Investigation of adversarial attacks on pattern recognition neural

networks

Denis Vladimirovich Kotlyarov, student of the North Caucasian Federal University,

denl4kotlyarov@yandex.ru
Gleb Dmitrievich Dyudyun, student of the North Caucasian Federal University,
gleb.dudun@gmail.com

Natalya Vitalievna Rzhevskaya, student of the North Caucasian Federal University,

natalia070901@gmail.com
Maria Anatolyevna Lapina, Associate Professor, Department of Information Security of Automated
Systems, mlapina@ncfu.ru
Mikhail VIadimirovich Babenko, Head of the Department of Computational Mathematics and
Cybernetics

North Caucasian Federal University

Abstract. This article discusses the algorithm for creating a neural network based on pattern
recognition. Several types of attacks on neural networks are considered, the main features of such
attacks are described. An analysis of the Adversarial attack was carried out. The results of
experimental testing of the proposed attack are presented. Confirmation of the hypothesis about the
decrease in the accuracy of recognition of the neural network during the implementation of the attack
by an attacker was obtained.

Keywords: Neural network, machine learning, pattern recognition, artificial intelligence,
attack algorithm, information security, Adversarial attack, malicious machine learning.

Introduction

In modern times, such concepts as "neural network", "artificial intelligence™ and other end-to-
end technologies are used in various fields, such technologies are tightly integrated into our lives and
are often used everywhere. Now nobody is surprised by the use of search algorithms from various
advanced companies. Even the older generation now often uses voice assistants, without thinking that
these are yet another “brainchild” of a neural network. In fact, a neural network can now do quite a
lot: generate scientific reports, write poetry or a song, draw a picture that is not much different from
the real one, the main thing is to train it correctly.

But such a network can serve both good and evil, depending on the purpose of the developer.
So, for example, when recognizing images, an attacker can purposefully introduce errors into the
recognition process, trying to force the system to incorrectly recognize the image being processed [1].
As a result, so-called spoofing attacks appear. Often, such attacks can be used in cases where an
attacker seeks to disguise himself as another person and thereby commit illegal actions.

Literature review

At present, it is difficult to unambiguously define neural networks. After analyzing the study
of several authors, we can say that a neural network or ANN is a learning system, which is a certain
mathematical model built on the principle of human neurons, as well as its software implementation
[3, 4]. Ivanyuk V.A. claims that artificial neural networks can be used to create intelligent decision-
making systems, simulation modeling, expert systems [3].
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A neural network is a mathematical model made up of interconnected nodes that work together
to solve a problem. The nodes are arranged in layers, and each node performs a simple mathematical
operation on the input to produce the output [5].

Kachagina K.S. in her research gives a range of applications of a neural network in everyday
life. So in this study, we can highlight that the ANN is already used in security organizations, law
enforcement agencies, at various factories and much more [4]. Therefore, it is very important to
organize the security of these systems, since further the scope of neural systems will only grow.

It should be noted that the main tasks of neural networks are reduced to:

— Classification, that is, the separation of a certain object with a certain attribute from
others.

— Prediction, this task often serves the interests of the financial world.

— Recognition, which will help to simplify the work, for example, for law enforcement
agencies.

— Solving problems without a teacher.

In recent years, there has been an introduction into information and telecommunication
systems as a means of identification, and often authentication of users [1]. According to experts, the
introduction of such technologies often brings with it massive discontent from the outside. The reason
for this was that the neural network is imperfect. Such a system has a number of vulnerabilities that
will be used to disable it [4].

Since each person is unique, by spoofing biometric data, attackers can describe such data
mathematically and use it as input to machine learning algorithms in order to automate the recognition
process, and then use such ANN to replace their identity.

There are many attacks on neural networks that prevent the system from working properly. An
attacker can carry out large-scale attacks without being noticed. For example, in biometric systems,
an attacker can intentionally introduce errors into the process of recognizing biometric data. Ensuring
the security of such systems is an important issue.

Article [10] describes how adversarial attacks work by exploiting vulnerabilities in neural
networks that can be easily fooled by small noises or modifications to the input data that are
imperceptible to humans, but can cause the network to misclassify the input data.

Consider some types of attacks on biometric systems that disrupt the recognition process [1]:

Fast Gradient Sign Method - an attack with noise overlay on the image with each new
iteration. This attack is quite effective when constantly analyzing the image. This type of attack is
practically unrealizable in the absence of direct access to data.

Using Infrared LEDs to Change Human Facial Features

Overlaying black or white stickers on the image for incorrect recognition

The use of devices that allow you to identify a person for another.

Hostile attacks are a growing concern in the field of artificial intelligence because they can be
used to trick neural networks into misclassifying inputs.

One of the first studies on Adversarial Attacks was carried out by Szegedy [15], who showed
that neural networks can be fooled by small noise inputs. Since then, a large amount of research has
been done on this topic, including the development of new attack methods and defense strategies.

One of the most common types of contention attacks is the Fast Gradient Sign Method
(FGSM), which was introduced by Goodfellow [13]. This method involves calculating the gradient of
the loss function with respect to the input data and then modifying the data in the direction of the
gradient to maximize the loss. Many subsequent studies have relied on this method, including the
iterative FGSM (IFGSM) attack presented by Kurakin [14].



Article [10] also explains various types of hostile attacks, such as targeted and non-targeted
attacks, and provides examples of real-life applications of hostile attacks, such as manipulating the
systems of unmanned vehicles.

Other types of attacks that have been developed include the Jacobian-based saliency map
attack [17], which uses the Jacobian matrix to determine the most sensitive input features, and the
deep fool attack (Moosavi-Dezfooli et al., 2016), which generates small perturbations, which
minimize the distance between the original input and the misclassified output.

Various strategies have been proposed to protect against these attacks. Adversarial learning
involves augmenting the training data with adversarial examples to make the neural network more
robust [16], while defensive distillation involves training a separate network to detect adversarial
examples [17]. Other protection strategies include randomization, input transformation, and gradient
masking [12].

Despite these defense strategies, adversary attacks remain a major threat to machine learning
systems. As noted by Akhtar and Mian [11], attacks by the adversary can have serious consequences
in the real world, such as causing self-driving cars to misinterpret road signs or medical systems to
misdiagnose diseases.

In addition, article [10] discusses some of the techniques that have been developed to defend
against adversary attacks, including adversary training and defensive distillation.

In recent years, researchers have also studied the impact of adversarial attacks on object
detection systems [18], semantic segmentation (Xie et al., 2017), and generative models (Samangouei
et al., 2018). These studies have shown that enemy attacks are effective against these systems and
have proposed new defense methods to improve their reliability.

Despite significant progress in the development of adversarial attacks and defenses, there are
still open issues that require further research. One of these tasks is the development of effective and
reliable methods of protection. Another challenge is understanding the vulnerabilities of deep learning
models to attack by malicious actors and finding ways to fix them.

Several studies [13, 15, 18] have examined the effectiveness of adversarial attacks on various
types of machine learning models, including convolutional neural networks (CNNS), recurrent neural
networks (RNNs), and autoencoders. For example, Xu et al. (2020) have shown that adversarial
attacks can be effective against RNN-based text classifiers even if the attacks are generated using a
different language model.

To protect against enemy attacks, researchers have proposed various defense strategies. One
common defense strategy is adversarial learning, which involves training a model on adversarial
examples in addition to regular training data [16]. Other security strategies include gradient masking,
which involves hiding gradients from an attacker [17], and feature compression, which involves
preprocessing input data to remove redundant features [19].

Several recent studies have also explored the use of generative models such as Generative
Adversarial Networks (GANSs) to generate adversarial examples [18]. These models can be used to
create more realistic examples of competitive actions that are harder to detect and more difficult to
defend against.

Biometric authentication systems, which use physiological or behavioral characteristics to
verify people's identities, have become increasingly popular in recent years. However, these systems
are not immune from attacks, and neural networks are used to carry out attacks on biometric data [19].

One common type of attack on biometrics is presentation attacks, also known as spoofing
attacks, where an attacker uses a fake or artificial biometric to impersonate a legitimate user. Neural
networks have been used to create attacks with a realistic representation of various biometric
modalities, including fingerprints, face recognition, and voice recognition.



For example, Wang et al. (2019) used a convolutional neural network (CNN) to generate
realistic fingerprints that can be used to fake fingerprint recognition systems. Similarly, Nguyen [21]
used a generative adversarial network (GAN) to generate synthetic facial images that can be used to
fake facial recognition systems.

Other research has focused on using neural networks to launch attacks on biometric data by
exploiting vulnerabilities in the biometric system. For example, Li et al. (2019) proposed a method
for generating adversarial examples for fingerprint recognition systems by distorting the input
fingerprint image using a gradient-based optimization method. The resulting fingerprint of the attacker
can be used to avoid detection by the biometric system.

To protect against attacks on biometric data, researchers have proposed various defense
strategies, including the use of liveness detection techniques to detect attacks on presentations and the
use of deep neural networks to increase the resilience of biometric systems to attacks. For example,
Tan et al. [22] proposed a deep neural network liveliness detection method for detecting presentational
attacks in face recognition systems.

Materials and research methods

Using the MNIST dataset as an example, we can consider the principle of building a certain
neural network, and then explore its vulnerability. Based on the research of V.A. lvanyuk, any neural
network is mathematically a superposition of regression functions that describe the relationship
between the values of the inputs and outputs of the network [3].

The input layer receives data in the form of features or input variables, which are then passed
to the first hidden layer. Each node in the hidden layer performs a linear transformation of the input
using weights and biases and then applies a non-linear activation function to produce a non-linear
output. This output is then fed as input to the next level, and the process is repeated until the final
output is obtained.

Starting the study, it is worth saying that the basic element of such systems is the so-called
neuron. It is necessary in order to create a programming model. A neuron in an ANN is an artificial
analogue of a real neuron, only represented as a simple mathematical function that determines the
rules for generating an output signal based on input data [3]. In the work of K.S. Kachagina stated that
a neuron is an imaginary black object with several input and one output hole [4].

A neural network can be represented mathematically as a function f(x; 0), where x is the input,
0 are the network parameters (weights and biases), and f(x; 0) is the output of the network.

The weights and biases in the neural network are adjusted during training to optimize network
performance. This is done by minimizing the cost function, which measures the difference between
projected output and actual output. The backpropagation algorithm is used to update the weights and
biases in such a way as to reduce the loss function.

A neural network consists of layers of interconnected nodes, and the calculation of the output
of each node can be represented mathematically as (1):

z=w-'x+b (D

where z — weighted sum of input parameters x, w — scale vector, b — displacement vector.
The output of a node is calculated by applying a non-linear activation function to a weighted
sum, which can be represented mathematically according to (2):

a=g(z) (2)

where g is the activation function.
The node layer output is calculated as follows (3):

at = g(z") (3)
where a® — exit of the first layer, z1— weighted sum of first layer inputs, g is the activation function.



The output of the last layer is the output of the neural network, which can be used for prediction
or classification.

During training, the weights and biases of the neural network are adjusted to minimize the cost
function, which measures the difference between the predicted output and the actual output. This is
done using gradient descent, where the gradient of the cost function with respect to weights and biases
is computed, and the weights and biases are updated accordingly.

The backpropagation algorithm is used to efficiently compute the gradient of the cost function
with respect to the weights and biases of the network.

Thus, the mathematical logic of a neural network includes calculating the weighted sum of the
input data for each node, applying a non-linear activation function, and propagating the output through
the layers of the network to obtain the final output. The network weights and biases are optimized
during training to minimize the cost function using gradient descent and backpropagation.

It is worth deciding on the neural network training algorithm:

1. Import libraries

2. Data checking

2.1 Checking for Lost Values
2.22.2 Data normalization

3. Modeling

4. Getting a result

The neural network analyzes the biometric data by learning patterns and features from the
input data during the training process. It can then use these learned features to predict new biometrics.
For example, a facial recognition neural network can learn to recognize certain facial features and
patterns, such as eye position or mouth shape, and use that information to identify people in new
images. Similarly, a fingerprint recognition neural network can learn to recognize the unique ridges
and patterns on a fingerprint and use that information to verify a person's identity.

Let's analyze this algorithm on a specific example.

It is necessary to create and train a neural network based on the MNIST database that will
recognize handwritten numbers.
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Fig 1. General structure of the experiment algorithm



It is necessary to create and train a neural network based on the MNIST database that will
distinguish between handwritten numbers.

The following libraries and modules have been used:

Numpy is a library for working with multidimensional arrays and matrices [27].

Keras is a framework for building and training neural networks. It is part of the Tensorflow
library and allows you to create neural network models using a set of high-level abstractions.

Import the NumPy library and give it the alias "np". We import the MNIST dataset from the
Keras library. MNIST contains images of numbers from 0 to 9, which will be used to train the neural
network [28].

Sequential is a neural network model in which layers are added sequentially one after the other.
Dense and Flatten layers from the Keras library. Adam is an optimizer from the Keras library.
Optimizers are used to adjust the neural network weights during training.
SparseCategoricalCrossentropy is a loss function from the Keras library. The loss function is a metric
that evaluates how well a neural network performs on a classification task.

Matplotlib is used for data visualization. ModelCheckpoint is a class that allows you to save
model weights during training. The load_model function from the Keras library is used to load a saved
model from a file [28].

Next, we connect Google Drive to Google Colab. Google Drive is used to save the model and
other files.

The shutil module in Python provides a high-level interface for working with files and
directories. It contains functions for copying, moving, renaming and deleting files and directories.

import numpy as np

from tensorflow.keras.datasets import mnist

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Dense, Flatten

from tensorflow.keras.optimizers import Adam

from tensorflow.keras.losses import SparseCategoricalCrossentropy

import matplotlib.pyplot as plt

from tensorflow.keras.callbacks import ModelCheckpoint

from keras.models import load model

from google.colab import drive

drive.mount ('/content/gdrive')

import shutil

We load the MNIST dataset and split it into training and test data, where x_train and x_test
— numpy arrays containing images of handwritten digits. Each image is a 28x28 matrix of pixels. Each
pixel corresponds to a value from 0 to 255 (various shades of black, white and gray)

y trainandy test —numpy arrays containing labels for the corresponding images in the
training and test sets. The label is an integer from 0 to 9 that corresponds to the handwritten digit on

the corresponding image.
(x_train, y train), (x test, y test) = mnist.load data()
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For clarity, we derive one of the elements x_train and y train inthe form in which they
are stored in tuples. Take element number 277.
print(x _train[277])

print(y train[277])
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Fig 3.0Output of element 277

Display the image of the element x train[277] in black and white (white is 0 and black is
255).

plt.axis ('off') —thisis a function that hides the coordinate axes on the image.

plt.imshow(x train([277], cmap='binary')

plt.axis('off")

(-@.5, 27.5, 27.5, -8.5)

Fig 4.Image of element 277



Let's normalize the pixel values to bring the values from 0 to 255 to the range from 0 to 1. This
is done by dividing each pixel value by 255. Pixel normalization improves the performance of the
model, as it facilitates training and reduces the time required for processing data.

X _train = x train / 255.0

X _test = x _test / 255.0

At the next stage, we split the training and test datasets into two equal parts. The first part will
be used for the first training of the neural network, and the second part will be distorted and used in
the second training.
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Fig 5.Scheme of splitting the dataset into samples

Xtrue train, Xerror train = np.split(x train, 2)

Ytrue train, Yerror train np.split(y train, 2)

Xtrue test, Xerror test np.split(x_test, 2)

Ytrue test, Yerror test np.split(y test, 2)

For clarity, we display the number of elements in each data set

xtrue train), Xerror train), Ytrue train), Yerror train), Etrue test), Xerror test), rtree test), Yerror test)

B0 R e L

Fig 6.Displaying the lengths of tuples

We import the os module, which provides functionality for interacting with the operating
system, such as creating, deleting and moving files and directories, getting information about file
paths, and much more.

Create the necessary folders on Google Drive if none exist.

In data epochs epoch files will be saved so that later you can analyze the work of the neural
network.

import os

if not os.path.exists('/content/gdrive/My Drive/neyro'):

os.makedirs ('/content/gdrive/My Drive/neyro')

if not os.path.exists('/content/gdrive/My Drive/neyro/data epochs'):



os.makedirs ('/content/gdrive/My Drive/neyro/data epochs"')

Define the architecture of the model.
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Fig 7. The structure of the algorithm of the internal mechanism of the neural network

Using the method of experiment, the optimal structure of the neural network and the
parameters of its training were selected.

The first layer - Flatten converts a two-dimensional array (28, 28) into a one-dimensional array
(dimension 784) so that it can be fed to the input of the neural network.

The second layer - Dense with 100 neurons and the ReLU (Rectified Linear Unit) activation
function uses a linear operation followed by a non-linear activation function. The ReLU activation
function returns 0 for negative values and the value itself for positive ones.

A\ 4

Y




The third layer is Dense with 50 neurons and the ReL.U activation function.
The fourth layer is Dense with 10 neurons and softmax activation function. softmax converts
neuron values into probabilities summing up to 1.0 and is used for multi-class classification [29].
model = Sequential ([
Flatten (input shape=(28, 28)),
Dense (100, activation='relu'),

Dense (50, activation='relu'),

Dense (10, activation='softmax')

1)

We compile the model with the necessary parameters.

The first optimizer parameter defines the optimization method that will be used to train the
model. In this case, the optimizer adam is used at the rate of learning (1earning rate) equal to 0.01.

Second parameter 1oss defines the loss function to be used during model training. Here we
use categorical cross entropy (SparseCategoricalCrossentropy).

Third parameter metrics defines the metrics that will be used to evaluate the model. In this
case, we will use only the accuracy metric (accuracy).

model.compile (optimizer=Adam(learning rate=0.01),

loss=SparseCategoricalCrossentropy (),

metrics=["'accuracy'])

Create a checkpoint object that is used to save the state of the model as a file in a
folder data epochs after each learning epoch.

checkpoint = ModelCheckpoint ('/content/gdrive/My Drive/neyro/data epoch
s/epoch {epoch:02d}.h5")

Train the model on training data xtrue train with appropriate
labels ytrue train. Specify the number of epochs 10. For one training iteration, we take the batch
size 100.

shuffle=True Specifies that the training dataset will be shuffled before each epoch to avoid
the possibility that the model might remember the order of the training examples.

callbacks=[checkpoint] indicates that the object checkpoint will be used as a callback
to save the state of the model after each epoch.

Learning outcomes are saved to an object history. After training the model, history will
contain information about the change in the loss function and accuracy metrics during model training.

epochs = 10

history = model.fit (Xtrue train, Ytrue train, epochs=epochs, batch size

=100, shuffle=True, callbacks=[checkpoint])
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Epoch 9/1@
308/ 308 [=========s===s===s===ssz=======| - 13 4mz/sTep - loss: 2.8632 - accuracy: 9.9584
Epoch l@/1@
I8/ 300 [=========s===s==ss===ss=======] - 1% 4ms/step - loss: 0.8662 - accuracy: ©.9887

Fig 8. Data output after the first training

Let's evaluate the model on test data
After the first training, we got an accuracy of 0.9542 on test data

test loss, test acc = model.evaluate(Xtrue test, Ytrue test)
print({"Test accuracy:', test_acc)

157/157 [===s=======s======s============| - @5 2ms /step - loss: B.2238 - accuracy: @.9542
fest accuracy: B.9542088293173169

Fig 9. Accuracy of training on test data

Derive the graphs of the first training
plt.plot (history.history['loss'])

plt.title('Training Loss'")

plt.xlabel ('Epoch'")

plt.ylabel ('Loss"'")

plt.show ()

plt.plot (history.history['accuracy'])
plt.title('Training Accuracy')
plt.xlabel ('Epoch'")

plt.ylabel ('Accuracy"')

plt.show ()
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Thus, the neural network was trained to recognize handwritten numbers on the MNIST dataset.

The next stage of work consists in distorting the dataset, that is, simulating the intervention of
an attacker, and then analyzing the results after retraining the neural network.

The task is to find a way to calculate malicious interference in the operation of the neural
network.

Let's put forward a hypothesis that one of the signs of interference in the neural network may
be the difference in performance and accuracy to the trained neural network from the original one.

Let us test this hypothesis on a practical problem.

Before training the model on a distorted dataset, we will make a copy of the 10th epoch file
and train the model loaded from it in exactly the same way, but on the second half of the

dataset (xerror trainu Yerror train), but without changing anything in it.
source file = '/content/gdrive/My Drive/neyro/data epochs/epoch 10.h5"'



destination file = '/content/gdrive/My Drive/neyro/data epochs/epoch 10
_copyl.h5"

# Copying a file to a new path

shutil.copyfile(source file, destination file)

model = load model('/content/gdrive/My Drive/neyro/data epochs/epoch 10
_copyl.h5")

#Model compilation with Adam optimizer, SparseCategoricalCrossentropy
loss function and accuracy metric.

history = model.compile (optimizer=Adam(learning rate=0.01),

loss=SparseCategoricalCrossentropy (),
metrics=["'accuracy'])

# Creating a folder to save training data after each epoch

import os

if not os.path.exists('/content/gdrive/My Drive/neyro/data epochs conti
nue') :

os.makedirs ('/content/gdrive/My Drive/neyro/data epochs continue')

# Saving the model after each epoch to folder data epochs error

checkpoint = ModelCheckpoint ('/content/gdrive/My Drive/neyro/data epoch
s continue/epoch {epoch:02d}.h5")

# Training the model on the second half (not yet distorted) of the dataset

epochs = 10

history = model.fit (Xerror train, Yerror train, epochs=epochs, batch si

ze=100, shuffle=True, callbacks=[checkpoint])



Epoch 1/18

380/300 [==============================] - 35 &ms/step - loss: B©.1726 - accuracy: 8.
Epoch 2/18
380/ 300 [s=sss=s=s===ss=sss==ssososssoooao 1 - 2s 6ms/step - loss: ©.8972 - accuracy: 8.
Epoch 3/18
300/300 [==============================] - 25 oms/step - loss: ©.89@1 - accuracy: @.
Epoch 4/1@
380/30@ [ss=ss=ss===s=s===================] - 25 6ms/step - loss: ©.8867 - accuracy: 9.
Epoch 5/1@
300/308 [==============================] - 25 8ms/step - loss: 8.8787 - accuracy: @.
Epoch &/18
3P0/ 308 [==============================] - 25 Bms/step - loss: ©.8646 - accuracy: 8.
Epoch 7/18
300/308 [====s=====s=s==s=s=s==ss=s=s=====] - 25 6Gms/step - loss: 8.8633 - accuracy: @.
Epoch 8/10
380/300 [s=s=s==s===s========s============] - 25 6ms/step - loss: 8.8571 - accuracy: 9.
Epoch 9/1@
380/30@ [=ssss=s==ssss=================] - 25 6ms/step - loss: ©.8468 - accuracy: 0.
Epoch 1e/1e
300/300 [==============================] - 25 7ms/step - loss: ©.8622 - accuracy: @.

Fig 12. Output of training results
test loss, test acc = model.evaluate(Xerror test, Yerror test)
print(‘Test accuracy:’, test acc)

157/157 [============================== ] 15 Ams/fstep - loss: 8.1433 - accuracy: 8.9762
Test accuracy: 9.9761999845584761

Fig 13. Accuracy of training on test data
Accuracy after retraining increased from 0.9542 to 0.9762.
Let's create a copy of the epoch 10 file so that it can be used in the second training of the neural
network and compare the received data.

source file = '/content/gdrive/My Drive/neyro/data epochs/epoch 10.h5"
destination file = '/content/gdrive/My Drive/neyro/data epochs/epoch 10
_copy.h5'

shutil.copyfile(source file, destination file)

Load the neural network model from the file epoch 10.h5, stored in the data_epochs folder

on Google Drive.
model = load model('/content/gdrive/My Drive/neyro/data epochs/epoch 10

.hd ")

Let's compile the model using the same parameters as the first time.
history = model.compile (optimizer=Adam(learning rate=0.01),

loss=SparseCategoricalCrossentropy (),

metrics=["'accuracy'])

Let's create a folder data epochs error, where the files of the epochs of the second training

will be saved
import os

if not os.path.exists('/content/gdrive/My Drive/neyro/data epochs error



os.makedirs ('/content/gdrive/My Drive/neyro/data epochs error')

Let's create an object with which we can save epoch files.
checkpoint = ModelCheckpoint ('/content/gdrive/My Drive/neyro/data epoch
s_error/epoch_{epoch: 02d}.h5")

Training and testing of the neural network is carried out on the second half of the MNIST
dataset (with the prefix error), which was created at the beginning of the code.
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Fig 14. The structure of the algorithm for direct distortion of the sample "Error"
Let's find an element from the data set whose value is 0 and display its image and its

corresponding label.p1t . imshow (Xerror train[9], cmap='binary"')
plt.axis('off")




[ 1 print(Yerror_train[9])

Fig 15.Image of dataset element 0 and its label

Replace all label values in the training dataset yerror train with values 0 to 9.

This stage is an imitation of an attacker's action. This example can be projected onto real face
recognition neural networks, that is, different dataset numbers are different faces of people.

One of the reasons for the emergence of the Adversarial attack is that machine learning
methods were originally developed for stationary and secure environments, where the training and
test samples were generated from the same statistical distribution. However, in practice, attackers can
covertly manipulate input data to exploit vulnerabilities in ML algorithms and compromise the
security of the entire machine learning system.

The type of attack in which an attacker seeks to gain access to the data and the learning process
of an ML model in order to “poison” it (train it incorrectly) for subsequent inadequate work is called
poisoning. It can be seen as a malicious infection of the training data. Thus, the “white box” strategy
is used here, when the attacker has information about the victim - “malicious knowledge” (Adversarial
Knowledge, AK): how the data for training are prepared and from what sources and what they are,
what are the main functions of the attacked system , what algorithms it uses, what are the results, etc.
Poison attacks involve insider information about the ML system and a fairly high level of attacker's

competence in Data Science [26].
Yerror train[Yerror train == 0] = 9

BBIBCI[CM QJICMCHT Xerror_train [9] C COOTBCTCTBYIOH_ICﬁ €My MCTKOM.
plt.imshow (Xerror train[9], cmap='binary')

plt.axis('off")

print (Yerror train[9])



G 9

Fig 16. Image of dataset element 0 and its label after replacement
As a result, all images 0 correspond to labels with a value of 9.
Retrained the neural network on data sets Xxerror train and Yerror train, using the
same parameters as the first time.
epochs = 10
history = model.fit (Xerror train, Yerror train, epochs=epochs, batch si

ze=100, shuffle=True, callbacks=[checkpoint])

Epoch 1/1@
300/ 300 [=========s===s================] - 2& 4ms/step - loss: 0.2891 - accuracy: @.9531
Epoch 2/18@
30/ 308 [=====s===s===ss====s===s========] - 15 4ms/step - loss: B8.1828 - accuracy: @.96%&
Epoch 3/1@
308/308 [=s===s===ssssssssssssssssss===] - 1€ 4ms/step - loss: 0.88B68 - accuracy: 8.974@
Epoch &/18@
309/ 300 [se==ssssssssssssssssssssssssss] - 15 4ms/step - loss: @.8765 - accuracy: @.9768

Epoch 5/1@

304,388 [wessssssssssssssssssssssssssss] - 15 Sms/step - loss: ©.8734 - Accuracy:
Epoch 6/18

398 389 [lIIIIII-IIIIIIIIIIIIIIIIIIIIIII: - 15 4ms/step - loss: @.8674 - Accuracy: a.9886
Epoch 7/18a

3299/309 [ssssssssssssssssssssssssssss=ss] - 15 Sms/step - loss: @.960@ - accuracy: @.9815
Epoch 8/18

8.9779

309/ 300 [=e=ssssssssssssssssssss=sss===] - J5 oms/step - loss: @.8592 - accuracy: @.9829
Epoch 5/18

300/300 [ss==ssss=sssssssssssssssssssss] - 25 Tms/step - loss: 0.8486 - accuracy: @.9858
Epoch 18/18

399/ 39 [=====s===s===ss===s===========] - ]5 4ms/step - loss: @.853]1 - accuracy: @.984%

Fig 17. Data output after training

test loss, test are = model.evaluate(Xerror test, verror_test)
print(‘Test accuracy:', test acc)

157/157 [==============================] - 85 3ms/step - loss: 5.5475 - accuracy: @.8758
Test accuracy: @.8758890135421753

Fig 18. Accuracy on test data
plt.plot (history.history['loss'])

plt.title('Training Loss'")
plt.xlabel ('Epoch'")



plt.
plt.

plt
plt
plt

plt.
plt.

ylabel ('Loss"')

show ()

.plot (history.history['accuracy'])
.title('Training Accuracy')

.xlabel ('"Epoch")

ylabel ("Accuracy')

show ()
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We got an accuracy on the test data of 0.8758, which is much less than the result of 0.9762
obtained after the model was trained on an undistorted dataset, and also less than after the first training,
where the result on the test data was 0.9542.

First  neural | Additional training of | Additional training of

network a neural network on | a neural network on a

training an undistorted dataset | distorted dataset
Accuracy on test data | 0,9542 0,9762 0,8758

This confirms the hypothesis. Thus, when retraining a neural network on a distorted dataset,
the accuracy on test data drops, and when retraining on an undistorted dataset, it increases.

This is due to the fact that the information received by the neural network about handwritten
numbers from the MNIST dataset during initial training comes into conflict with the information
received during re-training on the dataset with changed labels.

Therefore, a sharp decrease in the accuracy of the neural network during additional training is
one of the signs of an attacker's intervention.

The presented method is one of the simplest methods for detecting malicious interference, and
in further research it is planned to rely on the gradient descent method, which can be more accurate
for this task. This is exactly what scientists from Cornell University did for the article "Interpreting
Deep Neural Networks with SVCCA" [30].
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Fig 22. Scheme of the gradient descent method practical algorithm
In conclusion, adversarial attacks are of particular interest in the field of artificial intelligence,
and a large amount of research has been done in this direction. While defense strategies have been
proposed and the arms race between attackers and defenders continues, new methods of attack are
constantly being developed. Thus, it is important for researchers to study adversarial attacks and
develop new protection strategies to ensure the security of machine learning systems, the formation
of a secure model of trusted artificial intelligence.
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