
“Symcrete” memory model with lazy initialization
and objects of symbolic sizes in KLEE

1st Sergey Morozov
HSE University

16 Soyuza Pechatnikov Street, Saint Petersburg, 190121,
Russian Federation

Email: morozov.serg901@gmail.com

2nd Aleksandr Misonizhnik
IT Solutions inc.

Saint Petersburg, Russian Federation
Email: misonijnik@gmail.com

3rd Dmitry Mordvinov
Saint Petersburg State University

7/9 Universitetskaya Emb., Saint Petersburg, 199034,
Russian Federation

Email: mordvinov.dmitry@gmail.com

4th Dmitry Koznov
Saint Petersburg State University

7/9 Universitetskaya Emb., Saint Petersburg, 199034,
Russian Federation

Email: d.koznov@spbu.ru

5th Dmitry Ivanov
Huawei Technologies Co., Ltd

Saint Petersburg, Russian Federation
Email: korifey@gmail.com

Abstract—Dynamic symbolic execution is a well-known tech-
nique for testing applications. It introduces symbolic variables
— values with no concrete value at the moment of instantiation
— and uses them to systematically explore the execution paths
in a program under analysis. However, not every value can be
easily modelled as symbolic: for instance, some values may take
values from restricted domains or have complex invariants, hard
enough to model using existing logic theories, despite it is not a
problem for concrete computations.

In this paper, we propose an implementation of infrastructure
for dealing with such “hard-to-be-modelled” values. We take
the approach known as symcrete execution and implement its
robust and scalable version in the well-known KLEE symbolic
execution engine. We use this infrastructure to support the
symbolic execution of LLVM programs with complex input data
structures and input buffers with indeterminate sizes.

I. INTRODUCTION

Dynamic symbolic execution is a software testing technique
that allows exploring execution paths in a program under
analysis, generates test coverage, and finding bugs in a given
source code (e.g. out of bound memory errors or signed
integer overflows) [1]. This is done by marking some program
variables as symbolics, in other words, variables with no
specific value. During analysis, a symbolic engine adds logical
constraints to them, which possibly restrict values in different
paths. To prove the satisfiability or unsatisfiability of a set
of constraints, symbolic engines widely use SMT-solvers [2],
such as Z3 [3], CVC5 [4], bitwuzla [5] and many others.

Encoding a set of values with logical constraints for each
symbolic variable is one of the crucial ideas in symbolic
execution. This approach enables keeping several program exe-
cutions as a single execution state at the current position in the

exploration path. All possible solutions for these constraints
then become the values of symbolic variables in corresponding
execution states. Since solving such formulas is an NP-hard
problem, the performance and completeness of the solution
heavily rely on the number and size of the logical formulas
passed to the SMT-solver.

However, some values in a program can be hard to model
by decidable logical constraints. The problem arises from the
fact that the values of a variable may belong to a restricted
domain. Such domains can have implicit and complex rules to
encode in a logical formula. Let us provide some examples in
which the described problem appears:

• Objects with symbolic sizes. Program under analysis may
dynamically allocate memory on the heap (e.g. with
malloc(n) in C language or operator new[n] in
C++). If we treat the argument passed to that function
as symbolic, we will allocate an object whose size may
have different values depending on the current execution
path (object with symbolic size). Consider an example
presented in Listing 1.

Listing 1. Dynamic allocation
i n t foo (i n t n) {

char * s = (char *) ma l lo c (n) ;
i f (n == 1) {

s [0] = 0 ;
} e l s e i f (n > 1) {

s [1] = 1 0 ;
}
re turn 1 ;

}

If we pass a symbolic argument to that function, we will
allocate an object with symbolic size at the first line.
Then the allocated object will have different sizes at the
distinct branches of if-statement. Modelling objects with
symbolic size might take many computational resources.
Each allocated memory object is represented as a separate
entity and cannot intersect with other objects. Naive
modelling of these restrictions may result in SMT solvers
needing to handle O(n2) constraints, where n is the num-
ber of memory objects. Such modelling can significantly
impact the performance of symbolic execution.

• External calls. During program exploration, the symbolic
execution engine may meet calls to undefined or external
functions, i.e. functions with no sources provided. As
the engine does not have any information about the
encountered function, it cannot properly model function
behaviour to continue accurate analysis: for instance, the
return value of this function may take a limited number
of values. Interpreting return value as a symbolic value
may be too excessive to model function behaviour, and
the symbolic engine is doomed to lose precision in this
case.

One possible behaviour is plain modelling of all such
behaviours described in the bullets above. In this case, the
engine over-approximates program behaviour, i.e. explores
more paths than there are. Therefore it degrades performance
and accuracy.

Another behaviour, taken, for instance, in KLEE symbolic
execution engine [1], is to fix one possible solution during
analysis. When the engine meets specific code constructions, it
picks up the solution for all symbolic variables involved in one.
Then it restricts taken variables with values from the received
concrete solution for the following exploration. For instance,
the constructs described above are modelled as follows:

• Objects with symbolic sizes. We might avoid performance
issues by choosing one exemplar of a symbolic size fitting
current constraints at the moment of the allocation. For
example, while executing the malloc(n) statement at
Listing 1, KLEE would choose some concrete value of
n fitting the current path constraints, say, n = 1. But
then, branchings on n would be evaluated only within
this concrete assignment, leading to missed branches.
In this case, KLEE misses covering the s[1] = 10;
statement.

• External calls. Calls to external or undefined functions
may be modelled as actual calls to these functions. As
such functions might take arguments, which were marked
as symbolic variables before, the symbolic execution en-
gine needs to find a solution for them to satisfy previously
added logical constraints. Return value then will be a
constant value and can not be treated as a symbolic value.

In these cases, the engine explores fewer paths than actually
exist. On the one hand, it leads to performance improvements,
as the engine analyses less number of possible program
behaviours. On the other hand, it impairs the engine’s ability

to find vulnerabilities in a program under analysis, leading
to a non-exhaustive search through the program inputs space.
In other words, this approach under-approximates program
behaviours.

The idea that can be applied to resolve problems discussed
above is to use a well-known approach of symcrete1 [6, 7]
execution. This feature allows a symbolic execution engine to
mark variables as symbolic, but additionally keep a concrete
value (concretization) for it satisfying some set of logical
constraints. This concretization might be given by an algorithm
different from the SMT-solver. Therefore, if such algorithms
maintain some invariants inside, then they will be automati-
cally satisfied for produced models.

The described idea gives several opportunities to the KLEE
execution engine, but one of the most interesting is the support
of objects with indeterminate sizes. It is achieved due to the
property of allocators to allocate non-intersecting objects and
the property of symcretes to keep concrete values fitting cur-
rent constraints. Hence, we can dynamically maintain memory
layout with no significant impact on performance. The feature
of objects with symbolic sizes would increase the engine’s
precision for detecting buffer overflows and other memory
issues in LLVM programs.

Symcretes should be fully compatible with the existing
features of the symbolic virtual machine, such as lazy ini-
tialization [8, 9]. This technique enables the exploration of
program behaviours with complex input data structures.

In summary, the main contributions of this paper are:
1) Implementation of the infrastructure of symcrete execu-

tion in KLEE.
2) Application of this infrastructure to model objects of

symbolic sizes.
3) Application of this infrastructure to improve the currently

existing mechanism of lazy initialization.

II. BACKGROUND

Before discussing the main ideas of this paper, let us intro-
duce the basic concepts of symbolic execution used throughout
this paper.

A. Execution and forking

Dynamic symbolic execution executes a program with sym-
bolic variables, i.e. values that represent all possible concrete
program inputs. During program exploration, the execution
engine operates with execution states, which can step over 1
instruction and fork. For these states, the symbolic execution
engine maintains the inner representation of programs memory
model. Also, every execution state maintains path constraints
(PC) — a set of logical formulas describing the explored
path. When the execution engine meets a conditional operator,
it queries the solver with constraint and its negation, and
forks state if solutions for both constraints exist. If only one
statement is true, it does not fork and simply proceeds the
execution of a reachable path.

1“Symcrete” = symbolic + concrete.

Take a look at the example in Listing 1: let n be a symbolic
parameter of the function. In the beginning, path constraints
are empty, and the inner memory representation contains only
one record: n ← λ. After execution state meets the line if
(n == 1) { ... }, it queries solver about the validity of
PC with λ = 1 and PC with ¬(λ = 1). As they are both
satisfiable, it splits the current execution state into 2 states
with the same objects in memory and path constraints PC ′ =
PC ∧ λ = 1, PC ′′ = PC ∧ ¬(λ = 1) correspondingly.

B. Memory model

Objects in memory have addresses, which represent their lo-
cation in the symbolic engine’s address space, sizes, represent-
ing the number of allocated bytes for their content in address
space, alignment, which makes restrictions on an address (for
instance in source code user can call posix_memalign and
memalign functions), and contents, an array of (potentially
symbolic) bytes. To handle all that information, symbolic
engines maintain memory model, which stores required infor-
mation about all currently existing objects: addresses, sizes,
contents, and so on.

C. Constraints Representation

Every constraint in KLEE is an expression. Expression
is a tree, each node of those is an operation, and children
are operands. Every leaf of these trees is either constant or
read from a symbolic array. A symbolic array is an array
from the SMT theory of arrays, i.e. unbounded storage of
symbolic integers, supporting both load and store operations.
Each store operation creates a new version of an array with
a value changed by a specified index, therefore arrays can be
considered immutable.

For brevity, we use the term “array” instead of “symbolic
array”.

D. Validity Cores

A set of constraints with a statement may be valid, that is,
no counterexample can be found for it, and invalid otherwise.
To check the validity of expressions, the engine queries
SMT-solver with a given set of assumptions and negation of
the provided statement. If SMT-solver gives a solution that
satisfies the received query, then a counterexample is found
and the initial statement in the assumption of constraints from
the set is invalid. Otherwise, it may return a validity core, a
subset of constraints “explaining“ the validity.

For instance, consider the set of assumptions {λ < 10, λ >
α} and a statement λ > 10. We would like to check the
validity of a statement within the assumptions, that is, the
validity of the formula

∀λ, α : λ < 10 ∧ λ > α =⇒ λ > 10.

To show it, we might prove that the negation is unsatisfiable,
i.e.

∃λ, α : λ < 10 ∧ λ > α ∧ ¬(λ > 10).

SMT-solver would find a satisfying assignment, for ex-
ample, {λ 7→ 1, α 7→ 0}. It means that we have found a
counterexample for the initial statement.

In contrast, if we check a statement λ < 11 with the
same assumptions, we would query the satisfiability of {λ <
10, λ > α,¬(λ < 11)} and receive from SMT solver
the “unsatisfiable” verdict. State-of-the-art SMT solvers can
compute unsatisfiable cores, a subset of conflicting statements.
In this case, one unsatisfiable core is {λ < 10,¬(λ < 11)}. It
can be converted to validity core: just take assumptions from
the unsatisfiable core as-is, and convert the negated statements
from the unsatisfiable core to the original ones. In our example,
the validity core includes the assumption λ < 10 and the
statement λ < 11.

E. Optimizing solvers

As mentioned above, solving logical formulas, which have
been constructed during program analysis, is the NP-hard
problem. Hence, the complexity of the formulas in the query
and the number of such queries becomes a bottleneck of sym-
bolic execution. To simplify the queries to the solver, execution
engines apply many optimizations for logical constraints. One
way to provide such optimizations is to use optimizing solvers
— solvers, that can modify, separate, construct additional
logical formulas, or even resolve received queries without
calling an expensive SMT-solver. Such solvers can form a
chain ending with the SMT-solver.

F. Pointer resolution

Many languages, like C or C++, allow storing addresses
directly into locations and dereference them. The resolution
of concrete pointers is trivial, but symbolic execution engines
might encounter programs with symbolic pointers. Consider
the example in Listing 2.

Listing 2. Pointer resolution
i n t x = 1 0 ;
i n t y = 2 0 ;

void b a r (i n t * s) {
* s = 0 ;

}

As we do not know, at which address pointer s should
be resolved, we must check every possible memory object,
including the pointer variable itself. To handle these cases,
the vanilla KLEE engine makes a pointer resolution operation:
it iterates over all existing memory objects in memory and
attempts to dereference given pointer into them: query the
solver if a formula ptr + idx > address ∩ ptr + idx +
type size < address + size, with the formulas from path
constraints, where ptr is a dereferencing pointer, idx is a
relative offset (e.g. if we access the array by some index,
ptr[10] in C or C++ languages), type size is the size of
the type we are trying access through, address is the address
of the memory object we are trying to access, size is the size
of that memory object. If the pointer can be dereferenced to

the chosen memory object, KLEE forks the current execution
state and modifies path constraints PC ′ of the received state
with the above constraint.

In the example in Listing 2, pointer s can be resolved to at
least 2 existing objects: x or y. After storing operation *s =
0; KLEE will maintain at least 2 execution states, in which
0 is written to x or y.

G. Lazy initialization

However, pointer resolution might not be enough to model
all possible execution paths in a program. Suppose, you need
to test a code for a linked list presented in Listing 3.

Listing 3. Linked list
t y p e d e f s t r u c t Node {

i n t x ;
Node * n e x t ;

} Node ;

i n t baz (Node l) {
l . nex t −>x = 1 ;
a s s e r t ((l . x + l . nex t −>x) % 2 == 0) ;

}

In this code snippet struct Node contains a pointer to
the next element in the linked list, which will be a symbolic
value if we pass a symbolic argument to function baz.
Consequently, pointer resolution at the line l.next->x =
1 will proceed for the symbolic pointer in the same manner
as described above. As we do not have any other objects of
type struct Node, this code example will only test circular
linked lists at most of length 1.

The problem here arises from the fact, that analysing pro-
gram does not contain explicitly initialized additional linked
list nodes. We will face a similar problem if we try to analyse
any recursive data structures, like Binary Search Trees, Linked
Lists, and so on.

To overcome described obstacle modern symbolic engines
apply a technique called lazy initialization. This method allows
initializing additional objects in memory, if so required, to
explore more program behaviours. Return to the example
at Listing 3: during pointer resolution the symbolic execu-
tion engine will allocate one more additional object of type
struct Node to model linked list with length at least 2
and fail the assertion assert((l.x + l.next->x) %
2 == 0); (as for circular linked list we summed two equal
numbers before).

III. DESIGN PRINCIPLES

During infrastructure design, we agreed on a set of princi-
ples to create a maintainable and easily extensible framework.
These principles are as follows: (a) clear separation of public
and private interfaces, (b) recompute only the demanded val-
ues, and (c) concretization should always exist. Let’s consider
them in more detail.

a) Clear separation of public and private interfaces:
One of the most important requirements for symcretes archi-
tecture was to keep the symcretes public interface as simple as
possible. Thus, to prevent the developers from implementing
complex logic in various spots of symbolic engine code,
the public interface of symcretes infrastructure should only
provide methods to add a symcrete value to the execution state
and to receive a current concretization for symcrete. All the
internal architecture of symcretes and any processing details
made by its infrastructure should not be accessible from the
symbolic engine code.

b) Recompute only demanded values: Since the symcrete
variable is the symbolic variable paired with the concrete
value fitting some constraint set, then this concrete value may
become obsolete with the addition of a new statement. As it
might be difficult to receive a new model for all symcrete
variables in such situations, we require recomputing concrete
values only for symcretes, which affects the validity of the
query.

c) Concretization should always exist: At every moment
we should be able to receive an actual model for the symcretes
used in the current constraint set. In other words, symcretes
architecture should be similar to the “Observer” pattern, where
the observable object is the solver and it should provide a
possibility to subscribe to the solver updates.

IV. IMPLEMENTATION

We have built our implementation on top of the KLEE of
version 2.3 [10].

Followed by the principles described above we have sep-
arated symcretes and internal mechanisms to handle them,
which we called concretizing solver. In our implementation
symcrete is a pair of an array and a concrete value. To make
a symcrete expressions we assign a read from created array
to that expression. Concretization of symcretes represented by
the map from such arrays to bits storages.

To distinguish different symcretes we equipped all arrays
with a new characteristic — arrays sources. These sources
should reflect how the current array has been received. For
instance, an array that has been made to handle the addresses
of memory objects should differ from arrays, that are used
to handle the content of memory objects. Also, these sources
can carry useful properties for algorithms, which are used to
generate values for them. We will show the application of
these properties below.

The main logic for symcretes located in concretizing solver.
It is one of the optimizing solvers, that can modify and
handle received queries properly. In particular, concretiz-
ing solver modifies each query with constraints over sym-
cretes: it adds equalities in form of (Eq (Read width 0
symcrete_array), Constant), where Read width
offset source is the read expression of width width at
offset offset and array source — and passes them to the
underlying solver. However, such modifications are not enough
to handle symcretes.

Let us consider the following example. Suppose, we have a
symcretes values x and y with concretization x = 5, y = 10,
query with the set of assumptions [x ≤ 10, y ≤ 20] and the
statement x ≤ y. Concretizing solver at the preprocessing
stage will make additional constraints x = 5, y = 10, and
consequently, the query will transform into a new query with
the set of assumptions [x ≤ 10, y ≤ 20, x = 5, y = 10]
and statement x ≤ y. Note, that this query is valid according
to “validity logic”, as to compute validity we negate the
statement, which results in x > y. Existing concretization can
not satisfy all assumptions with negated statement.

Therefore, existing concretization might add constraints,
which force a given theorem to become valid, despite the
original query being invalid. To solve a such problem we
process a symcretes relaxation after receiving a valid response
from the solver. Symcretes relaxation is the algorithm, that
aims to recompute values for symcretes to receive an invalid
response if so exists.

To implement it according to our principles, we need
to find all symcretes, that have inappropriate values (See
principle “Recompute only required values”). Such values can
be found in the validity core, which might be received from
the solver. For that purpose, we extended the interface of
KLEE’s solver with functions, that may return validity cores
on valid responses. Since then, we can process a relaxation
after receiving a valid response with current concretization.

The relaxation algorithm is provided in Algorithm 1. More
detailed, the core part of the algorithm is located in the
do { ... } while(...); loop. It firstly constructs a
concretized query by adding equality constraints on symcretes
(line 5) and queries the solver with this query (line 6). If
the response is already invalid, the loop can be completed
(lines 7-9), and all we need is to assign appropriate values
to symcretes, which have lost concretizations (lines 24-30).
Otherwise, we will look at the validity core from the valid
response and collect all symcrete arrays, those concretizations
affected validity (this is done by collecting all arrays and
filtering them by predicate isSymcrete at line 11). After
that, we check if we removed concretization, which was not
removed before (lines 15-17). If so, we continue the process.
Otherwise, the current validity core proves, that the initial
query is valid.

In the general case, the presented process can take more
than 1 iteration. This might happen as SMT-solver does not
guarantee to return all unsatisfiable sets of formulas from
the given query: usually, they return any set of formulas that
cannot be satisfied.

Let’s see that in the example. For instance, we have sym-
cretes x and y with concretizations 0 and 1 correspondingly,
and statement [x < y]. The concretized query will have a form
of [x < y, x = 0, y = 1]. Then we will query the solver with
the statement x ≤ 0. According to “validity logic” query will
transform to a set of formulas [x < y, x = 0, y = 1, x > 0],
which can not be satisfied, and we can highlight at least 3
unsatisfiable subsets: [x = 0, x > 0], [x < y, x > 0, y = 1]
and [x < y, x = 0, y = 1, x > 0]. SMT-solver can return

Algorithm 1 Relaxation algorithm
1: function RELAX(query, symcretes)
2: relaxationProceeded← true;
3: removedSymcretes← [];
4: do
5: concretizedQuery ← query, symcretes;
6: resp← SOLVER.CHECK(concretizedQuery);
7: if RESP.ISINVALID() then
8: break;
9: end if

10: relaxationProceeded← false;
11: validSymcretes← RESP.VALIDITYCORE().

ALLARRAYS().
FILTER(isSymcrete);

12: if (validSymcretes\symcretes).ISEMPTY() then
13: break;
14: end if
15: relaxationProceeded← VALIDSYMCRETES.

INTERSECT(symcretes).
ISEMPTY();

16: removedSymcretes← REMOVEDSYMCRETES.
UNION(validSymcretes);

17: symcretes← symcretes \ validSymcretes;
18: while relaxationProceeded;
19:
20: if ¬relaxationProceeded then
21: return V alid
22: end if
23:
24: for sym ∈ removedSymcretes do
25: sym← GETVALUEBYSOURCE(sym.source);
26: end for
27:
28: concretizedQuery ← query, symcretes
29: resp← SOLVER.CHECK(concretizedQuery)
30: return RESP.VALIDITY()
31: end function

any of these. If it returns the first subset, the algorithm will
remove concretization only for x, but the query will remain
valid. Then on the second iteration, the SMT-solver return
the second subset of formulas from the presented subsets.
Consequently, the algorithm will remove concretization for y
and after that find a counterexample to the initial statement,
say, x = 1, y = 2.

After removing all outdated concretizations for symcretes
we need to assign new values to them. To do that we query
the registered algorithms (lines 24-26). After receiving new
concretizations we check if the solution for the entire query
invalidates the received statement in the assumption of the
given constraint set. If still not, we admit that the query is
valid (lines 28-30). This can happen when concrete values for
symcrete variables received from registered algorithms cannot

provide values invalidating the query.
If the statement in the assumption of a set of given con-

straints is provably invalid, i.e. has a counterexample, then
we store concretizations of symcretes involved in that query
in a concretization manager. The concretization manager is
the structure that stores concrete values for symcretes for
all encountered invalid queries. It may be accessed from the
symbolic execution engine to get the current concrete value
for symcrete.

If we want to add a constraint without an explicit call to
a solver, then we may lose the record to the concretization
manager. In this case, we need to update it manually from the
code location where the constraint is added.

Summing up all implementation details and principles, in
KLEE to mark a variable as symcrete we need to create a
new array. For that array, we need to specify its source. For
arrays with such a source, we need to provide an algorithm
which will be used to generate concrete values. To access the
concrete value of the symcrete variable we may query the
concretization manager with the constraint set and statement
we are interested in.

In the next sections, we will show how we can use symcretes
to support objects of symbolic sizes and improve the existing
mechanism of lazy initialization.

A. Properties of objects of symbolic size

Before discussing the implementation of objects with sym-
bolic sizes we need to discuss some of their properties. As
we said before, every object has 3 main parameters: address
from enclosing address space, size, and content. The content of
memory objects can be considered independently from address
and size, therefore we will not take it into account in the
reasoning below.

Firstly, we may suppose, that addresses of objects with
symbolic size may be considered as symbolic values. The idea
comes from the fact, that two allocations with different sizes
at the same location in source code will likely receive different
addresses.

Secondly, we may assume that the size and address of one
object are dependent values, i.e. changing of object’s size may
affect the address in the enclosing address space.

Also, we need present several requirements for our imple-
mentation:

1) it should allow to dynamically resize objects
2) if several states maintain the same objects with different

actual sizes, they must appear identically
3) it should consume as less memory, as possible

The logic behind the first requirement can be seen in the
example at Listing 4.

Listing 4. Reallocation
char * s = ma l l oc (n) ;
i f (n > 1) {

i f (n > 2) {
s [n − 1] = 2 ;

}

}

In the assumption of n to be a symbolic variable, at the
first line, we allocate an object with symbolic size. The most
inner if-statement must be reachable with the object of size
at least 3 addressable by pointer s.

The second requirement says, that states containing the same
object with different concretized sizes must keep its properties:
ID, alignment, allocation site, address and size expressions,
and so on. This requirement arises from the fact, that all
actions are done with the specified object, and its properties
can not be violated or become outdated. Hence, after state
forks, we must be able to use old constraints with new ones
to find a solution for addresses and sizes in different branches
of execution.

The last requirement states, that our implementation should
use as less memory as possible. More detailed, since SMT-
solvers work with variables as with numbers without any
additional information, they might give huge models for ob-
jects with symbolic size. That may cause performance issues.
Another problem is that the test case, that the symbolic engine
will generate to report a bug, also can be huge enough. Usually,
users want to receive the smallest test case to find the issue,
therefore we need to take care of that requirement.

B. Implementation of objects of symbolic size

As noted above, addresses of objects with symbolic sizes
may be considered symbolic. Also, in the Section I, we have
already noticed, that we can use symcrete variables in this
case.

To use them we added a new array source, which we
called AddressSource and an algorithm, that will be
able to generate solutions for such arrays. We introduced an
AddressGenerator interface for that purpose. It has only
one method allocate(addressArray, size). All the
classes implementing AddressGenerator should provide
appropriate (e.g. non-overlapping) addresses for specified ad-
dress array addressArray from the arguments list each
time the allocate(addressArray, size) method is
called.

We implement this interface in AddressManager
class, which provides an additional method
allocateMemoryObject(addressArray, size).
This class is used in both concretizing solver and the
execution engine. On call to allocate it allocates the
memory, and ceiling size to the nearest power of 2. Then it
creates a new memory object, that should copy all properties
of the already existing memory object, that utilizes the same
array as the address array and caches created object. It is
also optimized for multiple allocations. Therefore, if the
solver requests a size less than at least one of the cached
memory objects, then it will return it (that optimizes memory
consumption). Note, that in the worst case, this manager will
use 2M bytes of memory, there M = 2⌈log2 S⌉ and S is the
size of the biggest memory object. An approach with the
powers of 2 for allocated sizes has been chosen not to change

concretizations of addresses for all other states, that use the
same memory object. This is because certain states may force
expressions to take concrete values (for instance, during the
execution of an external call), and changing of address value
for a group of states will invalidate such states.
allocateMemoryObject(addressArray, size)

method is used to receive a memory objects created at
allocate method. These memory objects are required to
update an address space of execution state after recomputation
of concretization for symcretes in its path constraints.

Since now, as we can maintain objects with symbolic
addresses, we may apply symcretes to handle the model for
objects with symbolic size. For that, we introduce symcretes
with array source SizeSource. Symcretes with such source
will contain values, corresponding to the size of memory
objects, and therefore, their sum should be minimized (as
we said in the requirements above). We extended KLEE’s
solver interface with a minimization algorithm, that solves an
optimization problem and computes minimal possible values
for a expression. This is done by the binary search on the
answer for a given expression with a set of given assumptions.

One more important thing about this implementation is that
address symcrete can not become the reason for symcretes
recomputation. It means, that if in the algorithm at the
Listing 5 we received an address symcrete as a symcrete
with a non-appropriate value and did not receive the size
symcrete for the same object, we will not recompute the
address and size. This is done for reasons that as we are using
the system’s allocator, we are not able to choose the values
for addresses and ourselves. Hence, if some concretization for
some addresses violates constraints, then it is likely constraints
on addresses were added and we can not continue analysis for
that execution path (except null check, in our implementation
it is checked separately). For now, we cannot handle such
situations properly, but for real-world problems, it covers most
of the use cases.

Listing 5. Symbolic size allocation
unsigned n <− sy m b o l i c ;
char * s = (char *) ma l l oc (n) ;
i f (s < 10) {

e x i t (1) ;
}
i f (n > 100000) {

p r i n t f (”Huge ! ”) ;
} e l s e {

p r i n t f (” Smal l ! ”) ;
}

Let’s see an example presented in Listing 5. In this example,
we dynamically allocate memory objects of size n. At the
moment of allocation n might take any possible value of type
unsigned, and we do not know the exact size of allocated
objects. As we are applying a minimization strategy for objects
of symbolic sizes, the minimal possible value for the size of
allocated objects is 0. Hence, before first if-statement exact
size of allocated memory object in address space of enclosing

execution state will be 0, and we will have 2 known symcretes:
size and address with concretizations 0 and $(malloc(0))
(return value of call to malloc function), correspondingly,
and PC = [n = ssize]. Condition in the first if-statement
adds constraint on the symcrete address of allocated memory
object. Since then, in the unsatisfiable core we will have 2
constraints: [saddress = $(malloc(0)), saddress < 10]. As
it contains only symcrete for address, we say that we are not
able to do anything if the current model is inappropriate. To
execute the next if-statement we need to discuss one more
optimization.

It may turn out, that from the given constraints we can
deduce, that the size of the objects is a huge enough number.
At Listing 5 size of the allocated object in the then branch of
second if-statement might take values not less than 100001.
If we try to get a model for such arrays in the execution engine,
we will receive problems with performance and memory
consumption. To solve such problems, we extended KLEE
with structure SparseStorage — it is a byte buffer with the
specified default value. To fill it we query the solver only
about bytes in the array, that were used for reads that were
applied to receive a model within this query. Is allowed to
greatly reduce memory usage and increase performance.

Returning to the example, both branches of second if-
statement are reachable with our execution state. In the then
branch we will have an object of size 100001, and in the else
branch — an object of size 0.

The last implementation detail is related to default values of
uninitialized memory objects not marked as symbolic. In the
real world almost always content of memory allocation con-
sists of undefined bytes. In the initial KLEE implementation,
this problem did not receive attention and all allocations were
filled with 0 by default for objects with constant content. To
save that semantics, we engaged Z3-functionality of constant
arrays, i.e. arrays with a default value. Therefore, we intro-
duced an additional array source ConstantWithSymbolicSize.
This source indicates, that the underlying objects are a constant
array (not symbolic), but have symbolic size. Therefore, in
translation to the solver, it should receive a Z3’s constant array
with a default value specified in that source.

C. Improved lazy initialization

In Section II we described previously existing implemen-
tation of the lazy initialization mechanism within our fork
of KLEE. In that implementation, we were forced to add
additional constraints to restrict overlappings of lazily initial-
ized memory object with any other objects. Once we added
symcretes functionality, we may apply that technique to lazy
initialization. The usage scheme is quite similar to the objects
of symbolic size, but for now, we have explicitly defined
symbolic address. Moreover, we can also use extensions with
objects of symbolic size to lazily initialize memory objects
as we do not know the exact size of the object, which we
are dereferencing at the moment of lazy initialization. Thus,
it turns out, that to lazily initialize a memory object all we
need is to create a new object with symbolic size and add an

equality constraint between the symcrete address and address,
which have been used for dereferencing.

V. EVALUATION

A. Experiment

For evaluation of the described features we have used the
test sets from TestComp-2022 competition [11]. Our main goal
was to test the proposed approach implemented on top of the
KLEE (KLEE-SYM) and make a comparison with the version
of KLEE extended with lazy initialization (KLEE-LI).

We have used KLEE-LI based on the KLEE of version 2.3
with Z3 of version 4.12.1 as SMT-solver [12].

We have selected 5 different test sets with over 2000 tests
per each — MemSafety-Arrays (MS-A), MemSafety-Heap
(MS-H), MemSafety-LinkedLists (MS-LL), ReachSafety-
Arrays (RS-A) and Termination-MainHeap (T-MH). Compar-
ison has been made by the following metrics: instruction cov-
erage (icov), branch coverage percentage (bcov), and numbers
of found vulnerabilities (errs). Coverage has been measured
with gcov [13] util.

Experiments were conducted on a workstation with CPU
AMD Ryzen 7 3800X 8-Core with 16 gigabytes of RAM under
the control of Linux. Execution of each test was bounded with
30 seconds timeout. As Z3 may receive complex queries, its
execution time also has been bounded with 5 seconds timeout
to prevent memory and time issues.

B. Results

Average results for tests in each source set are presented in
Table I.

TABLE I
TESTCOMP BENCHMARKS AVERAGE RESULTS

TestSet KLEE-LI KLEE-SYM
icov bcov errs icov bcov errs

MS-A 71.8% 57.2% 346 79.5% 67.5% 680
RS-A 57.4% 45.0% 393 69.3% 61.5% 532
T-MH 91.2% 78.8% 317 90.1% 80.9% 215
MS-H 45.2% 46.2% 51 45.2% 45.7% 52
MS-LL 33.0% 30.2% 55 33.0% 30.2% 55

We can notice significant improvements at ReachSafety-
Arrays and MemSafety-Arrays for all parameters. These test
cases used dynamic allocations of blocks with indeterminate
sizes and therefore received much better results in contrast
with KLEE-LI. In addition, the amount of found vulnerabilities
also increased since it became possible to explore more paths,
that had been beyond the abilities of the engine before.

Nonetheless, we did not receive full coverage of these two
test sets. One of the reasons that symbolic execution is sensible
to strategies of path selection: these strategies navigate the
engine through the exponential branching space. For presented
test sets, the problems may come from constructions of a form
presented in Listing 6.

Listing 6. Allocation and cycle
unsigned n <− sy m b o l i c ;
char * s = (char *) ma l l oc (n) ;
f o r (i n t i = 0 ; i < n ; i ++) {

s [i] = i % 256 ;
}
i f (s [n − 1] == 2 5 5]) {

re turn 0 ;
}
re turn 1 ;

Our goal is to cover the return 0 statement. But to
do that KLEE-LI should get information, that this line is
reachable only if 256 is a factor of n. As it cannot infer such
information, it will brute force all possible variants on n until
it will be able to reach the selected line of code. For larger
programs, it may take a while to reach such statements.

On the other hand, we might see a slight deterioration in
the instruction coverage and the number of errors detected on
the Termination-MainHeap test set. This issue is connected to
the imprecision of modelling the allocated buffer’s contents:
while in reality the memory of allocated buffers is guaranteed
to be initialized, KLEE models the newly allocated buffers as
filled with some fixed concrete value.

Also, we’ve collected additional statistics about verdicts for
the generated tests (see Table II). We’ve calculated the amount
of generated tests for each source set (column overall), the
number of execution paths that have been halted because of the
inability of the old version to maintain objects of symbolic size
correctly (halted), and the number of solver errors happened
during program exploration, e.g. timeouts, internal errors, etc.
(serrs).

TABLE II
TESTS GENERATED FOR TESTCOMP BENCHMARKS

TestSet KLEE-LI KLEE-SYM
overall halted serrs overall halted serrs

MS-A 801 455 0 681 0 1
RS-A 649 238 18 539 0 7
T-MH 539 222 0 216 0 1
MS-H 58 7 0 52 0 0

MS-LL 55 0 0 55 0 0

This table demonstrates that our approach has reduced the
number of internal errors in KLEE and increased the amount
of non-halted branches. For the last two test sets, we did not
receive any improvements in instruction and branch coverage
(Table I). However, for the test set MemSafety-Heap number
of errors, that we classified as halted, decreased to 0. For
the test set MemSafety-LinkedList, we’ve received identical
results. The low percentage of coverage for these test sets is
explained by a significant number of syntactically unreachable
code in tested programs.

VI. RELATED WORKS

Symbolic execution with symcrete variables is an already
known approach. For instance, the authors of “Deferred Con-

cretization in Symbolic Execution via Fuzzing” [7] describe
a similar approach, using symcretes to better approximate ex-
ternal calls with fuzzer (yet another application of symcretes).

Similar to symcrete variables ideas are also used in well-
known techniques of symcretic [14] and concolic [15] ex-
ecution. The idea behind these methods is to combine a
symbolic and concrete execution to improve performance and
increase code coverage in comparison with plain symbolic
execution. Unlike execution with symcrete variables, these
approaches use concrete values to guide an execution, while
we use symcrete variables to increase the accuracy of symbolic
execution analysis.

However, the memory model can be improved without
a symcrete variables approach. For instance, authors of “A
bounded symbolic-size model for symbolic execution” [16]
propose an approach for memory modelling, where all con-
straints restricting memory objects overlapping are added
explicitly. To solve a problem with excessive memory con-
sumption the authors specify a bound on size for objects with
symbolic sizes. On the one hand, such a way of modelling
objects with symbolic size does not require additional queries
to the solver to minimize object sizes, as memory consumption
becomes the responsibility of the users. On the other hand, that
bound may affect the completeness of a symbolic execution
engine, i.e. restrict an engine from exploring possibly reach-
able paths, as in some cases user will have to guess the bound
to achieve higher coverage. Therefore, memory consumption
will increase and performance degrade.

Another possible implementation of objects with the sym-
bolic size is presented in the work “Symbolic-size memory
allocation support for Klee” [17]. It introduces a segmented
memory layout approach for KLEE symbolic execution en-
gine. The core difference is that this work proposes a memory
model, where each memory allocation lies in its memory
segment. In contrast, our implementation of objects with sym-
bolic sizes does not significantly change the memory model of
vanilla KLEE, and therefore still can be considered flattened.
To resolve a problem with excessive memory consumption,
the authors use the same methods as described in this article:
size minimization to reduce overall memory consumption and
sparse structures to keep only useful data for symbolic arrays.

VII. CONCLUSIONS

Accurate modelling of specific code constructions with log-
ical constraints might be too complicated (recall the problem
with external calls). We can make under or overapproximations
to at least continue analysis, but with a significant loss of pre-
cision. To get things slightly better we apply the technique of
symcrete variables — symbolic variables paired with concrete
values for it, fitting the current constraint set.

We have proposed our implementation of dynamically
recomputed symcrete values in KLEE for LLVM-programs
analysis. For that, we have also enhanced the execution engine
with the validity cores. Then we have shown how to engage
this feature to model objects with symbolic size. To optimize
the memory consumption problem, we have implemented a

size minimization algorithm for objects with symbolic size
and sparse storage to store only the affected solution bytes.
Also, we have improved the existing mechanism of lazy
initialization by address symcretization and interpretation of
initialized object size as symbolic. We’ve also presented an
implementation of this approach on top of KLEE and showed
its effectiveness on several tests of Test-Comp competition.

Symcretes infrastructure is a powerful foundation for other
improvements. For instance, we may use a similar approach
to approximate the behaviour of external or undefined func-
tions with fuzzers, as described in “Deferred Concretization
in Symbolic Execution via Fuzzing” [7]. The return value
and function arguments, in this case, should be marked as
symcretes, and calls to that function generate concrete values
for symcretes.

Another interesting idea is to use a symcrete infrastructure
with a type system. This might be useful if we want to test
a program, which operates with polymorphic objects. Types
of such objects may be considered symbolic, and therefore
we have uncertainty in calls to virtual functions and sizes
of underlying objects. This uncertainty can be resolved with
symcretes, as it seems that we can model such behaviours with
objects with symbolic sizes and calls to undefined functions.

VIII. ACKNOWLEDGMENTS

The work is supported by the grant of RNF № 22-21-00697.

REFERENCES

[1] Cristian Cadar and Koushik Sen. “Symbolic execution
for software testing: three decades later”. In: Commu-
nications of the ACM 56.2 (2013), pp. 82–90.

[2] Clark Barrett and Cesare Tinelli. “Satisfiability modulo
theories”. In: Handbook of model checking. Springer,
2018, pp. 305–343.

[3] Leonardo de Moura and Nikolaj Bjørner. “Z3: An
efficient SMT solver”. In: International conference on
Tools and Algorithms for the Construction and Analysis
of Systems. Springer. 2008, pp. 337–340.

[4] Haniel Barbosa et al. “cvc5: A versatile and industrial-
strength SMT solver”. In: Tools and Algorithms for the
Construction and Analysis of Systems: 28th Interna-
tional Conference, TACAS 2022, Held as Part of the
European Joint Conferences on Theory and Practice of
Software, ETAPS 2022, Munich, Germany, April 2–7,
2022, Proceedings, Part I. Springer. 2022, pp. 415–442.

[5] Aina Niemetz and Mathias Preiner. “Bitwuzla
at the SMT-COMP 2020”. In: arXiv preprint
arXiv:2006.01621 (2020).

[6] Corina S Păsăreanu, Neha Rungta, and Willem Visser.
“Symbolic execution with mixed concrete-symbolic
solving”. In: Proceedings of the 2011 International
Symposium on Software Testing and Analysis. 2011,
pp. 34–44.

[7] Awanish Pandey, Phani Raj Goutham Kotcharlakota,
and Subhajit Roy. “Deferred concretization in symbolic
execution via fuzzing”. In: Proceedings of the 28th
ACM SIGSOFT International Symposium on Software
Testing and Analysis. 2019, pp. 228–238.

[8] Misonijnik A. et al. “Automated testing of LLVM
programs with complex input data structures”. In: Pro-
ceedings of ISP RAS 34.4 (2022), pp. 49–62.

[9] Sarfraz Khurshid, Corina S Păsăreanu, and Willem
Visser. “Generalized symbolic execution for model
checking and testing”. In: International Conference on
Tools and Algorithms for the Construction and Analysis
of Systems. Springer. 2003, pp. 553–568.

[10] Cristian Cadar and Daniel Dunbar. KLEE. Version 2.3.
2022. URL: https://github.com/klee/klee/tree/v2.3.

[11] Dirk Beyer. “Advances in Automatic Software Testing:
Test-Comp 2022.” In: FASE. 2022, pp. 321–335.

[12] Leonardo de Moura and Nikolaj Bjørner. Z3 4.12.1. Ver-
sion 4.12.1. 2023. URL: https://github.com/Z3Prover/
z3/releases/tag/z3-4.12.1.

[13] Brian Gough and Richard M Stallman. “An Introduction
to GCC for the GNU Compilers gcc and g++”. In:
Network Theory Ltd 258 (2004).

[14] Peter Dinges and Gul Agha. “Targeted test input gen-
eration using symbolic-concrete backward execution”.
In: Proceedings of the 29th ACM/IEEE international
conference on Automated software engineering. 2014,
pp. 31–36.

[15] Koushik Sen, Darko Marinov, and Gul Agha. “CUTE: A
concolic unit testing engine for C”. In: ACM SIGSOFT
Software Engineering Notes 30.5 (2005), pp. 263–272.

[16] David Trabish, Shachar Itzhaky, and Noam Rinetzky.
“A bounded symbolic-size model for symbolic execu-
tion”. In: Proceedings of the 29th ACM Joint Meeting on
European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineering.
2021, pp. 1190–1201.

[17] Michael Šimáček. “Symbolic-size memory allocation
support for Klee”. PhD thesis. Masarykova univerzita,
Fakulta informatiky, 2018.

