

Application of design patterns in the development of
the architecture of monitoring systems

Aleksandra Pasynkova
Faculty of Computer Science, Economics, and Social Sciences

HSE University
38 Studencheskaya str., Perm, 614070 Russian Federation

aapasynkova1@yandex.ru

Olga Vikentyeva
Faculty of Computer Science, Economics, and Social Sciences

HSE University
38 Studencheskaya str., Perm, 614070 Russian Federation

ovikenteva@hse.ru

Abstract—This article explores the relevance of using design
patterns in the development of the architecture of monitoring
systems. The increasing complexity of modern monitoring
systems has made it challenging to maintain and evolve them.
The use of design patterns can address these challenges by
providing reusable solutions to common problems in monitoring
system architecture. This article reviews the literature on
monitoring systems and design patterns and identifies
appropriate design patterns for monitoring system architecture.
The article also analysis the requirements for monitoring
systems and demonstrates how design patterns can be used to
meet these requirements. The results show that the use of design
patterns can improve the maintainability, flexibility, reliability,
compatibility and scalability of monitoring systems. This article
is relevant to software architects, developers, and system
administrators who are involved in the development and
maintenance of monitoring systems.

Keywords—design patterns, monitoring systems,
architecture, monitoring system requirements.

I. INTRODUCTION

Monitoring systems have become an essential part of
various industries, providing real-time information about the
health and performance of critical systems. These systems are
complex and require sophisticated architectures to handle the
data flow, processing, and storage [1]. However, as the
systems grow and evolve, they become increasingly
challenging to maintain, and changes can have unforeseen
consequences [2]. This is where the use of design patterns can
be invaluable.

Design patterns are reusable solutions to commonly
occurring problems in software design. By applying design
patterns, developers can address specific design issues and
improve the quality of the system [3-5]. Design patterns have
proven to be effective tools in software development,
providing solutions to common problems and ensuring that
software systems are scalable, maintainable, and flexible [6-
8].

The problem is that without using design patterns, the
maintenance of monitoring systems can be difficult, time-
consuming and prone to errors [9-11]. As the system grows,
the complexity increases, and it becomes harder to make
changes without causing unintended consequences.
Therefore, it is essential to assess the possibility of using
design patterns in the development of monitoring system
architecture.

 Also, the relevance of developing own architecture
independently, without using ready-made open-source
solutions is justified by the fact that some enterprises cannot
do this because of high secrecy and the need to ensure

security when working with a monitoring system. Therefore,
the use of foreign solutions cannot be chosen.

This article will analyse the possibility of using design
patterns to develop the architecture of monitoring systems
and provide examples of design patterns that are well-suited
to monitoring systems.

II. MOTIVATION

The motivation for exploring the topic of the use of design
patterns in the development of the architecture of monitoring
systems comes from the increasing demand for robust and
scalable monitoring systems in various industries such as
finance, healthcare, and telecommunications. The rapid
growth of technology has led to the development of more
complex and distributed systems, which require advanced
monitoring capabilities to ensure their proper functioning.

However, building a monitoring system that is both
scalable and maintainable can be a challenging task. It is
difficult to predict all possible scenarios and requirements
that the system may face in the future, making it hard to
maintain and update the system over time. This is where
design patterns come into play. By using proven design
patterns, developers can build monitoring systems that are
easier to maintain, more flexible, and more scalable [12].

The main goal of this article is to assess the possibility of
using design patterns in the development of the architecture
of monitoring systems, and to demonstrate their relevance
and effectiveness [13-15]. By exploring different design
patterns and their applications in monitoring systems, this
article aims to provide a comprehensive overview of the
benefits of using design patterns in monitoring systems
development [16].

This article will be valuable to developers and architects
who are involved in the development of monitoring systems,
as well as to anyone interested in learning about the benefits
of using design patterns in software development.

III. PROBLEM STATEMENT

Requirements analysis is an important part of the software
development process. It involves collecting and documenting
the needs and constraints of stakeholders to ensure that the
final product meets their expectations. At this stage, it is
necessary to analyse and document the requirements for the
monitoring system.

System requirements are the most detailed technical
requirements, and they describe how the system will be
designed and implemented. System requirements are often
expressed in the form of functional and non-functional
requirements, and they represent a plan that the development

team should follow. System requirements are usually
collected during design sessions, technical reviews, and other
development processes.

A. Functional requirements
Functional requirements describe what the system should

do and how it should behave. Examples of functional
requirements may include:

1) Data collection and storage: The system should be
able to collect data from various sources, such as sensors,
devices, and databases, and store them in a centralised
location.

2) Data analysis: The system should be able to analyse
the collected data and provide information about controlled
processes in real time. This can include data aggregation,
filtering, and visualisation.

3) Alerts and notifications: The system should be able
to notify the relevant stakeholders when certain conditions or
thresholds are met, for example, when an anomaly or process
inconsistency is detected.

4) Reporting and dashboards: The system should
provide customised reports and dashboards that allow users
to view key performance indicators (KPIs), track progress
towards achieving goals and identify areas for improvement.

B. Non-functional requirements
Non-functional requirements describe system qualities

such as performance, reliability, and security. Next, examples
of non-functional requirements will be analysed:

1) Scalability: The system should be able to handle a
large amount of data and users and be able to zoom in and out
as needed. Vertical scaling is characterised by an increase in
the bandwidth of an individual server or resource, for
example, by increasing computing power or memory, which
allows you to handle a large load. Horizontal scaling involves
adding more servers or resources to handle the increasing
load by distributing the workload across multiple machines.

2) Flexibility: The system should be designed in such
a way that it can easily adapt to changing requirements
without requiring significant changes in its underlying
architecture. In the context of monitoring systems, flexibility
is important because monitoring requirements can change
over time. For example, it may be necessary to add new
sensors or devices, as well as to reconfigure the system
considering changes in the controlled environment.
Flexibility allows for greater maintainability and
extensibility.

3) Reliability: The system should be able to work 24/7
without any downtime and provide accurate and reliable data.
In the context of monitoring systems, this is important, since
any failure can lead to large financial losses, downtime and
potentially dangerous situations. One of the ways to achieve
reliability is redundancy. Redundancy involves the
duplication of critical components or subsystems in the
system to ensure that if one component fails, another can take
its place. For example, backup power supplies, network
interfaces or data storage devices can be added to the
monitoring system to increase reliability. Another way to
achieve reliability is fault tolerance, which involves
designing the system in such a way that it continues to

function even when a component fails. Fault tolerance can be
achieved by adding mechanisms such as error detection and
correction or automatic failover. In general, reliability
engineering involves considering all potential points of
failure in the system and developing mechanisms to prevent
or mitigate the consequences of these failures.

4) Compatibility: The system must be able to interact
with other systems and devices using open standards and
protocols. In the context of monitoring systems, compatibility
can be used to achieve integration with other software
components, devices, or platforms to perform their functions
effectively. For example, a monitoring system in a
manufacturing facility may need integration with sensors,
programmable logic controllers (PLCs) and other industrial
automation systems to collect data and perform analysis. The
monitoring system must be designed in such a way as to be
compatible with these various systems. In addition, the use of
standard communication protocols, such as MQTT, REST,
can help to implement compatibility between different
systems.

5) Maintainability: Maintainability is the ability of a
system to remain in good condition over time, which covers
all actions related to maintaining and improving the quality
of the system, including bug fixes, code refactoring and
system updates. The serviced system is easy to understand,
modify and expand, and it is less prone to errors and defects.

IV. IMPLEMENTATION

The architecture of the platform for intelligent
environmental monitoring “Digital Ecomonitoring” is
presented using a component diagram (Fig. 1).

Fig. 1. Component diagram for the platform for intelligent environmental

monitoring “Digital Ecomonitoring”

The “Digital Ecomonitoring” platform is designed to
provide monitoring and analysis of environmental data in real
time, as well as the implementation of emission forecasting.
Users also have the ability to configure alerts based on
predefined thresholds, which allows them to take proactive
measures in response to environmental changes.

The platform has a multi-level architecture with several
components working together. The InfluxDB time series
database is used to store measurements read from controllers
or uploaded by the user to the platform [insert link]. The
PostgreSQL relational database management system is used
to store dashboard and widget settings, accounts and roles, as
well as the assignment of access rights [link]. ReactJS is used

to create user interfaces in the digital platform [place link].
Python is used as an analytical tool for processing data
collected by the monitoring system, as well as for predicting
values for emissions [link to source]. NGINX web server is
used to process incoming requests from clients and forward
them to the corresponding components of the digital
platform.

The process of data collection and storage in the Digital
Ecomonitoring platform is implemented using the Factory
pattern. The abstract Data Collector class is a base class that
allows you to create new classes responsible for new sensors
without diving into the specific details of their
implementation. Data Collector is part of Java Service. In the
same way, the abstract Data Storage class is able to create
new instances of data warehouses.

The process of data processing, analysis and visualization
in the platform is implemented using the Decorator pattern,
which allows you to add behavior to a single object without
affecting the behavior of other objects in the system. In this
case, all additional methods for analysis and forecasting are
located in the analytical component implemented by Python.

The visualization process in the platform is implemented
with an architecture similar to the MVC pattern. In this case,
Java Service is a controller that manages communication
between databases and ReactJS, which are a Model and a
View, respectively [19-20].

The notification process is not clearly expressed in this
architecture and is part of the Java Service, which does not
allow it to be attributed to any pattern.

For those who want to build monitoring system
architecture, there is such a solution as ThingsBoard.
ThingsBoard is an open-source solution for IoT platforms.
ThingsBoard is used to manage devices, data collection,
processing and visualization of collected information.
ThingsBoard allows to conveniently organize the process of
collecting data from various devices, use a large number of
widgets to build informative dashboards that can help with
managerial decision-making.

Component diagram for monolithic architecture of
ThingsBoard (Fig. 2).

Fig. 2. Component diagram for monolithic architecture of ThingsBoard

The monolithic architecture of ThingsBoard is very
popular as it makes it cheaper and faster to develop a
monitoring system, which can help to implement it faster.
With the help of various protocols, such as HTTP(S), MQTT,
CoAP, data enters systems from various devices. Each
transport protocol allows to send data to the Rule Engine,

which allows devices to change behavior according to the
information received, and through the ThingsBoard Core
service there is an opportunity to access databases to evaluate
the correctness of the information and make appropriate
changes. It is assumed that the data collection process is
implemented using the Decorator or Factory patterns.

Rule Engine is responsible for processing incoming
information according to user-defined logic. It is possible to
create a filter, configure alerts when threshold values are
reached. This component is responsible for notifying users,
which is implemented using the Observer pattern [17-18].

The ThingsBoard Core component is responsible for
calling the corresponding APIs, managing via WebSocket
and tracking the status of connecting devices to the developed
system. This component allows to implement devices, users,
management rules and connections in the system. It uses the
gRPC framework to interact with other components. Also,
interaction with databases for storing the received
information is implemented through this component, and
represents one of the following patterns by architecture:
Factory or Decorator.

The ThingsBoard Core component is responsible for
processing, analysis and forecasting, the implementation of
which also corresponds to the Decorator or Factory patterns.

External systems can receive information from the system
using the Rule Engine, which uses gRPC to transfer data to
external systems, process data and create processing reports
for visualization in ThingsBoard.

To organize visualization with the presented system, the
MVC pattern is used, which is represented by the following
components: Controller – ThingsBoard Core, View –
ThingsBoard Web UI, Model – Database.

Component diagram for microservices architecture of
ThingsBoard (Fig. 3).

Fig. 3. Component diagram for microservices architecture of ThingsBoard

The microservices architecture of ThingsBoard allows to
implement a monitoring system with greater flexibility and
maintainability. Data from devices is collected using
HTTP(S) and MQTT protocols through the corresponding
components that are part of Load Balancer. Then the data is
sent to the corresponding services, which transmit them
further to other services, process or visualize for users in the
system itself.

The applied patterns for the implementation of the
monitoring system necessary for the functioning remain the
same as for the monolithic architecture, but now there is a
separation between the components implementing them into

various services, which contributes to easy scalability and
increased maintainability [21-22].

After analysing component diagrams for various
monitoring systems, a universal component diagram for
monitoring systems was designed, which can help in
designing your own monitoring system architecture (Fig. 4).

Fig. 4. Component diagram of the monitoring system architecture

In the diagram presented, you can see that the system is
composed of microservices, which ensures stable operation,
maintainability and easy scalability of the monitoring system.
The user communicates with the system via a Web Server, so
that the Data Processor component knows exactly what the
user wants to do.

The list of Data Processor functions also includes
communications with Analytic Service, IoT Service, Data
Visualization, Data Storage and Notification Service.
Analytic Service organizes the analysis and forecasting of the
data available in the system. IoT Service communicates with
different IoT devices that the monitoring system is connected.
Data Visualization displays the data in user-friendly format.
Data Storage stores the data in the monitoring system.
Notification Service is responsible for informing users of the
exceedance of thresholds or for regularly communicating the
status of the monitoring system and related objects.

The process of data collection and storage for the
monitoring system, implemented using the Factory pattern, it
presented using the class diagram (Fig. 5).

Fig. 5. Class diagram of the process of data collection and storage for the

monitoring system

On the class diagram, there are several abstract classes
that allow to easily add new elements to the monitoring
system without making changes to its structure. So, Data
Collector defines the methods that will be used when
implementing specific Collector classes. And Data Storage

records what functional features databases connected to the
monitoring system, both relational and time series databases
should have.

Sequence diagram of the process of data collection and
storage for the monitoring systems (Fig. 6).

Fig. 6. Sequence diagram of the process of data collection and storage for

the monitoring system

In the sequence diagram shown above, there is not only
the process of data collection and storage, but also the
creation of instances from an abstract base class that
implement the appropriate collection method or database to
save the collected data.

The process of analyzing and predicting data in the
system can be implemented using the Decorator pattern that
will allow to add behavior to a separate object without
affecting the behavior of other objects in the system. Thus,
it’s possible to add new methods for data processing and
forecasting without the risk of disabling existing methods.

Class diagram of the process of analyzing and forecasting
data for the monitoring system (Fig. 7).

Fig. 7. Class diagram of the process of analyzing and forecasting data for

the monitoring system

Methods for data processing and forecasting are extended
using the Decorator pattern using the basic abstract class
Analytic Service. Similarly, the Time Series DB Storage
class is implemented, created according to the abstract Data
Storage class.

Sequence diagram of the process of analyzing and
forecasting for the monitoring system (Fig. 8).

Fig. 8. Sequence diagram of the process of analyzing and forecasting data

for the monitoring system

The diagram shows the process of data processing and
forecasting, the process of which begins with the creation of
a data warehouse according to the abstract base class Data
Storage for a time series database. If such a database exists,
the Data Processor immediately accesses the database and
extracts the necessary information. The received information
is sent to the Analytic Service, when it is processed and
forecasted using previously established methods in the same
way.

The visualization process can be performed using an
MVC pattern. This can help to simplify maintenance and
system updates. Using this pattern can help achieve
separation of the tasks.

Class diagram of the process of visualization data for the
monitoring system (Fig. 9).

Fig. 9. Class diagram of the process of visualization data for the monitoring

system

In this case, the Data Processor will be a Controller that
will interact between the Model and the View, which are
represented by Data Storage and Data Visualization,
respectively. The Model is a database repository that can
support both relational databases and time series databases,
the View is associated with the Dashboard class, which
implements widgets defined in the dashboard system.

Sequence diagram of the process of visualization data for
the monitoring system (Fig. 10).

Fig. 10. Sequence diagram of the process of visualization data for the

monitoring system

The diagram shows the interaction of the elements of the
system built according to the MVC pattern.

The process of notifying users in the monitoring system
can be implemented using the Observer pattern. This pattern
allows you to update the values of related objects when the
observed objects change.

Class diagram of the process of notification users for the
monitoring system (Fig. 11).

Fig. 11. Class diagram of the process of notification users for the monitoring

system

This diagram shows the process of notifying users by
applying the Observer pattern, which allows to support
instantons change in the state of an object with changes in the
observed objects.

Sequence diagram of the process of notification users for
the monitoring system (Fig. 12).

Fig. 12. Sequence diagram of the process of notification users for the

monitoring system

In this sequence diagram, the process of notifying users
of the monitoring system occurs when the values received
from IoT devices exceed the set range of acceptable values.
Data Processor, Data Storage and the databases themselves
change their state when updates are required from IoT

devices. Also, the Notification Service can change its state in
those situations when it is necessary to notify the system user
of the events that are taking place.

V. EVALUATION

The design of the monitoring system architecture depends
on the non-functional requirements that will need to be
implemented. The following is a list of patterns that can
implement the non-functional requirements listed above.

1) Observer pattern - to implement reliability and
maintainability by monitoring the state of the object and
notifying its dependent elements of any changes.

2) Decorator pattern: To implement vertical scaling,
flexibility and maintainability in order to dynamically add
functionality to an object without affecting the behaviour of
other objects.

3) Factory pattern: to implement vertical scaling,
flexibility and maintainability in order to create objects
without specifying the exact class of the object to be created

4) Microservices pattern: to implement horizontal
scaling.

5) Model-View-Control (MVC): to achieve
maintainability dividing into three main components: the
model, view and control.

VI. CONCLUSION

Monitoring systems can solve a wide range of tasks
depending on its purpose. Some of them are:

1) Data collection and storage: The monitoring system
should collect data from various sensors and devices, process
them and store them in a database for further analysis. The
Decorator or Factory patterns can be used to create objects
representing different types of data.

2) Data analysis and processing: Once the data is
collected, the monitoring system needs to analyse it to extract
meaningful information. The Decorator or Factory patterns
can be used to add new analysis capabilities to the system
without changing the existing structure.

3) Data visualisation: The monitoring system should
present the data in a clear and understandable form for the
user. The Model-View-Controller (MVC) pattern can be used
to separate data from the user interface, allowing developers
to create different representations of the same data without
affecting the underlying data model.

4) Notifying users about problems: The monitoring
system should notify users when certain conditions are met,
for example, when the sensor detects an abnormal value or
when the device goes offline. The Observer pattern can be
used to trigger alerts when certain events occur.

Conclusion: By considering and implementing best
practices and design patterns, it is possible to ensure that the
architecture of the monitoring system is scalable, flexible and
easy to maintain. This will allow the system to effectively
meet the needs of the organisation over time as monitoring
requirements change.

VII. REFERENCES
[1] D. Gurdur et al., ‘Knowledge Representation of Cyber-physical

Systems for Monitoring Purpose’, Procedia CIRP, 2018, vol. 72, pp.
468–473.

[2] P. I. Sosnin, Arhitekturnoe modelirovanie avtomatizirovannyh
sistem: uchebnik. Sankt-Peterburg : Lan', 2020 (in Russian).

[3] N. Nazar, A. Aleti, and Y. Zheng, ‘Feature-based software design
pattern detection’, Journal of Systems and Software, 2022, vol. 185,
pp. 1–12.

[4] D. Yu, P. Zhang, J. Yang, Z. Chen, C. Liu, and J. Chen, ‘Efficiently
detecting structural design pattern instances based on ordered
sequences’, Journal of Systems and Software, 2018, vol. 142, pp. 35–
56.

[5] S. K. Lo, Q. Lu, L. Zhu, H.-Y. Paik, X. Xu, and C. Wang,
‘Architectural patterns for the design of federated learning systems’,
Journal of Systems and Software, 2022, vol. 191, p. 111357.

[6] J. Arm, Z. Bradac, O. Bastan, J. Streit, and S. Misik, ‘Design pattern
for the runtime model-based checking of a real-time embedded
system’, IFAC-PapersOnLine, 2019, vol. 52, no. 27, pp. 127–132.

[7] Z. Moudam and N. Chenfour, ‘Design Pattern Support System: Help
Making Decision in the Choice of Appropriate Pattern’, Procedia
Technology, 2012, vol. 4, pp. 355–359.

[8] F. Pfister, V. Chapurlat, M. Huchard, and C. Nebut, ‘A Design
Pattern meta model for Systems Engineering’, IFAC Proceedings
Volumes, 2011, vol. 44, no. 1, pp. 11967–11972.

[9] A. Ampatzoglou, O. Michou, and I. Stamelos, ‘Building and mining
a repository of design pattern instances: Practical and research
benefits’, Entertainment Computing, 2013, vol. 4, no. 2, pp. 131–
142.

[10] J. Dong, D. S. Lad, and Y. Zhao, ‘DP-Miner: Design Pattern
Discovery Using Matrix’, in 14th Annual IEEE International
Conference and Workshops on the Engineering of Computer-Based
Systems (ECBS’07), Tucson, AZ, USA: IEEE, Mar. 2007, pp. 371–
380.

[11] A. Ampatzoglou, G. Frantzeskou, and I. Stamelos, ‘A methodology
to assess the impact of design patterns on software quality’,
Information and Software Technology, 2012, vol. 54, no. 4, pp. 331–
346.

[12] A. V. Kychkin, A. I. Derjabin, O. L. Vikent'eva, and L. V.
Shestakova, ‘Shablony proektirovanija programmnogo
obespechenija kiberfizicheskih sistem zdanij’, Prikladnaja
informatika, 2020, vol. 15, no. 86, pp. 48–62 (in Russian).

[13] C. Liu and P. Jiang, ‘A Cyber-physical System Architecture in Shop
Floor for Intelligent Manufacturing’, Procedia CIRP, 2016, vol. 56,
pp. 372–377.

[14] J. E. Correa, R. Toro, and P. M. Ferreira, ‘A new paradigm for
organizing networks of computer numerical control manufacturing
resources in cloud manufacturing’, Procedia Manufacturing, 2018,
vol. 26, pp. 1318–1329.

[15] S. J. Oks, M. Jalowski, A. Fritzsche, and K. M. Moslein, ‘Cyber-
physical modeling and simulation: A reference architecture for
designing demonstrators for industrial cyber-physical systems’,
Procedia CIRP, 2019, vol. 84, pp. 257–264.

[16] M. M. Hamdan, M. S. Mahmoud, and U. A. Baroudi, ‘Event-
triggering control scheme for discrete time Cyberphysical Systems
in the presence of simultaneous hybrid stochastic attacks’, ISA
Transactions, 2021, vol. 122, pp. 1–12.

[17] J. Hu, W. Wu, F. Zhang, T. Chen, and C. Wang, ‘Observer-based
dynamical pattern recognition via deterministic learning’, Neural
Networks, 2023, vol. 159, pp. 161–174.

[18] K. Aljasser, ‘Implementing design patterns as parametric aspects
using ParaAJ: The case of the singleton, observer, and decorator
design patterns’, Computer Languages, Systems & Structures, 2016,
vol. 45, pp. 1–15.

[19] B. V. Ivanovich, B. V. Vladimirovich, N. F. Victorovich, B. V.
Viktorovich, and A. L. Vitalievna, ‘Using MVC pattern in the
software development to simulate production of high cylindrical
steel ingots’, Journal of Crystal Growth, 2019, vol. 526, p. 125240.

[20] A. Sunardi and Suharjito, ‘MVC Architecture: A Comparative Study
Between Laravel Framework and Slim Framework in Freelancer
Project Monitoring System Web Based’, Procedia Computer
Science, 2019, vol. 157, pp. 134–141.

[21] N. I. Bazenkov et al, ‘An Office Building Power Consumption
Dataset for Energy Grid Analysis and Control Algorithms’, IFAC-
PapersOnLine, 2022, vol. 55, pp. 111–116.

[22] J. Trevathan and S, Schmidtke, ‘Open-source Internet of Things
remote aquiatic environmental sending’, HardwareX, 2022, vol. 12,
pp. 1-22.

