
Debugger for Declarative DSL for Telecommunication
Product Line

Abstract
Development of telecommunication product lines is still a very labor intensive task, involving a great amount of human
resources and producing a large number of development artifacts — code, models, tests, etc. Declarative domain-specific
languages (DSLs) may reasonably simplify this process by increasing the level of abstraction. We use the term “declarative”
implying that such a DSL does not enable the development of a closed software application, but rather supports creation,
generation and maintenance of various kind of software assets — product database, events and event handlers, target code
data structures, etc. At the same time, such a DSL may have some executable semantic, but it could be very specific and have
many environment-wise requirements. Thus, execution and debugging of such DSL specifications is a meaningful task, which
has no common solution due to the unique executable semantic. Consequently, it is not possible to use debug facilities of
known DSL environments, such as XText, MPS, etc. for such a case. In the current paper, we present a debugger for DDD — a
declarative DSL intended for support device management in software development in the context of a router product line by
XXX company. We clarify executable semantic for DDD, making it possible to execute DDD specifications in an isolated
environment, i.e. in simulation mode, without generation of target code. We use a graphic model-based notation to depict
every step of execution. Finally, we implement and integrate the debugger in the DDD IDE, using Debug Adapter Protocol
and language server architecture combined with the Eclipse Xtext/EMF tool chain.

Keywords
Product Lines, Telecommunications, Declarative DSL, Debugging, IDE

1. Introduction
Nowadays, it is typical for large companies to develop
not a single software product but a number of products
with varying features and functionality, providing up-
grades, etc. All of these products and corresponding
development infrastructure form a product line [1]. This
approach expands the market capacities of a company
and provides reuse of various development assets, e.g.
code, models, requirements, tests, etc.

Following the trend, the XXX company is developing
a product line of network routers. The product line con-
tains about fifty different products, hundreds of unique
boards, several hundred thousand C files, and more than
ten million lines of source code. One of the problems
of a product line is the development of the Device Man-
agement layer. This layer focuses on hardware drivers
and network interfaces of the router being provided to
network management layer. The problem is in a large
range of hardware, complicated hardware connections
(in particular, it is possible to insert various cards into the
motherboard of the router) and various configurations
of one product depending on demands of customers.

To meet these problems, a special declarative DSL was
developed [2]. This language provides the ability to spec-
ify hardware structure of the product that is visible to
software. Furthermore, it can also specify the behaviour
of a product in an event-based manner. It provides ab-
stractions to define various product information, support-

© 2023 Author:Pleasefillinthe\copyrightclause macro
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

ing generation of product configuration, network data,
events and event handlers, target code data structure, etc.
A special IDE that fully supports the proposed DSL was
developed. Finally, a debugger was needed to improve
maintenance of DSL programs [3].

Leading DSL environments such as Xtext [4], GEMOC
Studio [5], and MPS [6] support a two-level debug
model [7] that is not suitable for declarative DSLs. More-
over, debug development facilities that are provided
within these environments are deeply integrated with
them, and their transfer to other runtime platforms is
highly limited. Microsoft Visual Studio Code supports
the Debug Adapter Protocol that provides a standard
for the debugger user interface rather than technologies
for development. Thus, DSL debugging for declarative
languages is a pressing problem.

There is a number of research papers concerning DSL
debugging [3, 8], but they do not deal with event-based
behaviour DSLs. Event-based debugging is implemented
in a series of model-based development toolsets such as
YAKINDU [9], Rhapsody [10], but these tools are ori-
ented at the UML-based system structure (components,
interfaces, ports, channels, etc.). In the case of DDD DSL,
we have both a specific system structure model.

We may conclude that existing research and devel-
opment tools do not provide any significant basis for
developing a debugger for event-based declarative DSLs.
Thus, creating it is going to be research-intensive.

The novel contributions of our paper are as follows:

• Scenario-oriented debugging concept for DDD;
• use cases of the debugger;

https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org


• An extension of DDD for configuration and ini-
tialization of system developed for debugging;

• Graphical model-based notation for visualization
of debug execution trace,

• Implementation of the debugger with the support
of Debug Adapter Protocol and integration into
the DDD IDE.

This article is organized as follows. Section 2 provides
some background of the research. Section 3 presents
scenario-oriented debugging concept for DDD and use
cases of the debugger. Section 4 describes extension of
DDD for specifying debug configuration of the prod-
uct. Section 5 introduces graphical model-based notation
for visualization of debug execution trace. Section 6 de-
scribes debugger implementation issues. Section 7 con-
tains an overview of related work, and finally, section 8
provides the conclusions of the paper.

2. Background
The software part of the router in the considered product
line consists of two main components: network manage-
ment and device management. The latter encompasses
hardware drivers and a network agent that provides an
intermediate level between the drivers and the network
management component. It implements a set of rules
that determine the router’s reaction to various network
management events.
The domain-specific language DDD is intended for

describing the Device Management subsystem. DDD
consists of the following parts:

• Composition model aims at describing hardware
part of the router that is visible for drivers and net-
work management. It consists of a set of boards
and cards. The latter are a special type of boards
and can be inserted into boards’ or other cards’
special slots, extending the functionality of the
parent device. Actually, DDD-specification of the
product describes a set of board and card types
(moduleTypes). A real configuration of the prod-
uct delivery depends on customer requirements —
that is, similar to the variability of hardware units
in a laptop, when the customer just specifies type
of the storage, volume of RAM, etc. during their
purchase. Thus, facilities for creating target prod-
uct configurations are outside of the DDD due
to including not only device management level
information. Some features of DDD for creation
of debug configurations (debug model) will be
described later.

• Inheritance Model addresses to specifying net-
work management attributes of hardware ele-
ments.

• Behaviour Model focuses on event-driven be-
haviour of the network agent.

Let us consider the behaviour model in more detail.
Specification of the network agent behaviour consists
of a set of rules. Each rule includes the event that the
network agent is subscribed to. The event triggers the
action sequence if the logical condition attached to the
event is true. The following kinds of actions are allowed:
create an alarm event, log information, restart the net-
work agent, change attributes of the hardware elements
of the router, as well as, possibly, other elements on the
network.
It should be noted, DDDL was designed to describe

router hardware structure and special data structures
including various configuration information. DDD does
not actually let the user specify software’s control flow,
whereas DDD specification is not a closed executable
specification although it includes some behaviour facili-
ties. Moreover, various parts of DDD specification gener-
ate various assets, including data for the router database,
C data structures and function signatures, etc. But gen-
erated C code is not closed and ready to be executed.
A significant part of device management code is imple-
mented manually.
Thus, it can be said the DDD is a declarative domain-

specific language. It should be stressed we do not imply
logical programming facilities, but take into account to
the fact that system code generated on DSL is not closed
and consequently executed. A lot of other code is needed
to execute it, and this additional code is developed outside
the suggested DSL.

Nevertheless declarative DSL could contain some part,
which have executable semantic and may be launched
in some simulation environment. This simulation (de-
bugging is a special case of such simulation) may have
a sense for DSL users helping to clarify dark corners of
the DSL specification or finding errors.
The complete grammar of DDDL is an Extended

Backus-Naur Form (EBNF), which was created via
XText [4]. Based on this grammar, an IDE language server
is generated. DDD language server is integrated to Vi-
sual Studio Code, where an IDE interface is implemented.
Visual Studio Code as a target environment is an external
requirement to DDD.

3. Debug Concept and Debbuger
Use Cases

In our case, we need a way to execute an event-based
specification for a single component — that is, the de-
vice management agent. The behaviour of this agent is
set using the behaviour model defined for the product
with DDD tools. The device management agent receives



events from outside — as in, from the network, as well
as from the hardware of its router. In addition, the agent
can create events for itself and process them itself too.

Being dependent on the environment, the device man-
agement agent must correctly process events received
from it. It is this aspect that is interesting from the point
of view of the debugger, since the processing of one ex-
ternal event is a purely internal matter of the device man-
agement agent, and it does not require any additional
data from outside. Thus, emulation of receiving such an
event could be the start of a debug section run by the
developer in order to test the agent’s handling of it. It is
important to understand that the agent can be in different
states, in each of which it must correctly process such
an event. For example, it can receive a request from the
network for reconfiguration and router restart either in a
normal, regular state, or in a state of reduced bandwidth.
Accordingly, two different rules are required to process
the same event, and they correspond to different spec-
ifications of the initial state of the agent and different
debug sessions.
During the processing of a single external event, the

device management agent can activate more than one
rule. This happens via the mechanism of the agent cre-
ating events for itself, searching for a suitable rule and
executing it. Accordingly, the debug session ends when
all rules are executed, and the device management agent
message queue is empty.

Let us explain why the device management agent gen-
erates events for itself. It is due to the fact that the be-
haviour model is composite: different rules are created
at different levels of the product’s decomposition, for
example, at the level of chips included in the board, or
at the level of ports. Specifying chips and ports, it is
important to determine how the processing of various
events addressed to them takes place. At the same time,
the exact origin of these events is not considered — be it
the network or the top level of the device management
agent. These rules can also be created by different devel-
opers responsible for managing different hardware units
of the router. Moreover, the same rule can participate
in various scenarios, and in this case rules are used for
behaviour decomposition and reuse.

Note also that the behaviour model may differ for dif-
ferent configurations of the product, since they may in-
clude different types of equipment.

We have identified the following DDD debug use cases:

• Exploring the product configurations for a spe-
cific customer without a target platform, i.e. on a
DDD developer workstation.

• Considering a subset of product configurations
during DDD development to detect possible bugs.
It is important to find bugs exactly on the devel-
opment level they are made on. If these bugs are

detected on the following development levels, the
cost of bug detection will increase.

• Analyzing a specific product configuration in the
situation when some bug occurs. It could be pos-
sible that the reason for the bug is contained in
the DDD specification. If it is not so, the next
development level should be explored.

4. Debug Model
In order to run a debugger on a behaviour model of the
product, it is required that the user precisely defines the
debug scenario: product configuration, current state, and
debug event. This is done with the DDD language, which
has been suitably extended for this purpose.

In order to define the hardware product configuration
used in this debug scenario, the appropriate moduleTypes
defined in the main DDD product specification are in-
stantiated and the relationships between these instances
are specified. The latter means that cards are inserted
into appropriate slots of boards and possibly other cards.
By this means, a tree of real devices of the product is
built. All necessary attributes of each device from this
tree are then set — DDD has also been extended for this
purpose.

State of product configuration refers to setting values
attributes, specifying the required current state of the
product configuration.
A debug event specifies the start event that triggers

the debug scenario.
Below is a simplified example of a debug scenario for

the case of ”restarting the router when the voltage in
the system drops”. This scenario is described in the spe-
cial debug_scenario1 package, which imports the core
package of this product, containing the definitions of the
main moduleTypes of the product.

The composition section describes the product config-
uration, which consists of the main_board1 and card1
inserted into the main_board1 in a slot called card_slot1.
Note that the voltage sensor is installed on the card, as
follows from the type description of this card in the main
DDD specification of the product. Further, it is indicated
that there is one external 100 Gbit port port1, into which
the split4_25 optical converter is inserted, splitting this
port into four 25 Gbit ports.
Further, in the attributes section, the state of the

specified product configuration is set: main_board1,
card1, sensorT have the “ready for operation” status, and
card_slot1 is connected to power; sensorT also has a valid
value of 12; the first of the 25 gigabit ports is activated (i.e.
through it, the router communicates with the network).

Finally, in the event section, the event that triggers this
debug scenario is set: the voltage measured by sensorT



becomes invalid (of value 9, but interval allowed is from
12 to 15).

The behaviour model has a rule which is activated
when the voltage is below 12, see Figure fig:graph. It is
triggered by the changing sensor’s attribute from 12 to
9. In the context of this rule an alarm ”Low voltage” is
exposed and another event is created. The last is done by
changing the attribute card1.port1.port25GE.IS_AVAIL-
ABLE from 1 to 0, meaning the active port is disabled.
The second rule create alarm ”Port is down”.

package degug_ s c ena r i o 1 {
impor t co r e ;

compos i t i on {
BoardHardType main_board1 ;
CardHardType ca rd1 ;
main_board1 . c a r d _ s l o t 1 <− ca rd1 ;
c a rd1 . po r t 1 = s p l i t 4 _ 2 5 ;

}
a t t r i b u t e s {

main_board1 {
IS_AVAILABLE = 1 ;

}
c a rd1 {

IS_AVAILABLE = 1 ;
}
main_board1 . c a r d _ s l o t 1 {

POWER_STATUS = 1 ;
}
c a rd1 . sensorT {

IS_AVAILABLE = 1 ;
VLT_CURR_VALUE = 1 2 ;

}
}
o v e r r i d e a t t r i b u t e s {

c a rd1 . po r t 1 . port25GE {
IS_AVAILABLE = 1 ;

}
}

even t {
modify ca rd1 . sensorT

: VLT_CURR_VALUE = 9 ;
}

}

5. Visualization debug results
Let us now consider the graphical model-based notation
for visualization of the debug execution trace. As men-
tioned above, such a trace visualizes the step-by-step
execution of the rules involved in the debug scenario.
Figure 1 shows an example of such a diagram. It starts
with a Start symbol (double circle filled in blue inside).

Figure 1: An example of graphical model-based notation for
visualization of debug execution trace

It is followed by the first event that triggered this sce-
nario. Note that events in the DDD behaviour model are
changes of the attributes of the device database on the
router. The corresponding router devices are subscribed
to changes of certain attributes, therefore, these devices
have rules that start with this event. Device management
agent combines all of these rules to whole behaviour
model as described above. There can be multiple rules
for handling the same event, but then they must differ in
conditions that immediately follow the event. An event
is denoted by a blue diamond.
Further, the brown rectangle denotes an alarm, the

lilac one — logging, and the green oval indicates network
device attribute changes. These changes, in turn, can
cause further events to be fired for which a suitable rule
is found. After the execution of the last rule, the end
symbol of the debug scenario is drawn — a circle with
crossed lines. At the top of each graphical symbol, except
for the start and end, the step number is indicated. The
user executes the debug scenario step by step, and as a
result of each step, the corresponding graphic element is
drawn in the diagram.

6. Debugger Implementation
The debugger implementation scheme is shown in Fig-
ure 2. The debugger is divided into two parts: the De-
bugger Back End, which performs debugging and is inte-
grated into the DDD language server, and the Debugger
Front End, which implements the user interface and is in-
tegrated into the Visual Studio Code DDD plugin. These
parts interact via the standard Debug Adapter Protocol,
which passes debug commands from user to debug back
end and debug information (attribute values. etc.) from
back end to user the user to view.
The main difficulty was the implementation of the

Debugger Back End. It consists of the following compo-



Figure 2: Debugger implementation schema

nents: ConfigProcessor, DebugController, DebugSession,
Variables Control System.

The ConfigProcessor component processes DDD-
specification of the debug scenario DDD specification or
the whole product, transforming them into a convenient
representation: namely, the device tree of a given prod-
uct configuration based on hardware connections. This
abstraction provides a structure that uniquely defines
the “parent-child” relationship, which is important for
searching in the behaviour model.

The DebugController component connects the Debug-
ger Front End and Debugger Back End, providing an API
to initialize the debug session. When a request is received
to start a debug scenario, the DebugController processes
the incoming debug configuration using the ConfigPro-
cessor, and creates an instance of the DebugSession based
on the received data. Next, the controller redirects the
request received from the front end to the DebugSession,
and upon completion of the action sends the result back
to the Debugger Front End side.
The DebugSession component is the main debug en-

gine. It implements various debugging steps, and also
provides control over the storage and updating of data
that is relevant for each step. Unlike general-purpose
languages, where the program, as a rule, is executed on
some hardware device, DebugSession simulates the en-
tire execution process. Thus it is easy to support the
rollback of steps, which is a difficult task in the general

case.
The Variables Control System component is a collec-

tion of classes responsible for storing, processing and
transforming debugging information. The tasks of this
component are the following: ensuring correct persistent
storage of values and attributes of the router; splitting
data into stack frames corresponding to the debug state
at a certain step; serialization of objects into a represen-
tation that specifies the nodes of the debug graph. Thus,
the component acts as a universal delegate for working
with data stored during debugging.

7. Related work
The need for debugger development tools for DSLs is
recognized by the community. Due to this, XText [4],
GEMOCStudio [5], andMPS [6] aswell as other DSL envi-
ronments support meta-debug facilities. However, these
facilities are oriented at executable DSLs, which have
strict executable semantics and can be generated into
Java and other industrial programming languages. Very
often in this case, a two-level debug model is used [7]. It
means that real debug is performed for generated DSL
code, and special tools just raise debug information to the
DSL level and accept the corresponding user commands
from there. This approach is not suitable for our case of
various program assets being generated according to the
DSL specification, as they do not form a closed executable
application.
There are studies on creating meta debug facilities

for more complex cases by declaratively specifying ex-
ecutable semantics of the DSLs [3, 8]. However, these
studies are at their pilot stages and cannot be employed
in the industry. In addition, using this approach, it is
difficult to express event-oriented executable semantics,
which is important for our case.

Event-oriented debugging is implemented in a series of
model-based development toolsets for real-time systems
such as YAKINDU [9] and Rhapsody [10]. Such toolsets
support UML statecharts and provide facilities for debug
statecharts inside of the modeling environment. But, first,
these solutions are deeply integrated into the toolsets and
can not be reused. Second, they are oriented at the UML-
based system structure (components, interfaces, ports,
channels, etc.). In practice, they provide execution and
debug for a set of communicated components including
statecharts. This execution model is redundant for our
case, sincewe are executing a fragment of one component.
In addition, we have a significantly different structure
model.
So, we can conclude that creation of debuggers for

declarative industrial DSLs is an open task that does not
have a ready-made solution. Separate tools can be used
for solving it, for example, the Debug Adapter Proto-



col and templates for creating the debugger front end.
But the majority of work is in specifying the executable
semantics for that part of the DSL that makes sense to
debug, as well as support the corresponding executable
environment in the DSL IDE.

8. Conclusions
In this paper, we have proposed a debugger for the DDD
declarative language, which is intended for the devel-
opment of device management components of a router
product line of the XXX company. As a continuation of
this work, we plan to focus on increasing the number
of actions used in the rules, as well as adding support
for new features of the behaviour model that will be
introduced in the future.

References
[1] P. Clements, L. M. Northrop, Software product lines

- practices and patterns, SEI series in software engi-
neering, Addison-Wesley, 2002.

[2] The reference is hidden for the purpose of
anonymization, 2021.

[3] R. T. Lindeman, L. C. L. Kats, E. Visser, Declaratively
defining domain-specific language debuggers, in:
E. Denney, U. P. Schultz (Eds.), Generative Program-
ming And Component Engineering, Proceedings of
the 10th International Conference on Generative
Programming and Component Engineering, GPCE
2011, Portland, Oregon, USA, October 22-24, 2011,
ACM, 2011, pp. 127–136.

[4] Eclipse Project, XText, 2022. URL: https://www.
eclipse.org/Xtext/.

[5] GEMOC, 2022. URL: https://gemoc.org.
[6] MPS: Meta Programming System, 2022. URL: https:

//www.jetbrains.com/mps/.
[7] M. Kartashov, Two-level debugging, System Pro-

gramming 1 (2005) 348–365(In Russian).
[8] A. Chis, M. Denker, T. Gîrba, O. Nierstrasz, Practi-

cal domain-specific debuggers using the moldable
debugger framework, Comput. Lang. Syst. Struct.
44 (2015) 89–113.

[9] Itemis AG, YAKINDU, 2022. URL: https://github.
com/Yakindu.

[10] IBM, Rhapsody, 2022. URL: https://www.ibm.com/
docs/en/rhapsody.

https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/
https://gemoc.org
https://www.jetbrains.com/mps/
https://www.jetbrains.com/mps/
https://github.com/Yakindu
https://github.com/Yakindu
https://www.ibm.com/docs/en/rhapsody
https://www.ibm.com/docs/en/rhapsody

	1 Introduction
	2 Background
	3 Debug Concept and Debbuger Use Cases
	4 Debug Model
	5 Visualization debug results
	6 Debugger Implementation
	7 Related work
	8 Conclusions

