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Abstract—This article discusses the cellular circuit model of
integrated circuits, which takes into account the physical features
of their synthesis. The model differs from boolean circuit models
in the additional requirements for circuit geometry, necessary for
routing resources in ICs. The article explores the complexity of
implementing specific systems and functions in the cellular circuit
model. The study focuses on the complexity of implementing
the lookup function, including asymptotically tight bounds for
the area complexity of cellular circuits implementing it. The
article concludes with constructive solutions to optimize the area
complexity of cellular circuit multiplexers.

Index Terms—cellular circuit, boolean circuit, lookup function,
planar schemes, lower bounds, Thompson model, area complexity

I. INTRODUCTION

Kravcov proposed for the first time the model of cellular
circuit in “standart” basis of functional and commutation
elements in 1967 [1]. There the cellular circuit complexity
was understood as it’s area. In general the cellular circuit
of functional and commutation elements is a mathematical
model of integrated circuits (IC), which takes into account
the features of their physical synthesis. The fundamental dif-
ference of this model from the well-studied classes of boolean
circuit (BC) is the presence of additional requirements to
the circuit geometry, which cares necessary routing resources
during creating an IC.

Albrecht showed in his work [2] that the Shannon function
A(n), characterizing the complexity of the most “complex”
boolean function (BF) of n variables at n = 1, 2, . . . , in
the model [1] has asymptotically 1 tight bound σ2n, where
σ is some constant. The exact value of the constant σ remains
unknown, although it follows from works [2] and [1] that it
is in the segment [ 14 ,

9
2 ]. The cellular circuit basis, for which

was succeeded to obtain the same asymptotic for the similar
Shannon function with the constant σ = 1 was given by
Gribok [3].

The asymptotically tight bound of the area complexity for
some special BF and systems of BF were also described within
the cellular circuit model. Shkalikova investigated [4] the
implementation complexity by planar circuits of some BF

1Let’s say that consequences a(n), b(n), n = 1, 2, . . . holds the asymp-
totic inequality a(n) ≲ b(n), if a(n) ⩽ b(n)(1 + o(1)). Moreover, the
asymptotic equality a(n) ∼ b(n) is equivalent to that a(n) ≲ b(n) and
b(n) ≲ a(n).

specific systems, including systems of symmetric functions.
She established that Cn2n is the asymptotically tight bound
for the decoder complexity, i.e. a system of all 2n elementary
conjunctions of the rank n from n variables. The asymptoti-
cally tight bound n2 for one specific Boolean function of n
variables was received by Hromkovic, Lozhkin et al. [5]

The asymptotic tight bounds of some special BF or systems
of BF complexity were investigated in a number of works, in
the model of cellular circuit [6], [7], [8], and the model of the
cellular contact circuits [9], [7], [10]. It was proved that for
some BF systems type Fn = (f1, . . . , fNn

) of n variables, n =
1, 2, . . . , the asymtotically tight bounds of complexity in those
classes of circuits are equal to CnNn, with stated constant C.
For example, it turned out that for the decoder from n selector
variables, for which Nn = 2n, the constant C in both models
is equal to 1

2 etc. The phenomenon of antagonism [8] between
the functional elements number and the cellular circuit area
had been found for the specified decoder.

The questions of the implementation complexity in the cel-
lular circuit model of functions from more “narrow”, compared
to the class of all functions, but, nevertheless, sufficiently
“powerful” classes of functions, as well as partial functions,
have been investigated. Zhukov proposed [11] a synthesis
method of optimal in terms of the area power and depth of
cellular circuits, implementing partial Boolean functions. The
asymptotic kind of C 2n

logn for an cellular circuit area with
limited height and multiple inputs, implementing functions
from a nonzero invariant class, where the constant C depends
on that class power was established by Yablonskaya [12]

A similar mathematical model was described by Thompson
in 1980 [13]. This model is fundamental for IC research. The
fact that it does not take into account delays that occur during
signal propagation is a significant disadvantage. Chazelle and
Monier [14] proposed in 1985 an alternative model, correcting
this deficiency. Bilardi, Pracchi and Preparata [15] studied
in details the both models possibilities and their practical
application. Their study showed that the Thompson’s planar
model is a satisfactory approximation for ICs, at least for
single-chip systems. It remains an accurate approximation
for IC small areas (individual components) in cases, where
the model cannot correctly reflect all the designed systems
features.

There are a number of works, including the aforementioned



work [11], in which cellular circuits are optimized both
by area and by some other parameters: depth, static power,
average power, dynamic activity (power), et al. Cheremisin
[16] investigated the measure of cellular circuits activity. He
also showed that a decoder cannot be implemented by a circuit
that is optimal in area and activity at the same time, in terms of
the power of growth. Thereby their antagonism was revealed
[8]. Kalachev [17], [18], [19] investigated the cellular circuits
synthesis, implementing both random and partial BF, as well as
BF from a special classes and on which the optimal in power
of growth values of several of the complexity functionals
(area, depth, cardinality) had been achieved for almost all
implementable BF. Rybakov and Alehina [20] investigated the
reliability of cellular circuits.

Lookup function ln of n “selector” and 2n “data” variables
i.e. a so-called multiplexer BF of power n if often used in
theoretical research and in IC synthesis. The BF value ln is
equal to it’s data variable value, which number in the binary
numeral system had entered the selector inputs.

Usually circuit implementation of that BF, called multi-
plexer, is a component part of more complex circuits, memory
selection circuits and combinational blocks. Multiplexer BF
are used both in the theory of individual synthesis when
searching for optimal or close to optimal circuits and in the
theory of universal synthesis when working-out a general
method for circuit constructing and analyzing a Shannon
function. Moreover, multiplexer type BF is used when testing
and researching the circuits reliability.

Multiplexer BF implementation complexity became the
subject of many authors study. Korovin [21] established an
asymptotically tight bound type 2n+1 for complexity of the
BF ln both in the class of formulas and in the class of BC
in standart basis was established. Rumiantsev [22] received
asymtotically tight bounds type 2n+1 + O(2

n
2 ) for the com-

plexity of BF ln in the class BC over the standart basis. In the
work [23] was considered asymptotically optimal by reliability
implementation in the model of cellular circuit of the selector
function v2i, similar to the multiplexer BF.

Earlier in work [24] were received asymptotically tight
bounds for the circuits area complexity, implementing the
decoder of n selector variables. These estimates coincide in
the decomposition first part, have the type n2n−1

(
1±O

(
1
n

))
and can be considered asymptotic estimates of a high degree
of accuracy as in work [25].

In this work we establish asymptotically tight bounds of
the cellular circuit area complexity, implementing the lookup
function of n selector variables.

II. BASIC DEFINITIONS AND DESCRIPTION OF THE MODEL

The subjest of this work are cellular circuits. Each of them
represents a rectangular lattice on a plane, consisting of cells
– unit squares. Every cell is an element of the basis, which
inputs and outputs would be located in the middle of it’s
sides contacts. Every contact would be either element input,
or element output, or it’s isolated pole. Every element of the
basis is realizing the boolean functions system from boolean
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Fig. 1. Basis B0. Functional elements (&) conjunction, (∨) disjunction and
(¬) negation. Commutation elements: 1) wire, 2) T-junction, 3) X-junction, 4)
crossing without junction, 5) turn. Here and then so-called axis of functional
elements (vertical axis for signs & and ∨, horizontal axis for sign ¬) is co-
directed to the nonequal exit.

variables on it’s outputs, juxtaposed to it’s inputs, with the
exception of so-called isolator, an element all contacts of
which are isolated poles.

Every element would be one of two types: commutation
element (CE) and functional element (FE). The element would
be called functional if it is implementing at least one non-
identical, i.e. different from the variable, function. Any other
element, including isolator, would be assumed commutation
element. Thereby, commutation elements are realizing only
identical functions and their purpose is to transmit signals.
Let’s assume that every FE of basis B would be realizing on
it’s outputs only one different from it’s input boolean variables
BF and let’s call basic those outputs, on which it is realized.

In addition, the signal transmission can be realized through
the FE input and such of it’s outputs, on which would be
realized BF, identically equal to that input, or otherwise,
through the present input-output FE pair, which we would also
call commutation. The commutation FE pair output and also
every CE output would be assumed commutation.

In this paper the basis B0 is considered one of the cellular
circuit possible basis, related with standart basis of boolean
algebra elements B′ = {x1 ∧ x2, x1 ∨ x2, x1}, that consists
of 3 FE and 6 CE, including isolator (Pic. 1). Let’s notice
that every of three FE of that basis holds one input-output
commutation pair. Let’s remind that cellular circuit basis B0,
reviewed in papers [2], [1], [4], is also connected with basis
B′.

The basis B0 elements can be rotated by an angle multiple
of 90◦ and also “flips” around any of the unit square symmetry
axes while they are attaching into the rectangular lattice cells.

All inputs located on the cellular circuit rectangular lattice
border are declared present celullar circuit inputs. Some
outputs located on the cellular circuit rectangular lattice border
are declared present celullar circuit outputs.

It is assumed that every cellular circuit Σ input is labelled
by input boolean variable from a countable ordered alphabet
X = {x1, . . . , xn, . . . }. It is assumed that every cellular
circuit Σ output is labelled by output boolean variables set
from a countable ordered alphabet Z = {z1, . . . , zm, . . . }.

When describing the cellular circuit functioning let’s in
accordance with [?] label through P2(n) the set of all boolean



functions f from boolean variables X(n) = {x1, . . . , xn},
every of which is a relation type Bn f−→ B, where Bn is a n-th
Cartesian power of a set B = {0, 1}, or in other words, unit n-
dimensional cube. Herewith m power Pm

2 (n) of the set P2(n)
would consist of so-called (n,m)-operators, i.e. of systems
F = (f1, . . . , fm), where fi ∈ P2(n) for all i, i = 1, . . . ,m.

For the structure description of cellular circuit Σ =
Σ(x1, . . . , xn; z1, . . . , zm) i.e. cellular circuit with input bol-
lean variables X(n) = {x1, . . . , xn} and output bollean vari-
ables Z(m) = {z1, . . . , zm} in the basis B0, connected with
basis B′, let’s compare Σ with an acyclic labelled oriented
graph G such that:

1) set of vertices G one-to-one corresponds to the func-
tional elements set and inputs Σ, moreover the vertex
label is either the type corresponding FE or the input
BV corresponding to input of ;

2) arc (u, v) is an arc of G then and only then, when from
associated with u “node”, i.e. the corresponding to it
FE main output or input of Σ, through the chain of
connected in series commutation input-output elements
pairs Σ can be reached the input of FE, corresponding
to vertex v of G;

3) the vertex u of graph G is labelled as output BV zj
then and only then, when either zj occurs to be label of
corresponding u node Σ, or from the specified node Σ
can be reached element Σ commutation output, labelled
zj in the sense of previous paragraph.

Let’s assume that constructed in such a way graph is a
boolean circuit S = S(x1, . . . , xn; z1, . . . , zm) in the basis
B′, and consider that functioning S, which is given by
boolean functions system F = (f1, . . . , fn) from Pm

2 (n), also
determines functioning of cellular circuit Σ.

Let’s introduce cellular circuit area complexity, that would
further be their complexity measure. The circuit Σ, which
contains no rows or columns, consisting only of isolators,
has such dimensions: length l(Σ), measured horizontally,
and height h(Σ), measured vertically. Everywhere further we
would assume that h(Σ) ⩽ l(Σ) without loss of generality.
The rectangular lattice area of the cellular circuit Σ, i.e.
multiplication of it’s length l(Σ) to the height h(Σ) is called
the area A(Σ) of cellular circuit Σ and, thus,

A(Σ) = l(Σ)h(Σ). (1)

The value A(F ) for BF system F = (f1, . . . , fm) from
Pm
2 (n), would be defined equal to minimum area of cellular

circuits realizing F , which would be called the system F area
complexity.

Let’s notice some other cellular circuit features which
are important for the construction. A circuit with all input
variables on only one side is called one-sided. The circuit is
called repeating (an input x) circuit if it has symmetrically
locating output y(x) = x opposite to every input x.

III. MULTIPLEXER AND UPPER BOUND FOR IT’S AREA

Let’s remind that the standart multiplexer from n selector
variables or, in other words, lookup function ln is a boolean
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Fig. 2. Cellular circuit M̂1, implementing multiplexer from n = 1 selector
variables.
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Fig. 3. Cellular circuit M̂2, implemening multiplexer from n = 2 selector
variables.

function ln with n selector inputs x1, . . . , xn and 2n data
inputs y0, . . . , y2n−1. This function is identically equal to
data input yν(σ), i.e. data input with the number ν(σ) =∑n

i=1 σi2
n−i, at the tuple σ = (σ1, . . . , σn) ∈ Bn on the

selector inputs. In other words, lookup function (multiplexer
BF) can be represented as the following DNF

ln(x1, . . . , xn, y0, . . . , y2n−1) = Vσ=(σ1,...,σn)∈Bnxσ1
1 · · ·xσn

n yν(σ),

where, as always, x0
i = xi, x

1
i = xi.

Lemma 1:
There is a cellular circuit M̂n of height 2n+1 and length

2n + 1, realizing BF ln with repetition of its selector inputs,
located only on one of it’s vertical sides, and allocation of it’s
data inputs on one of it’s horizontal sides, and the output on
another horizontal side.

a) Proof.: Let’s construct the circuit S by induction on
n = 1, 2, . . . . All input variables would be given from the left
side. The variable xn is separated in the first column into two
rows, through one of them is transferring the variable itself,
and through the other one is transferring the function equal to
this variable negation. Data variables yj , j = 0, . . . , 2n − 1
are located in sequence on the circuit bottom side. They go
through the columns from bottom to top, passing through the
vertical main input-output pairs of conjunction elements and
commutation input-output pairs of negation elements.



Induction basis Let’s realize lookup function l1(x1, y0, y1)
and l2(x1, x2, y0, y1, y2, y3) in a way shown on the pic. 2 and
3.

Induction step For the p ⩾ 3 let it be constructed a scheme
M̂p−1 for p−1 selector inputs x2, . . . , xp with the size 2p−1+1
in length and 2p − 1 in height. Let’s compose two present
circuits consequentially in such a way that adress variables
repeating outputs of one circuit would be inputs of another
circuit, and data inputs would be located on the same side.
By the theorem condition that subcircuits according outputs
z1 and z2 are located on the top side.

Let’s delete second subscheme’s first column, realizing
variable partition xp. Let’s replace in the first subcircuit bottom
row the last conjunction element (with isolated output) with
conjunction element repeating it’s input at the output, so
realizing according variable (xp) negation in the bottom row.
Thus the common circuit length would be 2p−1 +1+2p−1 +
1− 1 = 2p + 1.

Let’s add a selector variable x1 input on the circuit left side
in the new top row. Let’s hold a commutation lines row from
the left to the right, setting the conjunction elements on outputs
z1 and z2 so that conjunction x1z1, x1z2 outputs would be on
the circuit top side. Let’s hold a negation element after every
such conjunction, providing the variable x1 negation for the
start and next returning to the initial variable at the output,
repeating it’s selector variable input. The circuit length for
p − 1 ⩾ 2 is greater or equal 3 by condition, therefore it
is possible to hold in the row at least 2 elements opposite
each circuit. Let’s add a row from the turn, commutation lines
and disjunction in such a way that the turn would be located
opposite conjunction output, realizing x1z1. Corresponding
value would be held along the row lines to disjunction element,
on which second input is located conjunction output, realizing
x1z2, and disjunction output would be directed to the circuit
top side.

Thereby a function x1z1 ∨ x1z2 is realized on the the
constructed circuit top side S, where z1, z2 are multiplexer
outputs from p− 1 selector variables x2, . . . , xp and relevant
data variables. It means that this circuit is realizing multiplexer
from p selector variables x1, . . . , xp and relevant data variables
by construction. Selector variables inputs of S are located on
the circuit left side, and data variables inputs are located on
the bottom. Main output of the circuit S is located on it’s
top side, and supporting outputs, repeating selector variables
inputs, on the right side.

Following equalities would be held by construction in this
case:

l(S) = 2p + 1, h(S) = 2p+ 1.

and, consequently, assuming S = M̂p, we would get the
desired circuit which at p = n satisfies the lemma’s conditions.

□
Theorem 1 (about the upper bound): There is a circuit Mn,

realizing multiplexer BF ln, with the area

A(Mn) = (n+ 10)2n−1 + 2n+ 30

S · · · S

S · · · S

2n−q−1 × S

2q 2q

2q

X ′ : {x1, x2, . . . , xn−q}

2q

X ′′ : {xn−q+1, xn−q+2, . . . , xn}

X ′′ : {xn−q+1, xn−q+2, . . . , xn}

l

n− q

Fig. 4. Circuit Mn general view. Scheme data inputs suitable for blocks S
are not shown here.

b) Proof.: Let the selector boolean variables set X =
X(n) of function ln be separated into two sets X ′ and X ′′,
accordingly consisting of n− q and q variables, q > 1, i.e.

X = X ′ ∪X ′′, X ′ ∩X ′′ = ∅, (2)
|X ′| = n− q, |X ′′| = q. (3)

Let’s consider that

X ′ = {x1, . . . , xn−q}, X ′′ = {xn−q+1, . . . , xn},

and that the data variables set y = (y0, . . . , y2n−1) of
ln function has separation into 2n−q consecutive subsets
y(0), . . . , y(2

n−q−1), each of those consists of 2q data variables
with consecutive numbers.

Let’s construct for the input set X ′′ two rows, consisting of
2n−q−1 circuits S type M̂n−q each, and realizing multiplexers
from 2q data BV set y(i), i = 0, . . . , 2n−q − 1. One row
is located on the circuit top side, another on the bottom
side. Let’s lengthen their outputs in such a way that they
would construct a “comb”. Let’s compose two such rows
opposite each other by combining “combs”. Let’s direct the
rows, passing variables from the set X ′, perpendicular to these
outputs. Such a lattice would have one disjunction in every
crossing. By using necessary number of negations in the space
between vertical rows would be changed the tuples of variables
from the set X ′, (see pic. 4, 5). As a result every multiplexer
S output is passing through conjunctions with the set of all
tuples of variables from X ′ in some degrees σ1, . . . , σn−q , as
the result of which for i = 0, . . . , 2n−q − 1 would be realized
the BF:

fi(x
′′, y(i)) = lq(xn−q+1, . . . , xn, y

(i))xσ1
1 xσ2

2 · · ·xσn−q

n−q .

Two rows of such outputs are connected by disjunctions into
two lines. They are connected through the vertical conductor
on the circuit right side. Another one disjunction is located in
the place of connection which is realizing the lookup function
on it’s output.

The circuit necessary part is spreading width q in the circuit
left part. It duplicates variables from the set X ′′ to the scheme
top part.
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Fig. 5. View of cellular circuit M5 with q = 2

For every tuple σ′ of variables values from X ′ the signal
of only one block type S reaches the output z. Every block is
realizing a multiplexer of order q. All the scheme is realizing
the multiplexer BF ln by construction.

Let’s estimate it’s area:

l(S) =
1

2
2n−q · 2q + q

h(S) = n− q + 2 · (2q + 1) + 2

A(S) = l(S) · h(S) = (2n−1 + q) · (n+ 3q + 4).

By taking small enough q = 2 could be get a circuit with
the area

A(S) = (n+ 10)2n−1 + 2n+ 30,

where “the main” term is – n2n−1.
□

Corollary 1: By constructing the circuit from theorem 1 for
every q = o(n) and n = 1, 2, . . . is true that

A(S) = n2n−1 + O(q2n).

Corollary 2: For n = 1, 2, . . . holds the inequality

A(ln) ⩽ n2n−1 + O(2n).

IV. THE LOWER BOUND OF AREA COMPLEXITY

Let vertical cut π be dividing cellular circuit Σ into two
parts, the left circuit Σ′ and the right circuit Σ′′. Let tuples x′,
x′′ be tuples accordingly composed from BV sets X ′ and X ′′

into which the cut π separates the input set BV X of cellular
circuit Σ. Herewith X = X ′ ∪X ′′, X ′ ∩X ′′ = ∅, |X ′| = n′,
|X ′′| = n′′, |X| = n = n′ + n′′. The ordered tuple of pole
values, i.e. inputs-outputs Σ′ and Σ′′, located on π (see. pic.
6) would be called the state π(α′, α′′) of the cut π, where
α′ ∈ Bn′

and α′′ ∈ Bn′′
.

Herewith table state of the cut π of the circuit Σ for natu-
rally ordered tuples α′ ∈ Bn′

and α′′ ∈ Bn′′
would be called

matrix M ∈ Bn′×n′′
with n′ rows and n′′ columns, for which

Mij = π(α′, α′′), where dec(α′) = i − 1, dec(α′′) = j − 1

for all i = 1, 2n′ , j = 1, 2n′′ .
In Shkalikova work [4] was proved that in such a case from

the equality π(α′, α′′) = π(β′, β′′) follows that

π(α′, α′′) = π(α′, β′′) = π(β′, α′′) = π(β′, β′′) (4)

It could be seen that for the BF system F (x′, x′′), realized
by cellular circuit Σ, would be true equalities

F (α′, α′′) = F (α′, β′′) = F (β′, α′′) = F (β′, β′′),

if every curcuit Σ output, located in Σ′, has a duplicate in
Σ′′ and vice versa.

Lemma 2:
Let I and J be sets of those rows and, accordingly, columns

of the state table M of the cut π of cellular circuit Σ, in which
the same state q occurs at least once. Then all the submatrix
of the matrix M , composed of rows with numbers from I and
columns with numbers from J , consists only of the states q.

a) Proof.: Let the lemma statement be false. Then there
exists such a row i, i ∈ I and a column j, j ∈ J that Mij ̸= q.
It is assumed that i and j would be included in the present
matrix, i.e. there exists k′ ∈ I, k′′ ∈ J : Mik′′ = q, Mk′j = q.

From the equality (4) directly follows by corresponding
values substituting that

π(ν−1(i), ν−1(k′′)) = π(ν−1(i), ν−1(j)) =

= π(ν−1(k′), ν−1(k′′)) = π(ν−1(k′), ν−1(j)).

Hence appears a contradiction that lays in the fact that

q ̸= π(ν−1(i), ν−1(j)) = π(ν−1(k′), ν−1(j)) = q.

The cotradiction appears from the assumption that there exists
a row i and a column j such that Mij ̸= q. Therefore the
assumption is not true and the lemma statement is true.

□
Lemma 3: Let cellular circuit Σ of hight h and length l,

where h ⩽ l, from BV X(n) = {x1, . . . , xn} and Y (n) =
{y0, . . . , y2n−1} be realizing BF ln(X,Y ). Then the height of
the circuit Σ for large enough n satisfies the inequality

h(Σ) > n− 2− 2 log n.

b) Proof.: Let π be a Σ cut, which separates the set BV
X(n) (Y (n)) into the right X ′′ (accordingly Y ′′) and the left
X ′ (accordingly Y ′) subsets. Herewith |X ′| = n′, |X ′′| = n′′,
|Y ′| = m′, |Y ′′| = m′′ would be such that m′ ⩾ 2n−1 − 1
and m′′ ⩾ 2n−1 − 1.

Let π′ (accordingly π′′) be such a part of the cut π, that
is connected with outputs of elements Σ′′ (accordingly Σ′)
and let |π′| = s′, |π′′| = s′′ (see pic. 6). Let’s assume that



π

Σ′ Σ′′
dataY ′, |Y ′| = m′

selectorX ′, |X ′| = n′

data Y ′′, |Y ′′| = m′′

selectorX ′′, |X ′′| = n′′
π′′

π′
z1 z2

Fig. 6. To the proof. Here |π′| = s′, |π′′| = s′′.

the output z = z1 of cellular circuit Σ, located in one of
it’s parts, has a “duplicate” z2 in another part Σ. For such a
construction would be enough to increase the height of Σ not
more than 1.

Let’s notice that the number of those tuples kind (α′, α′′),
where α′ ∈ Bn′

and α′′ ∈ Bn′′
, for which yν(α′,α′′) ∈ Y ′, is

equal to m′. Thus the average value of this BV number over
all tuples α′, α′ ∈ Bn′

would be not less than m′

2n′ . Therefore
it could be found such a tuple α̂′, α̂′ ∈ Bn′

, for which the
number of incoming into the Y ′ BV type yν(α̂′,α′′), where
α′′ ∈ Bn′′

would be not less than
⌈
m′

2n′

⌉
⩾ 2n

′′−1. Let’s denote
the set BV type Ŷ ′, and the set of corresponding tuples α′′

from Bn′′
as A′′, and assume that∣∣∣Ŷ ′

∣∣∣ = |A′′| = m̂′ ⩾ 2n
′′−1 (5)

Let’s fixate the BV values from X ′ by the tuple α̂′, and
the BV values from sets Y ′\Ŷ ′ and Y ′′ by zeros. Then let’s
construct matrix M with 2m̂

′
rows and m̂′ columns, which is

a part of the table state of the cut π of the circuit Σ, which
rows, taking into account given above fixation, are related with
set of tuples Bm̂′

of BV values from Bm̂′
, and columns with

set A′′ of tuples of BV values from X ′′.
Consider a random row S of the matrix M , coinciding the

tuple β̂′ from cube Bm̂′
from boolean variables Ŷ ′, i.e. let’s

fixate all inputs Σ′, which are inputs Σ, by the tuple (α̂′, β̂′).
Let’s notice that the state of π′′ in the row S which is a part
of the cut π depends only from inputs π′ of the scheme Σ′.
Therefore the number of the cut π differenty states in S would
be not more than 2s

′
. It means, taking into account (5), that

in S could be found such a state γ of cut π that occurs in
S at least 2n

′′−s′−1 times. Such a state γ would be assumed
a dedicated state of S. Let’s notice that the cut π number
of various values is less or equal 2s

′+s′′ . Therefore could be
found matrix M number of rows more or equal to 2m̂

′−s′−s′′ ,
each row consists the same dedicated state γ0.

From the lemma 2 follows that there is a submatrix M̃
in M with l, l ⩾ 2m

′−s′−s′′ rows and k, k ⩾ 2n
′′−s′−1

columns, consisting of the states γ0. Assume wherein δ0 would
be the value of such a position γ0, that corresponds with the
output cellular circuit Σ value, transferred from one part
of Σ to another. By construction the column with number
i, i = 1, . . . , k of the matrix M is related to some tuple
α′′
i from A′′ and by that it corresponds to boolean variable y′i

from Ŷ ′ such that y′i = yν(α̂′,α′′
i )

= ln(α̂
′, α′′

i , y0, . . . , y2n−1).
Therefore the values of all boolean variables y′1, . . . , y

′
k in

any tuple β̂′, corresponding to the row M̃ , would be equal
to each other and equal to δ0. It means, that the matrix M̃
lines number would be less or equal to the number of those
tuples β̂′, β̂′ ∈ Bm̂′

for which would be held the equality
y′1 = · · · = y′k = δ0, that is less or equal than 2m̂

′−k. Thus,
the inequality holds:

2m̂
′−s′−s′′ ⩽ 2m̂

′−2n
′′−s′−1

,

from which follows that

s′ + s′′ ⩾ 2n
′′−s′−1. (6)

Swapping the parts Σ′ and Σ′′ in the same way could be
shown that

s′ + s′′ ⩾ 2n
′−s′′−1. (7)

Multiplying (6) and (7), would be obtained the inequality

2s
′+s′′(s′ + s′′)2 ⩾ 2n−2,

from which follows that

s′ + s′′ ⩾ n− 2− 2 log n.

The statement of this theorem comes from the fact that
taking into account duplicated outputs Σ, h+1 ⩾ s = s′+s′′:

h ⩾ n− 3− 2 log n.

□
Theorem 2 (about the lower bound): For multiplexer BF ln,

over n = 1, 2, . . . , wouid be true the lower bound:

A(ln) ⩾ (n− 3− 2 log n)2n−1 + O(n2).

c) Proof.: Assume that Σ is a (single) cellular circuit
implementing the multiplexer ln with length l and height h.
Without loss of generality we consider l ⩾ h.

Let’s impose restrictions on the circuit Σ perimeter, pro-
ceeding from circuit inputs and outputs total number:

2(h+ l) ⩾ n+ 2n + 1, (8)

from which follows that:

l ⩾
1

2
(n+ 2n + 1)− h

Herewith the circuit area Σ satisfies the correlations:

A(Σ) = l · h ⩾ h
(1
2
(n+ 2n + 1)

)
− h2

It is obvious that the problem of area minimizing solution
A(Σ) with restriction h ⩽ l consists in the value minimum h.
By the lemma 3 that minimum is more or equal to n − 2 −
2 log n. Accordingly, over n → ∞ we obtain the inequality of
the theorem

A(Σ) ⩾ (n− 3− 2 log n)2n−1 + O(n2)



□
Corollary 3:
From the theorem 2 over n = 1, 2, . . . follows asymptotic

inequality

A(ln) ≳ n2n−1.

Corollary 4:
From the theorem 1 and the theorem 2 follows that for

all n = 1, 2, . . . in the model cellular circuit are true
asymptotically tight bounds

n2n−1 − O(log n2n) ⩽ A(ln) ⩽ n2n−1 + O(2n).

Corollary 5:
From the corollary 4 follows that if n → ∞ then asymtotic

of area complexity is

A(ln)
1

2
n2n

(
1± O(

log n

n
)
)
,

which can be considered close to the asymptotically tight
bounds of a high degree of accuracy [25].

V. CONCLUSION

In this paper we showed asymptotically tight bounds for
the area complexity. The higher bounds was achieved by
constructively building a family of cellular circuit multiplexers
from n selector variables. The lower bounds were, as usual,
determined from information theory considerations. Moreover,
obtained tight bounds coincide with an accuracy up to a
constant in the leading term of the decomposition and degree
of the second one. They are close to asymptotically tight
bounds of a high degree of accuracy.
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