accuracy: 0.
Epoch 1e/1e
300/300 [==============================] - 25 7ms/step - loss: ©.8622 - accuracy: @.

Fig 12. Output of training results
test loss, test acc = model.evaluate(Xerror test, Yerror test)
print(‘Test accuracy:’, test acc)

157/157 [==============================] 15 Ams/fstep - loss: 8.1433 - accuracy: 8.9762
Test accuracy: 9.9761999845584761

Fig 13. Accuracy of training on test data
Accuracy after retraining increased from 0.9542 to 0.9762.
Let's create a copy of the epoch 10 file so that it can be used in the second training of the neural
network and compare the received data.

source file = '/content/gdrive/My Drive/neyro/data epochs/epoch 10.h5"
destination file = '/content/gdrive/My Drive/neyro/data epochs/epoch 10
_copy.h5'

shutil.copyfile(source file, destination file)

Load the neural network model from the file epoch 10.h5, stored in the data_epochs folder

on Google Drive.
model = load model('/content/gdrive/My Drive/neyro/data epochs/epoch 10

.hd ")

Let's compile the model using the same parameters as the first time.
history = model.compile (optimizer=Adam(learning rate=0.01),

loss=SparseCategoricalCrossentropy (),

metrics=["'accuracy'])

Let's create a folder data epochs error, where the files of the epochs of the second training

will be saved
import os

if not os.path.exists('/content/gdrive/My Drive/neyro/data epochs error

os.makedirs ('/content/gdrive/My Drive/neyro/data epochs error')

Let's create an object with which we can save epoch files.
checkpoint = ModelCheckpoint ('/content/gdrive/My Drive/neyro/data epoch
s_error/epoch_{epoch: 02d}.h5")

Training and testing of the neural network is carried out on the second half of the MNIST
dataset (with the prefix error), which was created at the beginning of the code.

T TS Detation d the
Pafonedprior totre third 1 Haed.
stage d the experiment. :k

Cstated
Cetasd
Xara | Yerrar

v

Finddenert withlabd
0(=0)

v

Redadng thelabd of
thsimagewith 9

Qv screen autput
o Imege +ILabd

Received posskd e
taset & wsed
far the 3d stage
d neurd net
tranng

Fig 14. The structure of the algorithm for direct distortion of the sample "Error"
Let's find an element from the data set whose value is 0 and display its image and its

corresponding label.p1t . imshow (Xerror train[9], cmap='binary"')
plt.axis('off")

[1 print(Yerror_train[9])

Fig 15.Image of dataset element 0 and its label

Replace all label values in the training dataset yerror train with values 0 to 9.

This stage is an imitation of an attacker's action. This example can be projected onto real face
recognition neural networks, that is, different dataset numbers are different faces of people.

One of the reasons for the emergence of the Adversarial attack is that machine learning
methods were originally developed for stationary and secure environments, where the training and
test samples were generated from the same statistical distribution. However, in practice, attackers can
covertly manipulate input data to exploit vulnerabilities in ML algorithms and compromise the
security of the entire machine learning system.

The type of attack in which an attacker seeks to gain access to the data and the learning process
of an ML model in order to “poison” it (train it incorrectly) for subsequent inadequate work is called
poisoning. It can be seen as a malicious infection of the training data. Thus, the “white box” strategy
is used here, when the attacker has information about the victim - “malicious knowledge” (Adversarial
Knowledge, AK): how the data for training are prepared and from what sources and what they are,
what are the main functions of the attacked system , what algorithms it uses, what are the results, etc.
Poison attacks involve insider information about the ML system and a fairly high level of attacker's

competence in Data Science [26].
Yerror train[Yerror train == 0] = 9

BBIBCI[CM QJICMCHT Xerror_train [9] C COOTBCTCTBYIOH_ICﬁ €My MCTKOM.
plt.imshow (Xerror train[9], cmap='binary')

plt.axis('off")

print (Yerror train[9])

G 9

Fig 16. Image of dataset element 0 and its label after replacement
As a result, all images 0 correspond to labels with a value of 9.
Retrained the neural network on data sets Xxerror train and Yerror train, using the
same parameters as the first time.
epochs = 10
history = model.fit (Xerror train, Yerror train, epochs=epochs, batch si

ze=100, shuffle=True, callbacks=[checkpoint])

Epoch 1/1@
300/ 300 [=========s===s================] - 2& 4ms/step - loss: 0.2891 - accuracy: @.9531
Epoch 2/18@
30/ 308 [=====s===s===ss====s===s========] - 15 4ms/step - loss: B8.1828 - accuracy: @.96%&
Epoch 3/1@
308/308 [=s===s===ssssssssssssssssss===] - 1€ 4ms/step - loss: 0.88B68 - accuracy: 8.974@
Epoch &/18@
309/ 300 [se==ssssssssssssssssssssssssss] - 15 4ms/step - loss: @.8765 - accuracy: @.9768

Epoch 5/1@

304,388 [wessssssssssssssssssssssssssss] - 15 Sms/step - loss: ©.8734 - Accuracy:
Epoch 6/18

398 389 [lIIIIII-IIIIIIIIIIIIIIIIIIIIIII: - 15 4ms/step - loss: @.8674 - Accuracy: a.9886
Epoch 7/18a

3299/309 [ssssssssssssssssssssssssssss=ss] - 15 Sms/step - loss: @.960@ - accuracy: @.9815
Epoch 8/18

8.9779

309/ 300 [=e=ssssssssssssssssssss=sss===] - J5 oms/step - loss: @.8592 - accuracy: @.9829
Epoch 5/18

300/300 [ss==ssss=sssssssssssssssssssss] - 25 Tms/step - loss: 0.8486 - accuracy: @.9858
Epoch 18/18

399/ 39 [=====s===s===ss===s===========] -]5 4ms/step - loss: @.853]1 - accuracy: @.984%

Fig 17. Data output after training

test loss, test are = model.evaluate(Xerror test, verror_test)
print(‘Test accuracy:', test acc)

157/157 [==============================] - 85 3ms/step - loss: 5.5475 - accuracy: @.8758
Test accuracy: @.8758890135421753

Fig 18. Accuracy on test data
plt.plot (history.history['loss'])

plt.title('Training Loss'")
plt.xlabel ('Epoch'")

plt.
plt.

plt
plt
plt

plt.
plt.

ylabel ('Loss"')

show ()

.plot (history.history['accuracy'])
.title('Training Accuracy')

.xlabel ('"Epoch")

ylabel ("Accuracy')

show ()

Training Loss

0.20 4

0.16 -
014 -
[]
.12 4
.10 4
0.08 +

0.06 -

Epoch
Fig 19. Graph of losses

Training Accuracy

0.985 4

0.980 -

0975 1

0.970 4

Accuracy

0.963

0.960 1

0.955 1

4

T

Epoch

Fig 20. Graph of accuracy

4

We got an accuracy on the test data of 0.8758, which is much less than the result of 0.9762
obtained after the model was trained on an undistorted dataset, and also less than after the first training,
where the result on the test data was 0.9542.

First neural | Additional training of | Additional training of

network a neural network on | a neural network on a

training an undistorted dataset | distorted dataset
Accuracy on test data | 0,9542 0,9762 0,8758

This confirms the hypothesis. Thus, when retraining a neural network on a distorted dataset,
the accuracy on test data drops, and when retraining on an undistorted dataset, it increases.

This is due to the fact that the information received by the neural network about handwritten
numbers from the MNIST dataset during initial training comes into conflict with the information
received during re-training on the dataset with changed labels.

Therefore, a sharp decrease in the accuracy of the neural network during additional training is
one of the signs of an attacker's intervention.

The presented method is one of the simplest methods for detecting malicious interference, and
in further research it is planned to rely on the gradient descent method, which can be more accurate
for this task. This is exactly what scientists from Cornell University did for the article "Interpreting
Deep Neural Networks with SVCCA" [30].

Gadet descat wark exanpe

[

@nsicer an arhitrary function K, y) having an ACvaue area with
alocd ninmmB

4

Lets ark an arhitrary poirt Aon
the surface B

v

The gradent s avedtar indicating the drection of the fastest
gonth o the furction

Defire the gradiet R, y) at
pant A

Srce the gradert shows the drection o the lacd gromh o the
furction, the drection o the functioris decrease will be vectar
inverse grediert

v

Then dhese the gradient with an
gycsite velue (Aka, arti-gradient)

For eechiteration the nove step shoud
cd cdated separady. The smaller the agle o descart, the less
travd step

v

Then take a step in the drection
o ati gaddiet

v

Mark pant Ca the end part of
the step

n Loc. Mnmm

Fourd?

yes

Mrinumaout put /

Fig 21. Scheme of the gradient descent method theoretical algorithm

Gadet descat pratical exanple

LI
v
Ardlysis o the inut one-dnensiael

- [2

o Recognition of the desired
Neur on ectivation sequece
Treerra fuctionis a
cargex function, in this ¢ ¢
case cdcuating the . .
drerge inweight for ech—| Fessing Detatothe Bror Rundtian Drect recron activation
reuron. At the input - ¢
nore then 300 variebles Gladation o the vectar of the total v
wegts dfselo(r)]‘ te gcgs Weidhts Drect trasfer o cetato
the next layer with a
¢ certan "stremgth
Carge inthe sigificance o neras n \ /
accardance with the biss vector
v
G cdating the step to find the next
nnmmvaue

Repeet cdibration cyde
(Fourd ninmumerrar value?)

Theresut of the aove loop —
error furction minnd vaue <>
Most effective camposition of neran
wegts

Fig 22. Scheme of the gradient descent method practical algorithm
In conclusion, adversarial attacks are of particular interest in the field of artificial intelligence,
and a large amount of research has been done in this direction. While defense strategies have been
proposed and the arms race between attackers and defenders continues, new methods of attack are
constantly being developed. Thus, it is important for researchers to study adversarial attacks and
develop new protection strategies to ensure the security of machine learning systems, the formation
of a secure model of trusted artificial intelligence.

References

1. Attacks on biometric systems I InformationSecurity URL.:
https://www.itsec.ru/articles/ataka-na-biometricheskie-sistemy [Online; accessed 30-March-2023].

2. Mamirkhodzhaev M. M., Umaraliev J. T., Sotvoldieva M. B, Tuychiboev A. E.
Vozhmozhnosti nejronnyh setej [CAPABILITIES OF NEURAL NETWORKS] .Talgin va tadgiqotlar
ilmiy-uslubiy jurnali, 2022, Ne6. URL: https://cyberleninka.ru/article/n/vozmozhnosti-neyronnyh-
setey (date of access: 03/30/2023). (in Russian).

3. Ivanyuk V. ANEJRONNYE SETI | IH ANALIZ [NEURAL NETWORKS AND THEIR
ANALYSIS]. Hronojekonomika [Chronoeconomics], 2021, No. 4 (32). URL:
https://cyberleninka.ru/article/n/neyronnye-seti-i-ih-analiz (accessed 03/30/2023). (in Russian).

4. Kachagina K. S., Safarova A. D. NEJRONNYE SETI - PERSPEKTIVY RAZVITla
[NERON NETWORKS - DEVELOPMENT PROSPECTS]. E-Scio [E-Scio], 2021, No. 2 (53). URL:
https://cyberleninka.ru/article/n/neyronnye-seti-perspektivy-razvitiya (accessed 03.30.2023). (in
Russian).

5. Akhtar Z., Luca Foresti G.7. Face Spoof Attack Recognition Using Discriminative Image
Patches, Department of Mathematics and Computer Science, University of Udine, Via delle Scienze
206, 33100 Udine, Italy Journal of Electrical and Computer Engineering, Vol. 2016, Article 1D
4721849. 14 pp

6. Namiot D.E., llyushin E.A., Chizhov L.V. ATAKI NA SISTEMY MAShINNOGO
OBUChENWa - OBShhlE PROBLEMY | METODY [ATTACKS ON MACHINE LEARNING
SYSTEMS - GENERAL PROBLEMS AND METHODS]. Mezhdunarodnyj zhurnal otkrytyh
informacionnyh tehnologij [International Journal of Open Information Technologies], 2022, Ne3.
URL: https://cyberleninka.ru/article/n/ataki-na-sistemy-mashinnogo-obucheniya-obschie-problemy-
i-methody (accessed 03/30/2023). (in Russian).

7. Gafarov F.M., Galimyanov A.F. ARTIFICIAL NEURAL NETWORKS AND THEIR
APPLICATIONS. - 1st ed. - Kazan: Kazan University Press, 2018. - 121 p.

8. Charu Aggarwal Neural Networks and Deep Learning:. - 1st ed. - St. Petersburg:
Dialectics LLC, 2020. - 752 p

9. Artemenko A.V., Golovko V. A. Analysis of neural network methods for recognizing
computer viruses / Materials of breakout sessions. Youth Innovation Forum "INTRI" — 2010. —
Minsk: GU "BellSA", 2017. — 239 p.

10. How to cheat a neural network or what is an Adversarial attack // ALEXEY
CHERNOBROV ANALYST [Online] URL: https://chernobrovov.ru/articles/kak-obmanut-nejroset-
ili-chto-takoe-adversarial-attack.html (accessed: 02.04.2023)

11. Akhtar, N., & Mian, A. (2018). Threat of adversarial attacks on deep learning in computer
vision: A survey. IEEE Access, 6, 14410-14430. doi: 10.1109/ACCESS.2018.2806824

12. Carlini, N., & Wagner, D. (2017). Adversarial examples are not easily detected: Bypassing
ten detection methods. In Proceedings of the 10th ACM Workshop on Atrtificial Intelligence and
Security (pp. 3-14). doi: 10.1145/3128572.3140444

13. Goodfellow, I., Shlens, J., & Szegedy, C. (2015). Explaining and harnessing adversarial
examples. In Proceedings of the International Conference on Learning Representations.

14. Kurakin, A., Goodfellow, I., & Bengio, S. (2016). Adversarial examples in the physical
world. arXiv preprint arXiv:1607.

15. Lu, J., Sibiryakov, A., & Fabian, T. (2017). Adversarial examples for semantic image
segmentation. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1378-
1387).

16. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., & Vladu, A. (2018). Towards deep
learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083.

17. Papernot, N., McDaniel, P., Jha, S., Fredrikson, M., Celik, Z. B., & Swami, A. (2016).
The limitations of deep learning in adversarial settings. In Security and Privacy (EuroS&P), 2016
IEEE European Symposium on (pp. 372-387). IEEE.

18. Xiao, C., Li, B., Zhu, J., He, W, Liu, M., & Song, D. (2018). Generating adversarial
examples with adversarial networks. ACM SIGSAC Conference on Computer and Communications
Security.

19. Xu, W., Evans, D., & Qi, Y. (2018). Feature squeezing: Detecting adversarial examples in
deep neural networks. Network and Distributed System

20. Li, X., Chen, T., & Yang, J. (2019). Adversarial fingerprint attacks and defenses. IEEE
Transactions on Information Forensics and Security, 14(1), 66-80.

21. Nguyen, T. M., Kim, K. H., Lee, S., & Kim, J. (2019). Generative adversarial network-
based face presentation attack detection using partial convolution and multi-domain learning. IEEE
Transactions on Information Forensics and Security, 14(10), 2764-2779.

22. Tan, H., Li, H., Liu, Z., & Jiang, X. (2019). Deep learning based liveness detection: A
survey. ACM Computing Surveys (CSUR), 52(3), 1-27.

23. Wang, Y., Kang, L., Li, Y., & Li, X. (2019). Fingerprint presentation attack detection
using convolutional neural network with transfer learning. IEEE Access, 7, 131443-131451.

24. Face Antispoofing in_Biometric Systems. [Online] Available:
https://www.researchgate.net/publication/311895447 Face Antispoofing_in_Biometric_Systems

25. A website for interacting with technology ChatGPT. [Online] Available:
https://chat.openai.com/

26. 26. The official website of the NumPy Library. [Online] Available: https://numpy.org

27. Example of neural network implementation. [Online] Available: https://webtort.ru

28. What are the layers of neural networks and how do they work. [Online] Available:
https://habr.com/ru/articles/542386/

29. Interpreting Deep Neural Networks with SVCCA. [Online] Available:
https://arxiv.org/abs/1706.05806

https://www.researchgate.net/publication/311895447_Face_Antispoofing_in_Biometric_Systems

