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Abstract—The Regular Expression Denial of Service (REDoS)
problem refers to a time explosion caused by the high computa-
tional complexity of matching a string against a regex pattern.
This issue is prevalent in popular regex engines, such as PYTHON,
JAVASCRIPT, and C++. In this paper, we examine several existing
open-source tools for detecting REDoS and identify a class
of regexes that can create REDoS situations in popular regex
engines but are not detected by these tools.

To address this gap, we propose a new approach based
on ambiguity analysis, which combines a strong star-normal
form test with an analysis of the transformation monoids of
Glushkov automata orbits. Our experiments demonstrate that
our implementation outperforms the existing tools on regexes
with polynomial matching complexity and complex subexpression
overlap structures.

Index Terms—regular expressions, ambiguity, REDoS,
Glushkov automaton, transformation monoid, strong star-
normal form

I. INTRODUCTION

Popular regular expression (regex) engines typically use
non-deterministic finite automata (NFA) as their internal repre-
sentation for regexes. This choice is motivated by the flexibil-
ity of the NFA concept, which can be extended to support
a wider range of regex operations with little effort. For
instance, back-references and lookaheads can be easily added
to the NFA model. Although, in theory, every string can be
matched against a regex in linear time using deterministic
finite automata (DFA) conversion, popular regex engines may
admit exponential matching time due to a phenomenon called
“catastrophic backtracking”.

This phenomenon occurs only for a specific class of regular
expressions. For example, consider the regex pa | bq�a, which
is non-deterministic due to the unavoidable non-determinism
in the transition to the last occurrence of the letter a. However,
every string has a unique parsing tree with respect to this
regex. In contrast, the regex pa�b�q� has an infinite number
of accepting parsing trees for any given string, as inner Kleene
stars can degenerate to the empty word, causing a combinato-
rial explosion of parse paths. Intuitively, the latter regex can
be considered “bad”, while the former is considered “good”.

Matching against “bad” regexes can yield a situation called
a Regular Expression Denial of Service (REDoS), when
the matching time grows super-linearly and can cause per-
formance issues in, for instance, a web service that uses such
a regex to parse user input. To avoid these situations, it is
essential to detect unsafe regexes and replace them with safe
equivalents.

The number of research papers mentioning the REDoS
problem has increased rapidly in the last decade [1]–[7]. Sev-
eral tools have been developed to detect REDoS, using both
static analysis and random search. Some of these tools aim to
detect the entire class of extended regexes, while others focus
on academic ones. However, for a class of simple regexes,
which are not safe in theory, the tools considered either
take too long time to process, or give an incorrect answer,
falsely witnessing their safety. These regexes usually have
overlapping, but not completely coinciding, structure of the ex-
pressions under the Kleene stars (being a simple analogue of
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Fig. 1: Thompson automaton for pa | bq�a

dominoes in the Post Correspondence Problem). An example
of such a regex is pbaa | abq�pb | 𝜀qpapba | aqba�bq�paabq�:
the ambiguity occurs both in prefixes pbaaq𝑛 and pabq𝑛, which
can be constructed in several ways from primitive “dominoes”.

Thus, the two natural research questions arise:
 do the “domino” regexes really contain REDoS situations

w.r.t. the modern regex engines?
 if the answer is yes, what methods can deal with such

regexes in order to analyse them without blow-up of the
analysis time because of the overlaps?

The main contributions of the paper are:
 a method for REDoS situations detection, utilizing prop-

erties of non-deterministic finite automata and their tran-
sition monoids. This approach is novel, since previous
static-analysis-based methods use NFA intersection. For
“domino” regexes our method is shown to perform better
than the open-source analogues REGEX STATIC ANA-
LYZER [3], RESCUE [5], and REVEALER [2].

 experimental testing of the relevance of the NFA model
used and the vulnerabilities found, by investigating real
regex engines behaviour on the attack strings.

The method is implemented only for the academic regexes
for now. Surprisingly, for this case, the tested open-source
tools perform significantly worse on domino tests, especially
for polynomial REDoS situations.

The paper is organized as follows. Section II contains
preliminaries on finite automata, and theoretical concepts that
are used further. The proposed REDoS detection method
is given in Section III, preceded by lemmas used for its
optimisation. Section IV discusses relevance of the chosen
model with respect to the real regex matching engines, and
provides a result of comparative testing of our method and
three other open-source REDoS detection tools. We discuss
the results of the experiments and the related works in more
detail in Section V. Section VI concludes the paper.

II. PRELIMINARIES

We denote automata with calligraphic A ; states are denoted
with the letters 𝑞 and 𝑄, or with the set of these letters (if
an automaton is a result of a closure operation). The empty
word is denoted by 𝜀; concrete elements from the input
alphabet are denoted with a, b, c, ..., and letter parameters are
denoted with 𝛾; 𝜔 and 𝜂 denote word parameters. We use only
the basic academic regular expression constructing operations:

concatenation (which is omitted in notation), alternation (de-
noted with |), and Kleene star (denoted with �). If 𝑟 is a regex,
L p𝑟q denotes its language.

Let us recall basic definitions and describe the finite au-
tomata models used in this paper.

A. Finite Automata

Definition II.1. A non-deterministic finite automaton (NFA) is
a tuple x𝑆,Σ, 𝑞0, 𝐹, 𝛿y, where:

 𝑆 is a state set;
 Σ is a terminal alphabet;
 𝛿 is a set of transitions of the form x𝑞𝑖, p𝛾𝑖|𝜀q,𝑀𝑖y, where
𝑞𝑖 P 𝑆, 𝛾𝑖 P Σ, 𝑀𝑖 P 2

𝑆;
 𝑞0 P 𝑆 is the initial state;
 𝐹 � 𝑆 is a set of final states.

Every transition in an NFA maps a pair x𝑞𝑖, p𝛾𝑖|𝜀qy into
a set of states, contrary to transitions in a deterministic finite
automaton (DFA), which map every pair x𝑞𝑖, 𝛾𝑖y (where 𝛾𝑖 is
essentially not equal to 𝜀) to a single state. Thus, if a word
is parsed by a DFA, the parse trace is always unique (i.e.,
DFAs are unambiguous); in an NFA, there can be a set of
parse traces for a single word. This set can even be infinite
in case of NFA with 𝜀-transitions. The notation 𝑞𝑖

𝛾
Ñ ... is

overloaded to denote either NFA transition x𝑞𝑖, 𝛾,𝑀𝑖y (written
as 𝑞𝑖

𝛾
Ñ𝑀𝑖) or a transition to a single state belonging to 𝑀𝑖

(written as 𝑞𝑖
𝛾
Ñ 𝑞𝑗). Existence of a path from 𝑞𝑖 to 𝑞𝑗 marked

by 𝜔 P Σ� is denoted by 𝑞𝑖
𝜔
Ý↠ 𝑞𝑗 .

An NFA can be transformed into an equivalent DFA us-
ing a textbook subset-constructing algorithm Determinize,
which generates states of the DFA corresponding to the sets
of the states of the initial NFA resulted in the transitions along
the same input symbols.

The NFA models used in regex engines are primarily
based on the classical Thompson construction, which provides
an algorithm for transforming a regex into an NFA that recog-
nizes the same language. While the implementation details
of the transformation may vary, the experiments presented
in Section IV provide evidence that the Thompson model
remains relevant for identifying inefficient regexes with respect
to NFA-based parsing engines.

In the following descriptions, we only give details of the
constructed NFAs in terms of their states and transitions,
without mentioning the alphabet construction.
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Fig. 2: Constructing Glushkovp𝑟q based on Thompsonp𝑟q

Definition II.2. Thompson NFA (denoted with Thompsonp𝑟q)
is constructed from a regex 𝑟 as follows. At any construction
step except processing concatenations, the new initial state 𝑞𝑟
and the new final state 𝑄𝑟 are introduced, and the transition
set is updated depending on the regex operation.

 Every single letter 𝛾 generates a primitive automaton
with the only transition 𝑞𝛾

𝛾
Ñ t𝑄𝛾u.

 If A1 � Thompsonp𝑟1q, A2 � Thompsonp𝑟2q, and 𝑞𝑖
and 𝑄𝑖 are their initial and final states, respectively, then
Thompsonp𝑟1 | 𝑟2q is constructed by merging the A1

and A2 states sets and transitions sets, and introducing
the transitions 𝑞alt

𝜀
Ñ t𝑞1, 𝑞2u; 𝑄1

𝜀
Ñ t𝑄altu; 𝑄2

𝜀
Ñ

t𝑄altu.
 Thompsonp𝑟1 𝑟2q is again constructed by merging
Thompsonp𝑟𝑖q states and transitions sets, and making 𝑞1
the initial state, 𝑄2 the final state, with the additional
transition 𝑄1

𝜀
Ñ t𝑞2u.

 Thompsonp𝑟�1 q is constructed introducing transitions
𝑞�

𝜀
Ñ t𝑞1, 𝑄�u, 𝑄1

𝜀
Ñ t𝑞1, 𝑄�u.

The Thompson construction algorithm ensures that any
NFA produced by the algorithm has a unique final state, and
that each state has at most two outgoing and two incoming
transition arcs. The uniqueness of the final state implies that
the reverse NFA for Thompsonp𝑟q is exactly Thompsonp𝑟𝑅q,
where 𝑟𝑅 is the reverse of the regex 𝑟. Additionally, all
subregex automata can be treated as isolated directed acyclic
graphs, which makes the construction easily extensible and
decomposable. An example of a Thompson automaton for a
regex is shown in Figure 1. The states labels follow the cor-
responding regex operations given in Definition II.2.

One drawback of the Thompson construction is that it
introduces non-deterministic transitions corresponding to al-
ternating operations (i.e., alternatives or Kleene stars), even in
the cases when the regex itself imposes no non-determinism
(e.g. for the regex apa | bq�, which is a reverse of the regex
shown in Fig. 1). To avoid the redundant non-determinism, the
regex engine RE2 [8] processes such strongly deterministic
regexes (also known as 1-unambiguous regexes [9]) construct-
ing another NFA based on the regex structure, but without
𝜀-transitions. This automaton is known as the Glushkov au-
tomaton since 1960s, and in the last two decades it attracted
considerable interest, shown to be efficient and extensible to
construct deterministic parsing engines for a larger class of

regexes (such as memory finite automata for the regexes with
back-references [10]).

The classical Glushkov construction is based on so-called
follow-relation on linearised regexes. By construction, every
state in the Glushkov automaton except the initial state corre-
sponds to an occurrence of some 𝛾 P Σ in the input regex 𝑟;
conversely, any letter occurrence in the regex 𝑟 corresponds
to exactly one state in Glushkovp𝑟q, whose incoming arcs are
all marked with 𝛾. Now we can reformulate this property in
the terms of Thompson and Glushkov automata.

Proposition II.1. There is a bijection from state set in
Glushkovp𝑟q minus the initial state to state set 𝑄𝛾 in
Thompsonp𝑟q (where 𝑄𝛾 are final states of the primitive
automata reading 𝛾).

In the paper [11], it was shown that Glushkovp𝑟q can be
also obtained from Thompsonp𝑟q merging its 𝜀-closures.

Definition II.3. Given an NFA A and its state 𝑞, 𝜀-closure
of 𝑞 is the maximal set of states reachable from 𝑞 following
only 𝜀-transitions.

Closure-merging1 𝜀-free automaton (denoted with
RemEpspA q) is constructed from A as follows:

 its states are 𝜀-closures of the states of A ;
 if state 𝑞1 belongs to closure 𝐶𝑖, state 𝑞2 belongs to
𝐶𝑗 , and there is a transition 𝑞1

𝛾
Ñ t..., 𝑞2, ...u (𝛾 � 𝜀)

in A , then there is a transition 𝐶𝑖
𝛾
Ñ t..., 𝐶𝑗 , ...u in

RemEpspA q.

An example of closure-merging operation is given in Fig. 2.

B. Transformation Monoid of NFA

Let us consider an automaton with no useless states and
𝜀-transitions. Its transitions over the alphabet Σ and the states
set 2𝑄 form the function 𝐹 : Σ � 𝑆 Ñ 2𝑆 taking a pair
x𝛾, 𝑞𝑖y. This function, when curried and specialized in the first
argument, becomes 𝐹𝛾 : 𝑆 Ñ 2𝑆 (where 𝛾 P Σ). We can form
a monoid over the set of such partially specialized functions
(transformations) if we continue them on strings as follows:
𝐹𝜔1

�𝐹𝜔2
� 𝐹𝜔2𝜔1

. Then associativity is provided “for free”,
given associativity of string concatenation, and 𝜀 becomes the
monoid unit, because 𝐹𝜔 � 𝐹𝜀 � 𝐹𝜀𝜔 � 𝐹𝜔 � 𝐹𝜔𝜀 � 𝐹𝜀 � 𝐹𝜔

1This 𝜀-removal construction differs from the standard textbook 𝜀-removal
algorithm, since it changes states, and not only transitions. This strategy allows
the algorithm to succeed in conversion from Thompson to Glushkov.
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𝑞0 𝑞1 𝑞2 𝑞3
a t𝑞1u t𝑞2u t𝑞2u t𝑞2u
b t u t𝑞3u t𝑞3u t𝑞3u
aa t𝑞2u t𝑞2u t𝑞2u t𝑞2u
ab t𝑞3u t𝑞3u t𝑞3u t𝑞3u
ba t u t𝑞2u t𝑞2u t𝑞2u

(b) Equivalence classes

bb ÞÑ b aaa ÞÑ aa

aab ÞÑ ab aba ÞÑ aa

baa ÞÑ ba bab ÞÑ bb

(c) Rewriting rules

Fig. 3: Transformation monoid of A � Glushkovpapa | bq�q

holds. The state transformations are denoted by the corre-
sponding strings 𝜔.

The formal definition is as follows [12].

Definition II.4. Given an 𝜀-free automaton A over the alpha-
bet Σ�, its transformation monoid M � TransMonoidpA q
is the monoid of transformations imposed by elements of Σ�

on the states of A .

The monoid construction does not depend on the choice of
the final or initial states of A (except the condition that all the
states are useful, i.e. reachable and producing), thus, instead
of classical NFAs, the monoid is based on a labelled transition
system. Since the set of functions 𝑆 Ñ 2𝑆 is finite, the trans-
formation monoid of an NFA always contains a finite number
of equivalence classes. The pair x𝑀, 𝑅y, where 𝑀 is a finite
set of lexicographically minimal elements of the equivalence
classes and 𝑅 is a set of simplification rules is considered
a standard representation of the transformation monoid. Such
a representation for TransMonoidpGlushkovpapa | bq�qq is
given in Fig. 3. The monoid representation uncovers some
useful NFA properties. For example, we can immediately
conclude that the words aa and ab are synchronizing, since
for all 𝑞𝑖, 𝑞𝑖

aa
Ý↠ 𝑞2, 𝑞𝑖

ab
Ý↠ 𝑞3, and no other transition is

possible.

C. Ambiguity of NFAs and REDoS

Intuitively, the worst-case scenario for backtracking-based
matching of a string against a regex 𝑟 occurs when the matched
string has a prefix 𝜂1 with a large set of parse paths, and
a suffix 𝜂2 s.t. 𝜂1𝜂2 R L p𝑟q. In this case, in order to determine
that 𝜂1𝜂2 is not recognizable by 𝑟, a regex engine must
backtrack through all the parse variants of 𝜂1. Obviously, we
can choose such a suffix 𝜂3 that 𝜂1𝜂3 P L p𝑟q, and 𝜂1𝜂3
will still have a large number of parse trees (although the
regex engine will report a success after finding a first one).
Therefore, worst-case matching time depends on the upper
bound on the parse paths in a regex.

In the domain of finite automata, the following definition is
used [13], [14].

Definition II.5. A degree of ambiguity of an NFA A is
a worst-case bound on the number of paths recognizing
an input string (in a length of the string).

The ambiguity of NFAs is known to be either a constant,
an exponential, or a polynomial [13]. If the ambiguity degree

qi
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qi qj

𝜔

𝜔

𝜔

(a) Exponential ambiguity
(qj or qk may coincide with qi) (b) Polynomial ambiguity

Fig. 4: Ambiguity situations in NFA

of A is non-constant, it is said A has an infinite degree
of ambiguity (IDA). A standard acronym for exponential
ambiguity degree is EDA.

A minimal EDA-generating regex example is pa | aq�.
A minimal example of a regex producing IDA but not EDA
automaton is a�a�. For regexes s.t. pa�b�q�, Glushkovp𝑟q is
unambiguous, despite Thompsonp𝑟q is EDA. We can notice
that in Thompsonppa�b�q�q, a special situation occurs: there
is a loop inside an 𝜀-closure of a state (i.e., there is at least
one Kleene star in a regex iterating over an expression 𝑟𝐸 s.t.
𝜀 P L p𝑟𝐸q). Further we show that such a case is the only
possible situation when Thompsonp𝑟q and Glushkovp𝑟q have
distinct ambiguity degrees.

The following criterion estimates the degree of ambiguity
in any NFA.

Theorem II.2.  A satisfies IDA condition ô there exist
states 𝑞𝑖, 𝑞𝑗 in A , and a word 𝜔 s.t. A contains paths
from 𝑞𝑖 and 𝑞𝑗 to themselves, and a path from 𝑞𝑖 to 𝑞𝑗
all accepting the word 𝜔.

 A satisfies EDA condition ô there exists a state 𝑞𝑖 in
A and a word 𝜔 s.t. A contains two distinct loops from
𝑞𝑖 to itself both accepting the word 𝜔.

We can also say than if EDA occurs in an NFA, then
D𝑞𝑖, 𝑞𝑗 , 𝑞𝑘, 𝜔1, 𝜔2p𝑞𝑖

𝜔1

Ý↠ 𝑞𝑗 & 𝑞𝑖
𝜔1

Ý↠ 𝑞𝑘 & 𝑞𝑗
𝜔2

Ý↠ 𝑞𝑖 &

𝑞𝑘
𝜔2

Ý↠ 𝑞𝑖q (see Fig. 4).
After the work [9], we use the term “orbit of state 𝑞” for

the maximal strongly connected component containing 𝑞. We
assume that orbits are non-trivial, i.e. contain at least one
transition. If a state 𝑞 of A satisfies EDA criterion for some 𝜔,
then all states belonging to its orbit also satisfy EDA. Thus, to
check the EDA condition, it is sufficient to check if any state
of some strongly connected component of an NFA satisfies



EDA; for the IDA condition, it is sufficient to check if there
are two strongly connected components satisfying it.

An approach to the IDA and EDA detection used in the RE-
DoS analysers [3], [4] tests the above criterion constructing
single or double intersections of A with itself. Although
the intersection construction can be done in polynomial time
on an NFA size, it may lead to large NFAs if there are many
crossing components (i.e., matching the same string sets) in
the initial NFA.

The IDA criterion can be also reformulated in the terms of
transformation monoids.

Proposition II.3. An 𝜀-free A satisfies IDA ô its transfor-
mation monoid contains an equivalence class 𝜔 s.t. for some
states 𝑞𝑖, 𝑞𝑗 , 𝑞𝑖 P 𝐹𝜔p𝑞𝑖q, 𝑞𝑗 P 𝐹𝜔p𝑞𝑗q, and 𝑞𝑗 P 𝐹𝜔p𝑞𝑖q.

Using this criterion for an initial NFA “as is” is highly
impractical: if the NFA contains non-crossing components,
the transformation monoid becomes exponentially huge. How-
ever, with some refinements, we observed that the monoid
criterion can be applied (and even be fast) in the cases when
the intersection criterion is slow. Moreover, Proposition II.3
provides explicit construction of a string with the ambiguity,
allowing the analysing algorithm to reconstruct the REDoS
situation easily. First, take any NFA path from the initial state
of A to 𝑞𝑖, recognizing some prefix 𝜂1. Then pump 𝜔 to
construct an infix with superlinear number of parse trees, and
then take some string 𝜂2 s.t. any path from 𝑞𝑗 recognizing 𝜂2
does not end in a final state of A . The string 𝜂1𝜔

𝑛𝜂2 will
force an NFA parsing device to do superlinear backtracking.

If the monoid criterion is applied to the orbit automaton
of state 𝑞, the REDoS pump can be constructed as well. Just
choose some 𝜂1, 𝜂2 s.t. 𝑞0

𝜂1

Ý↠ 𝑞, @𝑞𝐹 P 𝐹 p 𝑞
𝜂2

Ý↠ 𝑞𝐹 q.

III. OUR APPROACH

As a starting point, we prefer to use the Thompson au-
tomaton as a preliminary NFA model for a regex since regex
matching engines rely on it in their internal algorithms, and
experiments in Section IV demonstrate that the Thompson
construction is suitable for analysing real REDoS. However,
in order to apply the monoid criterion, we must first eliminate
𝜀-transitions in the regex and ensure that the removal of 𝜀-
transitions does not affect the degree of ambiguity.

Let us say that regex 𝑟 is in a (strong) star-normal form
(SSNF) if it does not contain a subexpression p𝑟0q� s.t. 𝜀 P
L p𝑟0q [15]. The following proposition gives an equivalent
criterion.

Proposition III.1. 𝑟 is in SSNF ô no 𝜀-closure of
Thompsonp𝑟q contains a loop.

Proof. ð: Let 𝑟 contain a subexpression p𝑟𝐸q�, where 𝜀 P
L p𝑟𝐸q, and let 𝑞𝐸 and 𝑄𝐸 be the initial and final states of
Thompsonp𝑟𝐸q. Since there is a path in Thompsonp𝑟q from 𝑞𝐸
to 𝑄𝐸 recognizing 𝜀, 𝜀-closure of 𝑞𝐸 contains a loop.
ñ: Any loop must contain a backward arc, and in any

Thompson automaton, the only backward arcs are transitions
from 𝑄𝐸 to 𝑞𝐸 , where 𝑟𝐸 is a subexpression under a Kleene

star. If the loop follows 𝜀-transitions, it also contains a path
𝑞𝐸

𝜀
Ý↠ 𝑄𝐸 , so 𝜀 P L p𝑟𝐸q, and p𝑟𝐸q� breaks the SSNF

condition.

In the following proposition, Ambiguity is valued either
EDA, IDA (not EDA), or safe.

Proposition III.2. If 𝑟 is in the SSNF, then
AmbiguitypThompsonp𝑟qq � AmbiguitypGlushkovp𝑟qq.

Proof. Any strongly connected component in Thompsonp𝑟q,
as well as in Glushkovp𝑟q, corresponds to a subexpression 𝑟1

under a Kleene star in 𝑟 (by construction). If an IDA occurs
in this subexpression in Thompson, say, for a state 𝑞 and word
𝜔 � 𝜀, then there exist two distinct states 𝑄𝛾 , 𝑄1

𝛾 , which are
final states of primitive automata for letter 𝛾 P Σ, and there
are paths 𝑞

𝜔1

Ý↠ 𝑄𝛾 , 𝑞
𝜔1

Ý↠ 𝑄1

𝛾 , 𝑄𝛾

𝜔2

Ý↠ 𝑞, 𝑄1

𝛾

𝜔2

Ý↠ 𝑞 s.t. 𝜔 �
𝜔1𝜔2, 𝜔1 � 𝜀. Thus, 𝛾 occurs twice in 𝑟1, hence these occur-
rences correspond to distinct states of the Glushkov automaton.
Therefore, the paths EpsClosurep𝑞q

𝜔1

Ý↠ EpsClosurep𝑄𝛾q

and EpsClosurep𝑞q
𝜔1

Ý↠ EpsClosurep𝑄1

𝛾q are distinct, and
there is the EDA situation in EpsClosurep𝑞q.

If Thompsonp𝑟q contains an IDA which is not an EDA,
then the IDA-producing states belong to distinct Kleene star
subexpressions. Moreover, since 𝜔 � 𝜀, in the paths producing
the IDA situation, there are at least two distinct states 𝑄𝛾 , 𝑄1

𝛾 ,
which are final states of primitive automata for letter 𝛾 P Σ
and have distinct orbits. Thus, their 𝜀-closures remain to be
distinct.

Thus, it is sufficient to test 𝑟 for the strong star-normal
form property and then, if necessary, continue the ambiguity
analysis operating with the Glushkov automaton, having sig-
nificantly less states. If there are loops in 𝜀-closures, the further
analysis is not needed: these loops already produce EDA
situations.

Given a state 𝑞 in A and its orbit 𝑀 , an orbit automaton of 𝑞
is automaton 𝑀𝑞 including all states and transitions from 𝑀 ,
having 𝑞 as is the initial state, and whose final states are either
final states of A or states with outgoing transitions outside
the orbit 𝑀 in A .

If we choose one state 𝑞𝑖 from each strongly connected
component 𝐶𝑖 of A , then testing an IDA criterion for
TransMonoidp𝑀𝑞𝑖q is enough to reveal all EDA situations.
However, in the case of a polynomial IDA, we must test
pairs of the strongly connected components (together with
the transitions from one component to another), and building
a monoid for any such pair-generated NFA is too time-
consuming. Thus, we use the following simple necessary
condition for the polynomial IDA.

Proposition III.3. Let 𝐶1, 𝐶2 be distinct strongly connected
components of A . If A contains a polynomial IDA within
the components, then there exist two states, 𝑞1 P 𝐶1, 𝑞2 P
𝐶2, s.t. DeterminizepA q contains a subset state including
both 𝑞1 and 𝑞2. Moreover, such a subset state occurs also in
DeterminizepReversepA qq.



Although the determinization algorithm is exponentially
hard in the worst case, it is known to be fast in most practical
cases [16]. Thus, the subset test accelerates candidates search
for the polynomial IDA. However, it is not sufficient, which
can be shown by analysing regex pa | bq�pb | cqpa | cq� whose
Thompson automaton contains no IDA.

A. Algorithm

if  SSNFp𝑟q then
return EDA
A Ð Glushkovp𝑟q

end if
𝒞 Ð SCCpA q
for 𝑐 P 𝒞 do

𝑞0 Ð 𝑐r1s
if AmbiguitypTransMonoidp𝑀𝑞0qq then

return EDA
end if

end for
for 𝑐1, 𝑐2 P 𝒞 do

if 𝑐1 Ý↠ 𝑐2 then
𝑞1 Ð 𝑐1r1s
𝑞2 Ð 𝑐2r1s
if SubsetPairspDeterminizepA𝑞1�𝑞2qq X
SubsetPairspDeterminizepReversepA𝑞1�𝑞2qqq �
∅ then

if AmbiguitypTransMonoidpA𝑞1�𝑞2qq then
return IDA

end if
end if

end if
end for
return Safe

Fig. 5: Algorithm of ambiguity analysis for regexes

The pseudocode of the complete algorithm2 is given in
Fig. 5. There A𝑞1�𝑞2 includes the orbit automata 𝑀𝑞1 and
𝑀𝑞2 of 𝑞1 and 𝑞2, and all states reachable from 𝑀𝑞1 and
reaching 𝑀𝑞2 together with their transitions. Its initial state
coincides with initial state of 𝑀𝑞1 , and its final states are final
states of 𝑀𝑞2 (ignoring final states of A belonging either to
𝑀𝑞1 or intermediate states). The condition 𝑐1 Ý↠ 𝑐2 ensures
that the component 𝑐2 is reachable from 𝑐1, and they do not
coincide. Operator 𝑐r1s takes a first state from the component 𝑐
(since the Ambiguity.TransMonoid and determinization tests
results do not depend on the choice of the initial state in
the orbit automata3). Function SCCpA q returns all strongly
connected components of A .

2The trial implementation of the method is given on
https://github.com/bmstu-iu9/Chipo-Kleene/tree/ambiguity

3Absence of any useless states is guaranteed, because all the states are
reachable from each other.

IV. EXPERIMENTS

A. Data Set

In order to evaluate the effectiveness of our approach on
the “domino” regexes, a dataset of 100 academic regexes was
generated. The regexes satisfy the following properties:

 their length and alphabet are small (not more than 50
terms and not more than 5 distinct letters);

 they have iterated elements;
 all are in SSNF.

The first condition allows significant subexpression languages
overlap, without blowing up the regex length. However, the test
set contains not only complex dominoes, but also regexes with
simple ambiguity situations like b�cpac | paa | aq�dq�.

The second condition is necessary for REDoS situations.
The third condition mostly excludes the trivial SSNF test,
returning EDA value using our method too quickly.

We explored the dependence of the regexes matching time
from the input length on the popular engines in PYTHON,
JAVASCRIPT, C++, JAVA 8, JAVA 11, GO, and RUST.

In order to detect super-linear dependencies, it is necessary
to generate potentially attacking input, for which the string
pumping method is used. The attacking input must match a
pattern of 3 components: a prefix that satisfies the regular
expression, a pumping core whose repetition can lead to a
rapid increase in the number of parsing paths (i.e., malicious
pump), and a suffix whose mismatch leads to catastrophic
backtracking.

The results obtained by applying JAVASCRIPT, PYTHON,
C++ and JAVA 8 standard regex engines are the same, accord-
ing to them, the data set contains 34 exponential, 36 poly-
nomial and 30 safe regexes. Also, the experiments indicated
that JAVA 11 standard regex engine handles some polynomial
and exponential cases, but when the length of the input data
increases significantly, it throws a stack overflow exception,
which may be due to the introduction of the local storage
of indexes to the regex module in the 11 version of JAVA.
The regexes are safe for GO and RUST engines, which are
based on the deterministic structures. Nevertheless, it was
noted that there are frequent single outliers in trends when
matching strings in GO.

During testing, we observed that polynomial regexes only
lead to critical matching times (more than 1 minute) with
significant input string lengths (approximately more than 500
characters), while expressions that have exponential matching
complexity can reach critical time when parsing even relatively
small input strings. In the simplest case, such a time explosion
can be achieved with regexes that have large star nesting
or multiple alternatives under a star quantifier. For instance,
the PYTHON, JAVASCRIPT, JAVA 8, and C++ regex engines
are vulnerable to attacks in the case of the ppa�q�q� regex,
and even the optimized JAVA 11 engine, which successfully
handles double star nesting, reaches critical time processing
such an expression.

However, more non-trivial cases were encountered
in the proposed data set. For example, the regex



TABLE I: Time measurements

Exponential Polynomial Safe Unsafe Timeouts
Tool 𝜇 (s) 𝜎 (s) 𝜇 (s) 𝜎 (s) 𝜇 (s) 𝜎 (s) 𝜇 (s) 𝜎 (s)
RSA 1.895 2.614 3.480 3.748 0.836 0.341 2.578 3.221 13

ReScue – – – – 0.940 1.724 8.803 6.263 43
Revealer 0.410 0.035 0.402 0.021 0.320 0.065 0.409 0.033 0

Our method 0.846 1.059 1.178 1.259 0.484 0.400 1.014 1.169 0

TABLE II: Evaluation results

Tool 𝐹1-score Total error rate Vuln. error rate
RSA 0.90 0.13 0.00

ReScue 0.39 – –
Revealer 0.55 0.45 0.04

Our method 1.00 0.00 0.00

bpabppa | bpa�aq�qa�b�q�|a�aaaa�q�, when matched
against the input of 32 characters that satisfies the pattern
with prefix – b, pump – abab, suffix – bbd, achieves
the following timings: PYTHON engine – over 3 minutes,
JAVA 8 – over 3 minutes, JAVA 11 – 0.80 minutes, C++ –
over 3 minutes, JAVASCRIPT – 1.73 minutes.

In general, the REDoS vulnerability degree coincides with
the theoretical expectations, taking into account the asymp-
totic growth of the ambiguity function for the corresponding
Thompson automata. Non-SSNF regexes cause critical time
explosion, which is an evidence that the regex engines do not
apply SSNF transformation to their input. In addition to non-
SSNF regexes, critical REDoS situations occur on polynomial
ambiguities iterated under a Kleene star.

B. Comparing with other in-research tools

We evaluated the effectiveness of the proposed approach by
comparing it with three state-of-the-art open-source tools for
detecting vulnerabilities in regexes: RSA [3], [17], a static
analysis tool, RESCUE [5], [18], a genetic fuzzing tool,
REVEALER [2], [19], an automated hybrid analysis tool that
uses static and dynamic approaches.

The qualitative results of the experiments are described
in Table II. To evaluate the effectiveness of detection of
vulnerable and safe regexes, we used 𝐹1-score, where true
positive values are all vulnerable regular expressions that were
classified as exponential or polynomial, the absence of results
due to a timeout is taken into account as a false result, also
we used the error rate, where a cumulative error on all classes
of regexes – total error rate and a classification error among
vulnerable regexes – vulnerable error rate. It should be noted
that RESCUE does not support the exponential-polynomial
classification, therefore, not all values were calculated for this
tool.

The results of measuring the execution time for the con-
sidered tools are shown in Table I. When measuring time,
all extended features of the tools were disabled, and their
parameters were optimized. For each class of correctly classi-
fied regexes: exponential, polynomial, safe, unsafe (union of
vulnerable regexes), the average running time (𝜇) and the stan-

dard deviation (𝜎) of this value were estimated, the amount of
timeouts was also calculated.

Additionally, we chose 25 regexes with non-SSNF structure,
which are analysed in our method by the preliminary 𝜀-loop
test. While our approach proved to be the fastest (which is not
a surprise, provided the algorithm structure), the static part of
REVEALER also had 100% success rate on this set, although,
taking at average 4� more time.

It is important to note that the theoretical results obtained by
using static analysis methods, determining ambiguity degree of
the Thompson automata, completely coincide with the exper-
imental results obtained when testing the domino regexes on
the PYTHON, JAVASCRIPT, JAVA 8, and C++ regex engines.
This is a strong witness that regexes declared safe by dynamic
or combined methods are their false negatives.

From the test results, we can conclude that the de-
tection efficiency of the static analyser is high, but
in non-trivial exponential or polynomial cases such as
pbaa | abq�bpapb | aqba�bq�paabq�, timeouts occur. The
recognition efficiency of RESCUE and REVEALER tools on
this data set is low. However, the proposed approach has
the maximum quality of vulnerability detection, the average
execution time is also superior to other implementations. This
is partly explained by its narrow domain: testing only academic
regexes. But RSA also aims at the academic regexes, and still
has several timeouts; on the other hand, it seems that extension
of REDoS-detection tools to non-academic regexes made them
to miss almost all polynomial REDoS with domino structure.

V. DISCUSSION AND RELATED WORKS

Initially, our finite automata transforming tool was not
designed to reveal REDoS situations. However, attempts to use
open-source tools like Regex Static Analyser or RESCUE to
analyze simple academic regexes with non-trivial ambiguity
structure failed. The main purpose of the work was educa-
tional, so we designed our algorithm in such a way that it
not only detects vulnerabilities, but also demonstrates them on
the automata graphs (Fig. 6), at the cost of longer execution
time. Since the tool was initially designed for demonstrations,
only core academic regexes were considered. The algorithms
used in the monoid-based approach have poor worst-case
complexity, so its efficiency, compared to RSA and RESCUE,
was a real surprise.

What features of the analysers caused such a situation?
RSA uses NFA intersection construction, based on the well-
known paper of Mohri et al [14]. To detect polynomial
ambiguities, the algorithm requires self-intersecting an NFA
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Fig. 6: Revealing strongly connected components with ambiguity situations in NFA graph

twice. The automata intersection problem is known to be
PSPACE-complete [20], [21], thus, every additional intersec-
tion results in a significant slowdown. Maybe that is the main
cause why the polynomial detection results in timeouts in
RSA. The monoid and determinization algorithms are known
to be worst-case exponential. However, the determinization
is proven to be fast 4 in average [16], while the monoid
representation depends heavily on the automata structure and,
implemented to orbit automata, generates significantly fewer
equivalence classes, compared to the case when automata are
not cyclic. Another well-known problem in static analysers
is dealing with 𝜀-transitions, which can ruin the intersection
construction, as well as the monoid. Surprisingly, the tools
do not use the simple and natural conversion to the Glushkov
construction preceded by the SSNF test.

Error rate of static tools is usually much lower than in
tools using genetic algorithms and fuzzing, since REDoS-
provoking strings can be disguised, requiring several explicit
iterations to construct, or be combined from several alternative
subexpressions under an iteration. Even using two approaches
in REVEALER cannot help to find vulnerabilities, if the ma-
licious pump is hidden in overlaps and crossing occurrences.
For example, in paper [6], four REDoS classes are provided,
based on a regex structure, and the regex a�pabq�apbaq�

satisfies neither of them, because the vulnerability appears
due to the crossing occurrence of the string ab on the border
of the two orbits, whereas the expressions under Kleene
stars have languages with empty intersection, which makes
the regex “seemingly safe”. A similar pattern-based approach
is used in [7], resulting in the same sort of false negatives. So,
regex-based heuristics showed themselves to be too weak as
compared to the model NFA analysis in the domino ambiguity
cases.

If a malicious pump for a regex is found, the natural
question arises: how to correct the regex? We did not consider
the whole implementation of the regex correction, but imple-
mented a trial algorithm constructing a 1-unambiguous regex5,
if it exists [9]. However, for most regexes with overlaps,
even if the equivalent 1-unambiguous regex can be built,
the algorithm given in [9] produces exponentially longer result,
as compared to the input, processing all overlap combinations
separately. A more optimistic regex correcting heuristic is
the Star Normal Form transformation: it is performed in linear
time and produces regexes approximately of the same length.

4And determinization-based Brzozowski minimisation algorithm frequently
outperforms even Hopcroft’s minimisation.

51-unambiguous regex is a regex whose Glushkov automaton is determin-
istic.

Moreover, the SSNF transformation is rather local, does not
require transition to NFA, and can be applied even to extended
regexes, which is useful, taking in account that non-SSNF
regexes cause critical REDoS w.r.t. PYTHON and JAVASCRIPT
regex engines. In general, the question what theoretical results
can be used to fix REDoS regexes, is still a subject of research.

VI. CONCLUSION

The research resulted in the following answers to our
research questions.

 RQ1: how relevant is NFA static analysis w.r.t. to popular
regex engines?
Our experiments demonstrated that the Thompson NFA
model is entirely suitable for evaluating REDoS situations
concerning the most widely used regex engines, including
PYTHON, JAVASCRIPT, JAVA, and C++. Interestingly,
although the GO regex machine uses conversion to DFA,
it still produces surges on some ambiguous regexes with
complex structures. The RUST DFA engine proved to be
the most stable.

 RQ2: what features of the REDoS analysers considered
cause errors and time explosion on the regexes with
complex overlap structure? How they can be processed
reliably with less risk of time explosion?
We found out that considering orbit automata (instead
of performing ambiguity analysis on the entire NFA)
and using the Glushkov construction, preceded by the
Strong Star Normal Form test, do not result in any loss of
relevance, but significantly speed up the static analysis.
Another interesting approach is to use monoid analysis
as the primary ambiguity-detecting algorithm instead of
NFA intersection analysis. If there are multiple substring
overlaps in the orbits, this method performs significantly
faster. However, if the overlaps are small, the number of
equivalence classes in the monoid increases dramatically,
making the intersection method more preferable.
We also provided experimental evidence that the genetic
search REDoS detection methods still miss complex
REDoS cases, easily detected by static NFA analysis
approaches.

Despite our approach proved itself to be efficient and
reliable on the test set of domino regexes, it still requires
many refinements. First, the monoid construction may explode
if we take large alphabets, so the input regexes may need
some alphabet factorization. E.g., if no overlaps are contained
within a long string, then this string sometimes can be con-
sidered as a single letter. Second, it would be interesting to
test the method on extended regexes approximation, and to



combine the monoid-based and intersection-based ambiguity
detection algorithms.
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