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Abstract. This article discusses the algorithm for creating a neural network based on pattern 

recognition. Several types of attacks on neural networks are considered, the main features of such 

attacks are described. An analysis of the Adversarial attack was carried out. The results of 

experimental testing of the proposed attack are presented. Confirmation of the hypothesis about the 

decrease in the accuracy of recognition of the neural network during the implementation of the attack 

by an attacker was obtained. 
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Introduction 

In modern times, such concepts as "neural network", "artificial intelligence" and other end-to-

end technologies are used in various fields, such technologies are tightly integrated into our lives and 

are often used everywhere. Now nobody is surprised by the use of search algorithms from various 

advanced companies. Even the older generation now often uses voice assistants, without thinking that 

these are yet another “brainchild” of a neural network. In fact, a neural network can now do quite a 

lot: generate scientific reports, write poetry or a song, draw a picture that is not much different from 

the real one, the main thing is to train it correctly. 

But such a network can serve both good and evil, depending on the purpose of the developer. 

So, for example, when recognizing images, an attacker can purposefully introduce errors into the 

recognition process, trying to force the system to incorrectly recognize the image being processed [1]. 

As a result, so-called spoofing attacks appear. Often, such attacks can be used in cases where an 

attacker seeks to disguise himself as another person and thereby commit illegal actions. 

 

Literature review 

At present, it is difficult to unambiguously define neural networks. After analyzing the study 

of several authors, we can say that a neural network or ANN is a learning system, which is a certain 

mathematical model built on the principle of human neurons, as well as its software implementation 

[3, 4]. Ivanyuk V.A. claims that artificial neural networks can be used to create intelligent decision-

making systems, simulation modeling, expert systems [3]. 
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A neural network is a mathematical model made up of interconnected nodes that work together 

to solve a problem. The nodes are arranged in layers, and each node performs a simple mathematical 

operation on the input to produce the output [5]. 

Kachagina K.S. in her research gives a range of applications of a neural network in everyday 

life. So in this study, we can highlight that the ANN is already used in security organizations, law 

enforcement agencies, at various factories and much more [4]. Therefore, it is very important to 

organize the security of these systems, since further the scope of neural systems will only grow. 

It should be noted that the main tasks of neural networks are reduced to: 

⎯ Classification, that is, the separation of a certain object with a certain attribute from 

others. 

⎯ Prediction, this task often serves the interests of the financial world. 

⎯ Recognition, which will help to simplify the work, for example, for law enforcement 

agencies. 

⎯ Solving problems without a teacher.  

In recent years, there has been an introduction into information and telecommunication 

systems as a means of identification, and often authentication of users [1]. According to experts, the 

introduction of such technologies often brings with it massive discontent from the outside. The reason 

for this was that the neural network is imperfect. Such a system has a number of vulnerabilities that 

will be used to disable it [4]. 

Since each person is unique, by spoofing biometric data, attackers can describe such data 

mathematically and use it as input to machine learning algorithms in order to automate the recognition 

process, and then use such ANN to replace their identity. 

There are many attacks on neural networks that prevent the system from working properly. An 

attacker can carry out large-scale attacks without being noticed. For example, in biometric systems, 

an attacker can intentionally introduce errors into the process of recognizing biometric data. Ensuring 

the security of such systems is an important issue. 

Article [10] describes how adversarial attacks work by exploiting vulnerabilities in neural 

networks that can be easily fooled by small noises or modifications to the input data that are 

imperceptible to humans, but can cause the network to misclassify the input data. 

Consider some types of attacks on biometric systems that disrupt the recognition process [1]: 

    Fast Gradient Sign Method - an attack with noise overlay on the image with each new 

iteration. This attack is quite effective when constantly analyzing the image. This type of attack is 

practically unrealizable in the absence of direct access to data. 

    Using Infrared LEDs to Change Human Facial Features 

    Overlaying black or white stickers on the image for incorrect recognition 

    The use of devices that allow you to identify a person for another. 

Hostile attacks are a growing concern in the field of artificial intelligence because they can be 

used to trick neural networks into misclassifying inputs. 

One of the first studies on Adversarial Attacks was carried out by Szegedy [15], who showed 

that neural networks can be fooled by small noise inputs. Since then, a large amount of research has 

been done on this topic, including the development of new attack methods and defense strategies. 

One of the most common types of contention attacks is the Fast Gradient Sign Method 

(FGSM), which was introduced by Goodfellow [13]. This method involves calculating the gradient of 

the loss function with respect to the input data and then modifying the data in the direction of the 

gradient to maximize the loss. Many subsequent studies have relied on this method, including the 

iterative FGSM (IFGSM) attack presented by Kurakin [14]. 

 



Article [10] also explains various types of hostile attacks, such as targeted and non-targeted 

attacks, and provides examples of real-life applications of hostile attacks, such as manipulating the 

systems of unmanned vehicles. 

Other types of attacks that have been developed include the Jacobian-based saliency map 

attack [17], which uses the Jacobian matrix to determine the most sensitive input features, and the 

deep fool attack (Moosavi-Dezfooli et al., 2016), which generates small perturbations, which 

minimize the distance between the original input and the misclassified output. 

Various strategies have been proposed to protect against these attacks. Adversarial learning 

involves augmenting the training data with adversarial examples to make the neural network more 

robust [16], while defensive distillation involves training a separate network to detect adversarial 

examples [17]. Other protection strategies include randomization, input transformation, and gradient 

masking [12]. 

Despite these defense strategies, adversary attacks remain a major threat to machine learning 

systems. As noted by Akhtar and Mian [11], attacks by the adversary can have serious consequences 

in the real world, such as causing self-driving cars to misinterpret road signs or medical systems to 

misdiagnose diseases. 

In addition, article [10] discusses some of the techniques that have been developed to defend 

against adversary attacks, including adversary training and defensive distillation. 

In recent years, researchers have also studied the impact of adversarial attacks on object 

detection systems [18], semantic segmentation (Xie et al., 2017), and generative models (Samangouei 

et al., 2018). These studies have shown that enemy attacks are effective against these systems and 

have proposed new defense methods to improve their reliability. 

Despite significant progress in the development of adversarial attacks and defenses, there are 

still open issues that require further research. One of these tasks is the development of effective and 

reliable methods of protection. Another challenge is understanding the vulnerabilities of deep learning 

models to attack by malicious actors and finding ways to fix them. 

Several studies [13, 15, 18] have examined the effectiveness of adversarial attacks on various 

types of machine learning models, including convolutional neural networks (CNNs), recurrent neural 

networks (RNNs), and autoencoders. For example, Xu et al. (2020) have shown that adversarial 

attacks can be effective against RNN-based text classifiers even if the attacks are generated using a 

different language model. 

To protect against enemy attacks, researchers have proposed various defense strategies. One 

common defense strategy is adversarial learning, which involves training a model on adversarial 

examples in addition to regular training data [16]. Other security strategies include gradient masking, 

which involves hiding gradients from an attacker [17], and feature compression, which involves 

preprocessing input data to remove redundant features [19]. 

Several recent studies have also explored the use of generative models such as Generative 

Adversarial Networks (GANs) to generate adversarial examples [18]. These models can be used to 

create more realistic examples of competitive actions that are harder to detect and more difficult to 

defend against. 

Biometric authentication systems, which use physiological or behavioral characteristics to 

verify people's identities, have become increasingly popular in recent years. However, these systems 

are not immune from attacks, and neural networks are used to carry out attacks on biometric data [19]. 

One common type of attack on biometrics is presentation attacks, also known as spoofing 

attacks, where an attacker uses a fake or artificial biometric to impersonate a legitimate user. Neural 

networks have been used to create attacks with a realistic representation of various biometric 

modalities, including fingerprints, face recognition, and voice recognition. 

 



For example, Wang et al. (2019) used a convolutional neural network (CNN) to generate 

realistic fingerprints that can be used to fake fingerprint recognition systems. Similarly, Nguyen [21] 

used a generative adversarial network (GAN) to generate synthetic facial images that can be used to 

fake facial recognition systems. 

Other research has focused on using neural networks to launch attacks on biometric data by 

exploiting vulnerabilities in the biometric system. For example, Li et al. (2019) proposed a method 

for generating adversarial examples for fingerprint recognition systems by distorting the input 

fingerprint image using a gradient-based optimization method. The resulting fingerprint of the attacker 

can be used to avoid detection by the biometric system. 

To protect against attacks on biometric data, researchers have proposed various defense 

strategies, including the use of liveness detection techniques to detect attacks on presentations and the 

use of deep neural networks to increase the resilience of biometric systems to attacks. For example, 

Tan et al. [22] proposed a deep neural network liveliness detection method for detecting presentational 

attacks in face recognition systems. 

  

Materials and research methods 

Using the MNIST dataset as an example, we can consider the principle of building a certain 

neural network, and then explore its vulnerability. Based on the research of V.A. Ivanyuk, any neural 

network is mathematically a superposition of regression functions that describe the relationship 

between the values of the inputs and outputs of the network [3]. 

The input layer receives data in the form of features or input variables, which are then passed 

to the first hidden layer. Each node in the hidden layer performs a linear transformation of the input 

using weights and biases and then applies a non-linear activation function to produce a non-linear 

output. This output is then fed as input to the next level, and the process is repeated until the final 

output is obtained. 

Starting the study, it is worth saying that the basic element of such systems is the so-called 

neuron. It is necessary in order to create a programming model. A neuron in an ANN is an artificial 

analogue of a real neuron, only represented as a simple mathematical function that determines the 

rules for generating an output signal based on input data [3]. In the work of K.S. Kachagina stated that 

a neuron is an imaginary black object with several input and one output hole [4]. 

A neural network can be represented mathematically as a function f(x; θ), where x is the input, 

θ are the network parameters (weights and biases), and f(x; θ) is the output of the network. 

The weights and biases in the neural network are adjusted during training to optimize network 

performance. This is done by minimizing the cost function, which measures the difference between 

projected output and actual output. The backpropagation algorithm is used to update the weights and 

biases in such a way as to reduce the loss function. 

A neural network consists of layers of interconnected nodes, and the calculation of the output 

of each node can be represented mathematically as (1): 

𝑧 = 𝑤 ∙ 𝑥 + 𝑏                                                                               (1) 

where z – weighted sum of input parameters x, w – scale vector, b – displacement vector.   

The output of a node is calculated by applying a non-linear activation function to a weighted 

sum, which can be represented mathematically according to (2): 

𝑎 = 𝑔(𝑧)                                                                                 (2) 

where g is the activation function. 

The node layer output is calculated as follows (3): 

𝑎1 = 𝑔(𝑧1)                                                                                 (3) 

where 𝑎1 – exit of the first layer, 𝑧1– weighted sum of first layer inputs, g is the activation function. 



The output of the last layer is the output of the neural network, which can be used for prediction 

or classification. 

During training, the weights and biases of the neural network are adjusted to minimize the cost 

function, which measures the difference between the predicted output and the actual output. This is 

done using gradient descent, where the gradient of the cost function with respect to weights and biases 

is computed, and the weights and biases are updated accordingly. 

The backpropagation algorithm is used to efficiently compute the gradient of the cost function 

with respect to the weights and biases of the network. 

Thus, the mathematical logic of a neural network includes calculating the weighted sum of the 

input data for each node, applying a non-linear activation function, and propagating the output through 

the layers of the network to obtain the final output. The network weights and biases are optimized 

during training to minimize the cost function using gradient descent and backpropagation. 

It is worth deciding on the neural network training algorithm: 

1. Import libraries 

2. Data checking 

2.1 Checking for Lost Values 

2.2 2.2 Data normalization 

3. Modeling 

4. Getting a result 

The neural network analyzes the biometric data by learning patterns and features from the 

input data during the training process. It can then use these learned features to predict new biometrics. 

For example, a facial recognition neural network can learn to recognize certain facial features and 

patterns, such as eye position or mouth shape, and use that information to identify people in new 

images. Similarly, a fingerprint recognition neural network can learn to recognize the unique ridges 

and patterns on a fingerprint and use that information to verify a person's identity. 

Let's analyze this algorithm on a specific example. 

It is necessary to create and train a neural network based on the MNIST database that will 

recognize handwritten numbers. 
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Fig 1. General structure of the experiment algorithm 



It is necessary to create and train a neural network based on the MNIST database that will 

distinguish between handwritten numbers. 

The following libraries and modules have been used: 

Numpy is a library for working with multidimensional arrays and matrices [27]. 

Keras is a framework for building and training neural networks. It is part of the Tensorflow 

library and allows you to create neural network models using a set of high-level abstractions. 

Import the NumPy library and give it the alias "np". We import the MNIST dataset from the 

Keras library. MNIST contains images of numbers from 0 to 9, which will be used to train the neural 

network [28]. 

Sequential is a neural network model in which layers are added sequentially one after the other. 

Dense and Flatten layers from the Keras library. Adam is an optimizer from the Keras library. 

Optimizers are used to adjust the neural network weights during training. 

SparseCategoricalCrossentropy is a loss function from the Keras library. The loss function is a metric 

that evaluates how well a neural network performs on a classification task. 

Matplotlib is used for data visualization. ModelCheckpoint is a class that allows you to save 

model weights during training. The load_model function from the Keras library is used to load a saved 

model from a file [28]. 

Next, we connect Google Drive to Google Colab. Google Drive is used to save the model and 

other files. 

The shutil module in Python provides a high-level interface for working with files and 

directories. It contains functions for copying, moving, renaming and deleting files and directories. 
import numpy as np 

from tensorflow.keras.datasets import mnist 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Dense, Flatten 

from tensorflow.keras.optimizers import Adam 

from tensorflow.keras.losses import SparseCategoricalCrossentropy 

import matplotlib.pyplot as plt 

from tensorflow.keras.callbacks import ModelCheckpoint 

from keras.models import load_model 

from google.colab import drive 

drive.mount('/content/gdrive') 

import shutil 

We load the MNIST dataset and split it into training and test data, where x_train and x_test 

– numpy arrays containing images of handwritten digits. Each image is a 28x28 matrix of pixels. Each 

pixel corresponds to a value from 0 to 255 (various shades of black, white and gray) 

y_train and y_test – numpy arrays containing labels for the corresponding images in the 

training and test sets. The label is an integer from 0 to 9 that corresponds to the handwritten digit on 

the corresponding image. 
(x_train, y_train), (x_test, y_test) = mnist.load_data() 
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Fig 2.The structure of the algorithm of the module for demonstrating the contents of the Mnist 

dataset 

For clarity, we derive one of the elements x_train and y_train in the form in which they 

are stored in tuples. Take element number 277. 
print(x_train[277]) 

print(y_train[277]) 



 
Fig 3.Output of element 277 

  

Display the image of the element x_train[277] in black and white (white is 0 and black is 

255).  

plt.axis('off') – this is a function that hides the coordinate axes on the image.  
plt.imshow(x_train[277], cmap='binary') 

plt.axis('off') 

  

 
Fig 4.Image of element 277 

  



Let's normalize the pixel values to bring the values from 0 to 255 to the range from 0 to 1. This 

is done by dividing each pixel value by 255. Pixel normalization improves the performance of the 

model, as it facilitates training and reduces the time required for processing data. 
x_train = x_train / 255.0 

x_test = x_test / 255.0 

At the next stage, we split the training and test datasets into two equal parts. The first part will 

be used for the first training of the neural network, and the second part will be distorted and used in 

the second training. 
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Y- label selection
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Xtrue_test
Ytrue_test

Xtrue_train  
Ytrue_train

 
Fig 5.Scheme of splitting the dataset into samples 

 
Xtrue_train, Xerror_train = np.split(x_train, 2) 

Ytrue_train, Yerror_train = np.split(y_train, 2) 

Xtrue_test, Xerror_test = np.split(x_test, 2) 

Ytrue_test, Yerror_test = np.split(y_test, 2) 

For clarity, we display the number of elements in each data set 

 
Fig 6.Displaying the lengths of tuples 

  

We import the os module, which provides functionality for interacting with the operating 

system, such as creating, deleting and moving files and directories, getting information about file 

paths, and much more. 

Create the necessary folders on Google Drive if none exist. 

In data_epochs epoch files will be saved so that later you can analyze the work of the neural 

network. 
import os 

if not os.path.exists('/content/gdrive/My Drive/neyro'): 

    os.makedirs('/content/gdrive/My Drive/neyro') 

if not os.path.exists('/content/gdrive/My Drive/neyro/data_epochs'): 



    os.makedirs('/content/gdrive/My Drive/neyro/data_epochs') 

Define the architecture of the model.  

Conversion of imported array (tensor) into the linear 

array

Launch

Processing the array data

Defining the processing result class (performed by the last, linear layer 

of the neural network)
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Fig 7. The structure of the algorithm of the internal mechanism of the neural network 

Using the method of experiment, the optimal structure of the neural network and the 

parameters of its training were selected. 

The first layer - Flatten converts a two-dimensional array (28, 28) into a one-dimensional array 

(dimension 784) so that it can be fed to the input of the neural network. 

The second layer - Dense with 100 neurons and the ReLU (Rectified Linear Unit) activation 

function uses a linear operation followed by a non-linear activation function. The ReLU activation 

function returns 0 for negative values and the value itself for positive ones. 

 



The third layer is Dense with 50 neurons and the ReLU activation function. 

The fourth layer is Dense with 10 neurons and softmax activation function. softmax converts 

neuron values into probabilities summing up to 1.0 and is used for multi-class classification [29]. 
model = Sequential([ 

  Flatten(input_shape=(28, 28)), 

  Dense(100, activation='relu'), 

  Dense(50, activation='relu'), 

  Dense(10, activation='softmax') 

]) 

We compile the model with the necessary parameters. 

The first optimizer parameter defines the optimization method that will be used to train the 

model. In this case, the optimizer Adam is used at the rate of learning (learning_rate) equal to 0.01. 

Second parameter loss defines the loss function to be used during model training. Here we 

use categorical cross entropy (SparseCategoricalCrossentropy). 

Third parameter metrics defines the metrics that will be used to evaluate the model. In this 

case, we will use only the accuracy metric (accuracy). 
model.compile(optimizer=Adam(learning_rate=0.01), 

              loss=SparseCategoricalCrossentropy(), 

              metrics=['accuracy']) 

Create a checkpoint object that is used to save the state of the model as a file in a 

folder data_epochs after each learning epoch. 
checkpoint = ModelCheckpoint('/content/gdrive/My Drive/neyro/data_epoch

s/epoch_{epoch:02d}.h5') 

Train the model on training data Xtrue_train with appropriate 

labels Ytrue_train. Specify the number of epochs 10. For one training iteration, we take the batch 

size 100. 

shuffle=True specifies that the training dataset will be shuffled before each epoch to avoid 

the possibility that the model might remember the order of the training examples. 

callbacks=[checkpoint] indicates that the object checkpoint will be used as a callback 

to save the state of the model after each epoch. 

Learning outcomes are saved to an object history. After training the model, history will 

contain information about the change in the loss function and accuracy metrics during model training. 
epochs = 10 

history = model.fit(Xtrue_train, Ytrue_train, epochs=epochs, batch_size

=100, shuffle=True, callbacks=[checkpoint]) 

  



 
Fig 8. Data output after the first training 

  

Let's evaluate the model on test data 

After the first training, we got an accuracy of 0.9542 on test data 

 
Fig 9. Accuracy of training on test data 

Derive the graphs of the first training 
plt.plot(history.history['loss']) 

plt.title('Training Loss') 

plt.xlabel('Epoch') 

plt.ylabel('Loss') 

plt.show() 

plt.plot(history.history['accuracy']) 

plt.title('Training Accuracy') 

plt.xlabel('Epoch') 

plt.ylabel('Accuracy') 

plt.show() 



 
Fig 10. Graph of losses 

 
Fig 11. Graph of accuracy 

  

Thus, the neural network was trained to recognize handwritten numbers on the MNIST dataset. 

The next stage of work consists in distorting the dataset, that is, simulating the intervention of 

an attacker, and then analyzing the results after retraining the neural network. 

The task is to find a way to calculate malicious interference in the operation of the neural 

network. 

Let's put forward a hypothesis that one of the signs of interference in the neural network may 

be the difference in performance and accuracy to the trained neural network from the original one. 

Let us test this hypothesis on a practical problem. 

Before training the model on a distorted dataset, we will make a copy of the 10th epoch file 

and train the model loaded from it in exactly the same way, but on the second half of the 

dataset (Xerror_train и Yerror_train), but without changing anything in it. 
source_file = '/content/gdrive/My Drive/neyro/data_epochs/epoch_10.h5' 



  

destination_file = '/content/gdrive/My Drive/neyro/data_epochs/epoch_10

_copy1.h5' 

# Copying a file to a new path 

shutil.copyfile(source_file, destination_file) 

model = load_model('/content/gdrive/My Drive/neyro/data_epochs/epoch_10

_copy1.h5') 

#Model compilation with Adam optimizer, SparseCategoricalCrossentropy 

loss function and accuracy metric. 

history = model.compile(optimizer=Adam(learning_rate=0.01), 

              loss=SparseCategoricalCrossentropy(), 

              metrics=['accuracy']) 

# Creating a folder to save training data after each epoch 

import os 

if not os.path.exists('/content/gdrive/My Drive/neyro/data_epochs_conti

nue'): 

    os.makedirs('/content/gdrive/My Drive/neyro/data_epochs_continue') 

# Saving the model after each epoch to folder data_epochs_error 

checkpoint = ModelCheckpoint('/content/gdrive/My Drive/neyro/data_epoch

s_continue/epoch_{epoch:02d}.h5') 

# Training the model on the second half (not yet distorted) of the dataset 

epochs = 10 

history = model.fit(Xerror_train, Yerror_train, epochs=epochs, batch_si

ze=100, shuffle=True, callbacks=[checkpoint]) 



 
Fig 12. Output of training results 

 
Fig 13. Accuracy of training on test data 

Accuracy after retraining increased from 0.9542 to 0.9762. 

Let's create a copy of the epoch 10 file so that it can be used in the second training of the neural 

network and compare the received data. 
source_file = '/content/gdrive/My Drive/neyro/data_epochs/epoch_10.h5' 

destination_file = '/content/gdrive/My Drive/neyro/data_epochs/epoch_10

_copy.h5' 

shutil.copyfile(source_file, destination_file) 

Load the neural network model from the file epoch_10.h5, stored in the data_epochs folder 

on Google Drive. 
model = load_model('/content/gdrive/My Drive/neyro/data_epochs/epoch_10

.h5') 

Let's compile the model using the same parameters as the first time. 
history = model.compile(optimizer=Adam(learning_rate=0.01), 

              loss=SparseCategoricalCrossentropy(), 

              metrics=['accuracy']) 

Let's create a folder data_epochs_error, where the files of the epochs of the second training 

will be saved 
import os 

if not os.path.exists('/content/gdrive/My Drive/neyro/data_epochs_error

'): 



    os.makedirs('/content/gdrive/My Drive/neyro/data_epochs_error') 

Let's create an object with which we can save epoch files. 
checkpoint = ModelCheckpoint('/content/gdrive/My Drive/neyro/data_epoch

s_error/epoch_{epoch:02d}.h5') 

Training and testing of the neural network is carried out on the second half of the MNIST 

dataset (with the prefix error), which was created at the beginning of the code. 

Find element with label 
0 (y==0)

Replacing the label of 
this image with 9

On-screen output 
of Image + lLabel

Received possible 
data set is used 
for the 3rd stage 
of neural net 
training

Distorted 
dataset
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dataset.Performed prior to the third 

stage of the experiment.

 
Fig 14. The structure of the algorithm for direct distortion of the sample "Error" 

Let's find an element from the data set whose value is 0 and display its image and its 

corresponding label.plt.imshow(Xerror_train[9], cmap='binary') 
plt.axis('off') 



 
Fig 15.Image of dataset element 0 and its label 

Replace all label values in the training dataset Yerror_train with values 0 to 9. 

This stage is an imitation of an attacker's action. This example can be projected onto real face 

recognition neural networks, that is, different dataset numbers are different faces of people. 

One of the reasons for the emergence of the Adversarial attack is that machine learning 

methods were originally developed for stationary and secure environments, where the training and 

test samples were generated from the same statistical distribution. However, in practice, attackers can 

covertly manipulate input data to exploit vulnerabilities in ML algorithms and compromise the 

security of the entire machine learning system. 

 

The type of attack in which an attacker seeks to gain access to the data and the learning process 

of an ML model in order to “poison” it (train it incorrectly) for subsequent inadequate work is called 

poisoning. It can be seen as a malicious infection of the training data. Thus, the “white box” strategy 

is used here, when the attacker has information about the victim - “malicious knowledge” (Adversarial 

Knowledge, AK): how the data for training are prepared and from what sources and what they are, 

what are the main functions of the attacked system , what algorithms it uses, what are the results, etc. 

Poison attacks involve insider information about the ML system and a fairly high level of attacker's 

competence in Data Science [26]. 
Yerror_train[Yerror_train == 0] = 9 

Выведем элемент Xerror_train[9] с соответствующей ему метком.  
plt.imshow(Xerror_train[9], cmap='binary') 

plt.axis('off') 

print(Yerror_train[9]) 

  



 
Fig 16. Image of dataset element 0 and its label after replacement 

As a result, all images 0 correspond to labels with a value of 9. 

Retrained the neural network on data sets Xerror_train and Yerror_train, using the 

same parameters as the first time. 
epochs = 10 

history = model.fit(Xerror_train, Yerror_train, epochs=epochs, batch_si

ze=100, shuffle=True, callbacks=[checkpoint]) 

 
Fig 17. Data output after training 

  

 
Fig 18. Accuracy on test data 

plt.plot(history.history['loss']) 

plt.title('Training Loss') 

plt.xlabel('Epoch') 



plt.ylabel('Loss') 

plt.show() 

plt.plot(history.history['accuracy']) 

plt.title('Training Accuracy') 

plt.xlabel('Epoch') 

plt.ylabel('Accuracy') 

plt.show() 

 
Fig 19. Graph of losses 

 
Fig 20. Graph of accuracy 

  



We got an accuracy on the test data of 0.8758, which is much less than the result of 0.9762 

obtained after the model was trained on an undistorted dataset, and also less than after the first training, 

where the result on the test data was 0.9542. 

  

  First neural 

network 

training 

Additional training of 

a neural network on 

an undistorted dataset 

Additional training of 

a neural network on a 

distorted dataset 

Accuracy on test data 0,9542 0,9762 0,8758 

  

This confirms the hypothesis. Thus, when retraining a neural network on a distorted dataset, 

the accuracy on test data drops, and when retraining on an undistorted dataset, it increases. 

  This is due to the fact that the information received by the neural network about handwritten 

numbers from the MNIST dataset during initial training comes into conflict with the information 

received during re-training on the dataset with changed labels. 

Therefore, a sharp decrease in the accuracy of the neural network during additional training is 

one of the signs of an attacker's intervention. 

The presented method is one of the simplest methods for detecting malicious interference, and 

in further research it is planned to rely on the gradient descent method, which can be more accurate 

for this task. This is exactly what scientists from Cornell University did for the article "Interpreting 

Deep Neural Networks with SVCCA" [30]. 



Gradient descent work example

Lets ark an arbitrary point A on 

the surface B

Define the gradient F(x, y) at 

point A

Then take a step in the direction 

of anti graddient

Then chose the gradient with an 
opposite value (Aka, anti-gradient)

Mark point C at the end point of 

the step

end

Loc. Minimum 

Found?

Minimum output

yes

no

The gradient is a vector indicating the direction of the fastest 

growth of the function

Since the gradient shows the direction of the local growth of the 

function, the direction of the function's decrease will  be vector 

inverse gradient

For each iteration, the move step should

calculated separately. The smaller the angle of descent, the less 

travel step 

Consider an arbitrary function F(x, y) having an AC value area with 

a local minimum B.

 
Fig 21. Scheme of the gradient descent method theoretical algorithm 



Gradient descent practical example

Analysis of the input one-dimensional 

tensor

Neuron activation

Calculation of the vector of the total 

offset of the  neuroǹ s weights 

Passing Data to the Error Function

Recognition of the desired 

sequence

Change in the significance of neurons in 

accordance with the bias vector

Calculating the step to find the next 

minimum value

Repeat calibration cycle

(Found minimum error value?)

The result of the above loop – 

error function minimal value <=> 

Most effective composition of neuron 

weights

Direct neuron activation

Direct transfer of data to 

the next layer with a 

certain "strength

yes

no

The error function is a 

complex function, in this 

case, calculating the 

change in weight for each 

neuron. At the input - 

more than 300 variables-

weights

 
Fig 22. Scheme of the gradient descent method practical algorithm 

In conclusion, adversarial attacks are of particular interest in the field of artificial intelligence, 

and a large amount of research has been done in this direction. While defense strategies have been 

proposed and the arms race between attackers and defenders continues, new methods of attack are 

constantly being developed. Thus, it is important for researchers to study adversarial attacks and 

develop new protection strategies to ensure the security of machine learning systems, the formation 

of a secure model of trusted artificial intelligence. 
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