
Using Process Mining to Leverage the Development
of a Family of Mobile Applications

Lyudmila Rezunik, Alisa Perevoznikova, Daria Eremina, Alexey Mitsyuk
HSE University, Faculty of Computer Science

Moscow, Russia
lrezunic@gmail.com, alice.castiel1@gmail.com, dveremina@edu.hse.ru, amitsyuk@hse.ru

Abstract—Enterprises often provide their services via a family
of applications based on various platforms. Applications in such
a family can behave differently. Their development processes
can differ as well. Moreover, modern development processes
are often complex and sometimes vague. This can lead to bugs,
defects, and unwanted discrepancies in applications. In this paper,
we show that process mining can be applied to leverage the
development in such a case. Real-life models can be discovered
and investigated by the developer teams in order to reveal
differences in application behaviour, find bugs, and highlight
inefficiencies. We consider datasets with event data of two types.
Firstly, we analyse event logs of Android and iOS applications
of the same product family. Secondly, we consider event data
from working repositories of these applications. We show how
by analysing such datasets, the real-life development process can
be discovered. Besides, application event logs can help to find
more and less severe bugs and unwanted behaviour.

Index Terms—software process, software development, process
mining, mobile application, software product family

I. INTRODUCTION

It is a common practise for business enterprises to provide
their services via different user applications. We can, for
example, use a web-application at our desktop and a mobile
application when outdoors. Moreover, users have different
mobile devices based on various technologies. All this leads to
a family of applications that is developed and maintained by
an enterprise to provide its services directly to potential users
on their familiar platforms. Companies can develop members
of such a software product family separately, one-by-one,
or maintain a common software development environment.
Combined with modern agile development approaches, all this
leads to high variability, complexity, and sometimes vagueness
of development process. This, in turn, can lead to bugs and
defects in software.

To our fortune, software applications on all platforms gener-
ate a large number of data records in the process of their func-
tioning. Different types of data are present: user activity logs,
error and system logs, debug information, communication
logs, and other. We can use these records to discover actual
development process, find its inefficiencies and drawbacks.
Moreover, an investigation of application’s event logs can shed
the light on its structure and behaviour (see Section VIII).
Process mining [1], [2] is a particular field providing us with

This work is an output of a research project implemented as part of the
Basic Research Program at the National Research University Higher School
of Economics (HSE University).

tools which help to extract valuable information and insights
out of raw event data.

In this paper, we consider two datasets (see Section IV) for
a concrete family of mobile applications (see Section II for a
system description). The first of these datasets contains event
data from the repositories with source code. The second one
has been obtained by recording logs of how users interact with
the applications.

The main goal of this paper is twofold: (1) to show how can
we reveal the real development process of a family of mobile
applications using event data, (2) to provide the reader with
the approach to find drawbacks and errors in both applications
and their development process.

Our case study is conducted in accordance with the PM2

methodology [3] for process mining projects. By analysing
applications log data, companies aim to improve their business
processes [4]. We show that this methodology can be success-
fully applied within the domain of software engineering with
valuable outcomes.

II. SYSTEM

The analysis was conducted for a family of mobile appli-
cations — HSE App X1, which includes iOS and Android
applications with the same functionality.

HSE App X as a whole is a client-server application used
by students and staff of HSE University2 to interact with the
university’s systems. As it was mentioned, there are two client
applications — for iOS and Android.

Taking as an example the iOS application, it can be seen
how the client is built (the access to the project repository was
granted by the developers).

The client contains several modules: a module for autho-
rization functionality, a module for Apple Watch application,
widgets, and the main module, which represents the iOS
application (see Fig. 1).

The main module is organised into groups of files (pack-
ages): Core, UI, Assets, Helpers. A summary of each package
is provided below.

Core — includes sub-packages which implement the logic
for authorisation, system events, API calls. This package also
contains the main entry point of the application.

1HSE App X Official Webpage: https://www.hse.ru/web/mobile/#
2HSE University Official Webpage: https://www.hse.ru

https://www.hse.ru/web/mobile/##
https://www.hse.ru


Fig. 1. Package diagram of the iOS client

UI — contains separate packages for each of the applica-
tions’ screens.

Assets — package with various media files (images,
sounds). Moreover, it stores all the fonts and colours used
in the application along with localisation.

Helpers — holds helper classes, extensions for existing
classes, mocks.

An example of typical user scenario is viewing the
timetable. What happens on application start:

1) All the classes that need to connect to the API are
initialised.

2) The application sends requests to the API to get:
a) the catalogues (e. g. all the HSE buildings) from

the server;

b) the user’s notifications;

c) information about the user;

d) list of features available to a certain user.
Along with sending requests, the first screen of application

loads (in parallel). As soon as the screen controller object is
created, the authorisation token is verified and the request to
get user’s schedule is sent. After receiving a response, the
application shows all the data on screen and saves it in cache.

Both Android and iOS application are logging results of
API calls, system events and user activity. Thus, the logs can
be effectively used for analysis.

III. RESEARCH TASKS AND QUESTIONS

In this paper, our goal is to perform the following tasks and
to answer related research questions:

1) to build a process model for various user scenarios and
determine if there are any “abnormal” (deviating from
the norm) events. If there are any, try to explain them;

2) to analyse the process model for iOS and Android
applications and find differences. If there are any, find
out if they affect the performance and operation of the
system, whether they need to be resolved;

3) to check if there are inconsistencies between the request
body and the server response;

4) to identify the sequences within the process model that
lead to error with the greatest frequency;

5) to analyse the data from the project repository and
evaluate the team’s work style;

6) to track which parts of the code (modules, files) have
not been refactored/redesigned for the longest time and
that are worth paying attention to.

IV. DATA

A. Data

In order to answer the research questions, two main sources
of data were taken into consideration: logs of mobile applica-
tions and the project’s repository.

Mobile applications log the user’s actions, making it pos-
sible to extract files with a detailed history. They contain
all the necessary information about the time and content of
each request sent to the server and system logs as well. The
developers are provided with different options to interact with
debug mode of the application (it is hidden from regular
users), which is helpful in obtaining suitable data for analysis.
For these purposes it is necessary to clear previous session
logs, so it becomes possible to focus on the particular user’s
interactions.

Log files collected for particular use cases of the application
were parsed by found patterns and then aggregated using com-
mon Python libraries. As a result, the data contained structured
information about requests’ URL, body and response with
corresponding timestamps.

The repository stores all the project members’ activity: com-
mits, merge requests, issues, etc. This data can be effectively
used to analyse the processes within the team. Considering
the research questions, it was identified that commits hold
the most information. Thus, all the commits stored in the
GitLab repository were extracted into a single .csv file. For
data retrieval, a few scripts were written using the Java library
GitLab4J 3 to make the process of working with GitLab’s API
more straightforward.

The resulting data file contains all the needed information
about the commits: id, author’s name, title of commit, all the
changes (file paths), and timestamp, which corresponds to the
exact date and time the commit was made locally (before
push)4 .

B. Data Preprocessing

The previous section described the process of collecting
the data from the project’s repository, resulting in only the
necessary data for analysis remaining, including commit id,
date and time of commit creation, author’s name, and all the
names of changed files.

3GitLab4J API: https://github.com/gitlab4j/gitlab4j-api
4The data collected from the project’s repository: https://github.com/

LucyRez/PAMiSE-data/tree/master/gitlab-data

https://github.com/gitlab4j/gitlab4j-api
https://github.com/LucyRez/PAMiSE-data/tree/master/gitlab-data
https://github.com/LucyRez/PAMiSE-data/tree/master/gitlab-data


Fig. 2. Example of a dataset collected from the Android application

In addition, it was decided that commits should be also
grouped in some way, because the number of individual
commits was too large to be efficiently processed by some
process mining tools. Knowing that the project was managed
using Agile methodology, sprint number was added to the
each of the commits (sprint is a 2 week long time interval).
Thus, each of the commits was assigned a sprint it was created
in. This also improved the dataset, because not only time of
creation of a single commit could be used for analysis, but
also a group of commits.

Besides, the logs of iOS and Android applications were
collected separately5, after which they were converted into a
format suitable for processing. After processing the data, it
acquired the following form: session id, date and time of the
request, request URL (without parameters), response status,
duration of the request, message (see Fig. 2).

At the same time, both the request and the response are
logged in the Android application, so it was necessary to re-
move duplicates from the file. Also, in the Android application,
in case of incorrect requests, incorrect dates appeared that had
to be processed. To determine the case id, the session number
was added (a separate application launch), and the date and
time format was also changed to fit the mining algorithms pro-
vided by mining tools. Additional parameters were removed
from the URLs that would interfere with building a graph due
to the presence of too specific information.

V. DEVELOPMENT PROCESS ANALYSIS

A. Analysis

The dataset from the previous section, which was formed
using repository data, was applied to interpret the processes
among the developers. Analysis of the data was conducted
using ProM [5], a program specifically developed for process
analysis. It provides a big tool set, which was used throughout
all research.

5The examples of logs: https://github.com/LucyRez/PAMiSE-data/tree/
master/logs-data

Firstly, the team workflow was analysed by generating dot-
ted chart diagrams with different display options. For example,
by putting the value of the commit creation time (since the start
of the week) on the X axis and commit’s id on the Y axis, a
chart representation of developer’s working schedule was built
(see Fig. 3).

Moreover, the time of creation of all commits was analysed.
The constructed dotted chart gave representation of develop-
ers’ individual working hours.

This method of analysis was also used to discover project
members’ involvement into development process. It can be
seen through the dependency between changes in project
modules and the author of the commit. The diagram (see
Fig. 4) illustrates the division of duties among the developers,
and shows which pieces of code can only be changed by a
particular person.

In addition to the dotted chart diagrams, which resemble
statistical research methods, some models were synthesised by
applying the inductive mining algorithm (using the Inductive
Miner [6] inside ProM). These models were used to see the
transfer of work (if it exists) between the developers. Instead
of inspecting individual commits, groups of commits were
taken into consideration (each group was represented by sprint
number).

The inductive miner algorithm requires a dataset with 2
columns selected. The first column represents case id, which
identifies a single trace of the process (in this case it is one
sprint — 2 weeks). The second selected value type — activity,
which basically is an event in the trace (name of commit’s
author was used).

Thus, the resulting model (see Fig. 5) shows the generalised
behaviour of the team members during one sprint. Conclusions
on this model will be given in the next section of the document.

Another approach for viewing data, which was used in the
research — generating a skeleton of the event journal. This
model can give a clear understanding of the dependencies
between the execution of events in one trace of the process.
If the trace is represented by a single commit and the events
in the trace are file changes, the resulting model can depict
which files do not ever change together in a commit or vice
versa.

B. Main Findings

After analysing the generated dotted chart diagrams, it was
noticed that the team does not have a strict working schedule,
commits in the repository are made every day of the week.
However, there is a tendency among the developers to leave
the weekends to themselves, that is why there is less activity
on Sunday and Saturday.

Moreover, the working hours are not established for any of
the team members. Distribution of the commits covers almost
all the area of a one-day timeline. The developers can make
changes to the project even in the early morning, although the
peak activity is in the daytime.

The dotted chart diagram made it possible to assess in more
detail the degree of familiarity of developers with individual

https://github.com/LucyRez/PAMiSE-data/tree/master/logs-data
https://github.com/LucyRez/PAMiSE-data/tree/master/logs-data


Fig. 3. Dotted chart that shows developers’ working schedule

Fig. 4. Dotted chart shows the commits submitted by developers for certain modules

modules of the project. For example, it was noticed, that the
person which was no longer on the team was initially working
on the authorisation module, and the other developers’ tasks
only included small changes and refactoring of that code.

By applying the inductive miner algorithm (described in the
previous section) was produced a model, which depicts the
order in which the developers make commits in a sprint. As it
can be seen there is no dependency between the developers.
The team members work in parallel, there are situations when
a person does not make a single commit per sprint, but there
is no certain sequence of work transfer between developers.
This also shows that the tasks are mostly independent of each

other.
It was also discovered that some developers never co-existed

in the team: iOS Middle, both of the iOS Juniors and HSE
Apps, which is another account run by project manager.

The Log Skeleton Visualiser [7] was applied to discover
relations between packages in a commit (if there are such
relations). Thus, the case id for the mining algorithm was
represented by the id of a single commit and the activity was
represented by the changed file.

It was noticed that some changes never co-occur in a
commit. Developers try to keep their commit history clean,
thus, it is not favourable to make changes in completely



Fig. 5. Model depicting activity of all developers during one sprint

separate modules at once.
Taking for example Apple Watch module and Widget mod-

ule, it is true that project members try to change files in those
modules separately (see Fig. 6).

While looking at the statistics overview for all the commits,
it was noticed that the number of changed files in one commit
has a strong variation: from 1 changed file up to 693 files.

It is strongly advised to not have too many file changes in a
single commit, because the code needs to go through a more
in-depth code review. The developer in that case cannot keep
track of all the changes, with a high probability such code

Fig. 6. Fragment of the log skeleton model depicting relations between file
changes

may be bugged.

VI. APPLICATION BEHAVIOR ANALYSIS

A. Analysis
For each dataset one of the application usage scenarios from

the following list was reproduced:
1) Viewing a personal timetable

The user gets to the main screen of the application, looks
at his timetable, and then opens the page of a certain
lecture (or another type of activity) to view information
about it.

2) Search for a person’s timetable
The user goes to the search section from the main screen,
searches for the person, looks through his timetable.

3) Search for free classrooms
The user goes to the services section from the main
screen, configures the parameters for searching for class-
room (building, date, time), after which he receives a
list of available classrooms and views the schedule of a
specific one.



4) Viewing the grade book
The user goes to the profile screen from the main screen,
where he selects his grade book, a year of study, a
discipline for which statistics should be viewed. After
that, he returns to the screen with the grade, and clicks
on the cell with his rating to view the full rating list.

5) Deadlines
The user goes to the deadlines section from the main
screen, creates a new personal deadline, sets the nec-
essary parameters (discipline, title, description, partici-
pants, time), saves it and marks it as completed. Similar
sequence of actions should be performed in case when
the user creates a new group to add a common deadline.

To compare the conformance for different scenarios, Log
Skeleton models were built. Using the example of one sce-
nario, it can be seen that the models are generally similar to
each other, they send requests to the same URLs, and in full
use case scenario go all the way to the certain disciplines (in
case of the first scenario).

At the same time, separate models were built that take into
account the responses and errors returned by the requests (see
Fig. 7).

Such anomalies were found in almost all scenarios, which
made it possible to analyse the causes of such errors. For
example, the Android application does send requests that
are cancelled afterwards to avoid “race condition” in the
application, which confirmed the detected problem.

In addition, Petri nets were built for each process by ap-
plying Inductive Miner. Using the example of the “Timetable
View” scenario, there is a noticeable discrepancy in its execu-
tion of the passage from the main screen to the necessary target
(the screen of a specific discipline in the timetable). However,
it is clear that applications send similar requests and reach
similar endpoints (see Fig. 8).

B. Main Findings

A research study of mobile application logs was conducted
to compare the operations of iOS and Android mobile applica-
tions, with a focus on identifying differences and unexpected
behaviour patterns. The dataset of mobile application logs was
analysed with the aim of uncovering insights that could help
the business and the developers optimise their mobile apps for
each platform. In this section, the main findings of this study

Fig. 7. Fragment of the log skeleton visualisation of the schedule viewing
scenario in an iOS application with detected errors

are presented, highlighting the key differences and similarities
between iOS and Android mobile applications.

First of all, in the study was used the Log Visualiser and
summaries for each use-case to gain insights into the types
of server requests being made on each platform. The Log
Visualiser provided a graphical representation of the logs,
while the summaries allowed for a more detailed analysis of
the data. The analysis of the logs revealed that there were
similar server requests being made on both platforms, with
matching URLs. However, the frequency of these requests
varied depending on the platform, due to the involvement of
different screens. Despite these differences, the behaviour of
the mobile applications on both iOS and Android platforms
was found to be quite similar. Overall, this part of research
contributes to a better understanding of high-level application
behaviour, while next mining approaches helped to find out
more detailed information.

After summaries analysis, several models were built to
discover any differences in performed activities and their
drawbacks. The Petri Nets were used to visualise the traces of
the mobile applications. The use of such models in this study
was beneficial as it allowed to identify potential bottlenecks,
because requests were the same at first sight and had no
significant findings. However, there were some unexpected
steps in traces. This led to usage of the Log Skeleton Visualiser
in ProM, which provided a detailed graph of requests and their
corresponding responses, allowing for a more comprehensive
analysis of the mobile application logs. One of the key findings
of this research was that the Android application logs graphs
almost always contained an unexpected node with the error
message ’java.io.Exception: Canceled’. This finding prompted
to take a closer look at the processes involved in the Android
application logs. Upon closer examination, it was discovered
that there were confirmed issues with sending requests and
cancelling them due to race conditions, which were likely con-
tributing to the found type of error in the Android application
logs graphs. Moreover, a repeating error in some log traces
of the iOS application was found. It was caused by incorrect
parsing of the data that was coming from the server.

This research highlighted the need to address the issues
in the Android application to improve its performance and
reliability. Such analysis can help developers to optimise their
software and prevent similar issues from arising in the future.

VII. DISCUSSION

During the research of application processes, Android and
iOS logs were collected and prepared for analysis, as well as
a representation of individual scenarios in the form of models
obtained from them. To do this, it was necessary to clear the
logs of useless information, parse the needed parts, bring them
to a tabular form and select columns for analysis. This made
it possible to track the behaviour on various platforms, to
identify patterns and anomalies in the requests, which should
lead to the same result.



Fig. 8. Petri nets depicting the process of viewing the schedule using Android and iOS applications

A. Answers to Research Questions

During the analysis of diagrams, models and the general
report in relation to a set of different scenarios, it was found
out that there are no critical discrepancies regarding the
requests sent, since the requests URLs, their number, as well as
the overall behaviour on the traces coincided. Thus, it can be
assumed that there are no abnormal events and discrepancies
in the general case. This answers the first research question.

To answer the second research question a more detailed
analysis of the logs collected in one scenario was conducted.
It allowed to identify erroneous events that are often found
only in the Android application. On Log Skeleton models,
it was noticeable that an event with a request cancellation
error appears in the response. There were no dependencies
on specific scenarios, but it was clear that such a response
was returned as a result of sending a duplicate request that
had already left the application. Serialisation errors were
noticed for the iOS application, which did not lead to further
deviations, but occurred in several traces.

It was also found that the sequences which are more prone
to errors are those which include search requests (for Android).
For iOS such obvious sequences were not found. There also
weren’t noticed any inconsistencies between the response data
and application requests. Thus, the research questions 4 and 3
were also answered.

As a result of analysing the data from the repository, it
became possible to understand the team’s work style (the
daily routine, working days of the week, methodology of
development, quality of commits — size, which parts of the
code were affected).

As it turned out, the developers’ work schedule is not strictly
set, each team member independently determines when it is
more convenient for him to work. It can be noticed that
developers commit to the repository less often on Saturday and
Sunday. That is, programmers, even if they are not limited in

the choice of working hours, decide not to work on weekends.
In the same way, it is noticeable that commits are made at
completely different times.

Project participants work on tasks in parallel with each other
and everyone’s familiarity with the project is approximately on
the same level. Everyone has worked with almost every file
in the repository at some point in time. The only exception is
the junior developer, which is logical, given his level.

It was also possible to notice that commits are carried out
in all modules of the project so far. It can be assumed that
the tasks relate to different parts of the project and they can
be issued to different developers. This approach to working
on software products is also popular in large companies —
when new functionality is gradually added to the product
over time and when needed. That suggests any of the Agile
methodologies is used in the development process (or no
methodology is used at all, and programmers work the way
they are used to). This concludes the answer of the fifth
question of this research.

It was also possible to identify the parts of the project
in which commits have been carried out the least recently
(the last research question). The informativeness of such a
list is a little doubtful, since there are several auxiliary files
(for example, SberPaySDK6). There are also many references
to the authorisation module and to the main module of the
project. With the help of additional tools, it was possible to
identify several files where commits have not been performed
for a long time — these are files related to network interaction
and some basic files. However, this information is not accurate
enough, since the analysis included large commits affecting
almost all project files.

6Sber API Registry: https://api.developer.sber.ru/product/SberbankID/doc/
v1/iOSsdk

https://api.developer.sber.ru/product/SberbankID/doc/v1/iOSsdk
https://api.developer.sber.ru/product/SberbankID/doc/v1/iOSsdk


B. Open Questions and Problems
Among the open questions regarding the various versions of

the application, is an in-depth comparison of the body of the
response to the request with the current status. To do this, it is
necessary to improve parsing, explore examples of responses
and such cases in logs, on the basis of which it will be possible
to build new models. The detection of such discrepancies will
improve the responses from the service, which will affect
their processing in applications. It would be better to test the
application work on a large number of scenarios and with the
participation of real users.

VIII. RELATED WORK

This section is a brief review of the field of mining software
data. Process mining considers software as a research object
for more than fifteen years [8], [9], and a lot of contributions
have been made in this field. Most of them can be grouped
into two major classes depending on what processes are
considered:

• software behaviour,
• software (development, maintenance etc.) process.
Let us consider papers of both these classes. In this paper,

we begin with the analysis of a development process. There-
fore, in this section, we will follow the same approach.

The problem of team work assessment is crucial in the
domain [10]. Indeed, process mining can be used to evaluate
process performance. Software development process can be
evaluated more or less in the same way as other business
processes. To achieve more detailed results, mining of event
logs can be combined with more conventional approaches like
surveys and expert evaluation [11].

Lightweight development approaches are a target for mining
due to their agility and non-linear nature [12]. Marques et
at. [13] evaluates programmer’s activities within agile devel-
opment teams. The aim is to find what Scrum disciplines and
practises can be revealed and checked using event logs from a
case-handling system. Interestingly, some of practises can be
discovered using very basic techniques.

Mining event logs of individual programmers is another
emerging sub-domain [14], [15]. Process mining techniques
can be used, for example, to assist and fine-tune learning
process of novice developers [16]. Supplementary data from
repositories of student projects can be investigated as well
[17]. Such an analysis gives many ideas of how to improve
and evolve existing programming courses in a more interactive
learning facilities. Security training of programmers and users
can benefit of user log mining no less than other sub-domains
[18], [19].

Let us now consider applications of process mining to
software behaviour analysis.

Process analysis methods can be applied to the very low-
level technical problems. For example, Wakup and Desel [20]
considered how logs of an application with active TCP/IP
information interchange can be analysed using process mining.
Authors constructed models of client-server communication
with both sides clearly separable.

Leemans et al. proposed [21] and later developed [22] a
methodology to analyse event logs of software systems. The
goal is to reverse engineer a (possibly, legacy) system to reveal
and grasp its behavioural characteristics. The methodology
combines a general approach to software process analysis
(similar to PM2 [3]) with very technical tools [23]. Leemans
et al. even constructed a ProM plug-in — Statechart Work-
bench [24] — that can support users of this approach.

In 2015, Shershakov and Rubin published a paper [25] on
how to analyse real-life software executions and what can
be discovered from event logs of such executions. Later, the
team of collaborators of Sergey Shershakov developed several
techniques to synthesise UML activity diagrams and other
types of visual model for service-oriented and component-
based systems [26], [27].

The same component-based systems have been analysed
by Liu with his co-authors [28]–[30] In a series of papers,
they worked on a problem of identifying communicating
components and interfaces through which components com-
municate. Separate services in an enterprise-scale service-
oriented system can be discovered based on event log analysis
as well [31]

Process analysis approaches can be valuable in more spe-
cific sub-domains of software engineering. Software reliability
can be assessed based on process mining techniques. A lot
of approaches reviewed by Macák et al. [32] Interestingly,
event the evolution of highly-distributed systems like block-
chain applications can be successfully revealed using process
analysis approaches [33].

Mobile applications can also be the object for process
analysis. Process mining is a popular research topic in various
fields related to user applications, such as mobile games [34]
and others. Usually, the goal of the research projects is to
solve some common problem and find various (anti-)patterns
in user behaviour. Sometimes, researchers are trying to answer
business-related questions for particular mobile applications
[35]. Log analysis for a specific platform was also mentioned
in literature [36], but without the goal to compare behaviour
of several applications for different platforms.

From this concise literature review, we conclude that as
software generates a lot of data, this data can be analysed with
valuable outcomes for developers, designers, and users. The
field of software process analysis develops actively. Methods
applied in our paper are in line with the state-of-the-art
approaches in process mining. The object of our investigation
— a family of mobile applications — is new for the field.

IX. CONCLUSION

In this paper, we presented the results of a case study.
We applied process mining to analyse datasets containing
event data recorded within the development process of mobile
applications. Usually, mobile applications are developed and
maintained as a family because enterprises want to provide
their services on various platforms. In the paper, we show
that different applications of the same family can behave in
a variety of ways. Besides, their development processes can



differ as well. Process mining allows for discovering real
process models which can be easily investigated by developer
teams in order to reveal unwanted discrepancies, find bugs,
and highlight inefficiencies.

ACKNOWLEDGEMENTS

This work is an output of a research project implemented as
part of the Basic Research Program at the National Research
University Higher School of Economics (HSE University).

REFERENCES

[1] W. M. P. van der Aalst, Process Mining - Data Science in Action, Second
Edition. Springer, 2016.

[2] W. M. P. van der Aalst and J. Carmona, Eds., Process Mining Handbook,
ser. Lecture Notes in Business Information Processing. Springer, 2022,
vol. 448.

[3] M. L. van Eck, X. Lu, S. J. J. Leemans, and W. M. P. van der Aalst,
“PM ˆ2 : A process mining project methodology,” in CAiSE, ser. Lecture
Notes in Computer Science, vol. 9097. Springer, 2015, pp. 297–313.

[4] T. W. W. M. van der Aalst and L. Maruster, “Workflow mining:
Discovering process models from event logs,” IEEE Transactions on
Knowledge and Data Engineering, vol. v. 16, n. 9, 2004.

[5] E. Verbeek, J. C. A. M. Buijs, B. F. van Dongen, and W. M. P. van der
Aalst, “Prom 6: The process mining toolkit,” in BPM (Demos), ser.
CEUR Workshop Proceedings, vol. 615. CEUR-WS.org, 2010.

[6] S. J. J. Leemans, Robust Process Mining with Guarantees - Process
Discovery, Conformance Checking and Enhancement, ser. Lecture Notes
in Business Information Processing. Springer, 2022, vol. 440.

[7] H. M. W. Verbeek, “The log skeleton visualizer in prom 6.9,” Int. J.
Softw. Tools Technol. Transf., vol. 24, no. 4, pp. 549–561, 2022.

[8] V. A. Rubin, C. W. Günther, W. M. P. van der Aalst, E. Kindler, B. F.
van Dongen, and W. Schäfer, “Process mining framework for software
processes,” in ICSP, ser. Lecture Notes in Computer Science, vol. 4470.
Springer, 2007, pp. 169–181.

[9] V. A. Rubin, A. A. Mitsyuk, I. A. Lomazova, and W. M. P. van der Aalst,
“Process mining can be applied to software too!” in ESEM. ACM, 2014,
pp. 57:1–57:8.

[10] J. Caldeira, F. B. e Abreu, J. P. dos Reis, and J. Cardoso, “Assessing
software development teams’ efficiency using process mining,” in ICPM.
IEEE, 2019, pp. 65–72.

[11] D. Vavpotic, S. Bala, J. Mendling, and T. Hovelja, “Software process
evaluation from user perceptions and log data,” J. Softw. Evol. Process.,
vol. 34, no. 4, 2022.

[12] V. A. Rubin, I. A. Lomazova, and W. M. P. van der Aalst, “Agile
development with software process mining,” in ICSSP. ACM, 2014,
pp. 70–74.

[13] R. Marques, M. M. da Silva, and D. R. Ferreira, “Assessing agile
software development processes with process mining: A case study,”
in CBI (1). IEEE Computer Society, 2018, pp. 109–118.

[14] C. Ioannou, A. Burattin, and B. Weber, “Mining developers’ workflows
from IDE usage,” in CAiSE Workshops, ser. Lecture Notes in Business
Information Processing, vol. 316. Springer, 2018, pp. 167–179.

[15] P. Ardimento, M. L. Bernardi, M. Cimitile, and F. M. Maggi, “Evaluating
coding behavior in software development processes: a process mining
approach,” in ICSSP. IEEE / ACM, 2019, pp. 84–93.

[16] P. Ardimento, M. L. Bernardi, M. Cimitile, and G. D. Ruvo, “Learning
analytics to improve coding abilities: a fuzzy-based process mining
approach,” in FUZZ-IEEE. IEEE, 2019, pp. 1–7.

[17] M. Macák, D. Kruzelova, S. Chren, and B. Buhnova, “Using process
mining for git log analysis of projects in a software development course,”
Educ. Inf. Technol., vol. 26, no. 5, pp. 5939–5969, 2021.

[18] M. Macák, R. Oslejsek, and B. Buhnova, “Process mining analysis of
puzzle-based cybersecurity training,” in ITiCSE (1). ACM, 2022, pp.
449–455.

[19] ——, “Applying process discovery to cybersecurity training: An expe-
rience report,” in EuroS&P Workshops. IEEE, 2022, pp. 394–402.

[20] C. Wakup and J. Desel, “Analyzing a tcp/ip-protocol with process mining
techniques,” in Business Process Management Workshops, ser. Lecture
Notes in Business Information Processing, vol. 202. Springer, 2014,
pp. 353–364.

[21] M. Leemans and W. M. P. van der Aalst, “Process mining in software
systems: Discovering real-life business transactions and process models
from distributed systems,” in MoDELS. IEEE Computer Society, 2015,
pp. 44–53.

[22] M. Leemans, W. M. P. van der Aalst, M. G. J. van den Brand, R. R. H.
Schiffelers, and L. Lensink, “Software process analysis methodology -
A methodology based on lessons learned in embracing legacy software,”
in ICSME. IEEE Computer Society, 2018, pp. 665–674.

[23] M. Leemans, W. M. P. van der Aalst, and M. G. J. van den Brand,
“Recursion aware modeling and discovery for hierarchical software
event log analysis (extended),” CoRR, vol. abs/1710.09323, 2017.

[24] ——, “The statechart workbench: Enabling scalable software event log
analysis using process mining,” in SANER. IEEE Computer Society,
2018, pp. 502–506.

[25] S. A. Shershakov and V. A. Rubin, “System runs analysis with
process mining,” Modeling and Analysis of Information Systems,
vol. 22, no. 6, pp. 818–833, 2015. [Online]. Available: https:
//www.mais-journal.ru/jour/article/view/297

[26] K. V. Davydova and S. A. Shershakov, “Mining hybrid uml
models from event logs of soa systems,” Proceedings of the
Institute for System Programming of the RAS (Proceedings of ISP
RAS), vol. 29, no. 4, pp. 155–174, 2018. [Online]. Available:
https://ispranproceedings.elpub.ru/jour/article/view/319

[27] N. S. Zubkova and S. A. Shersakov, “Method for building uml
activity diagrams from event logs,” Proceedings of the Institute
for System Programming of the RAS (Proceedings of ISP RAS),
vol. 31, no. 4, pp. 139–150, 2019. [Online]. Available: https:
//ispranproceedings.elpub.ru/jour/article/view/1200

[28] C. Liu, B. F. van Dongen, N. Assy, and W. M. P. van der Aalst,
“Component behavior discovery from software execution data,” in SSCI.
IEEE, 2016, pp. 1–8.

[29] ——, “Component interface identification and behavioral model discov-
ery from software execution data,” in ICPC. ACM, 2018, pp. 97–107.

[30] ——, “A general framework to identify software components from
execution data,” in ENASE. SciTePress, 2019, pp. 234–241.

[31] A. A. C. D. Alwis, A. Barros, A. Polyvyanyy, and C. J. Fidge,
“Function-splitting heuristics for discovery of microservices in enterprise
systems,” in ICSOC, ser. Lecture Notes in Computer Science, vol. 11236.
Springer, 2018, pp. 37–53.

[32] M. Macák, L. Daubner, M. F. Sani, and B. Buhnova, “Process mining
usage in cybersecurity and software reliability analysis: A systematic
literature review,” Array, vol. 13, p. 100120, 2022.

[33] M. Müller and P. Ruppel, “Process mining for decentralized applica-
tions,” in DAPPCON. IEEE, 2019, pp. 164–169.

[34] H. Kwon and D. Kim, “A method for churn analysis of new users of
mobile games using process mining,” ICIC Express Letters, vol. v. 7, n.
8, 2016.

[35] S. Kim and D. Kim, “Analyzing mobile application logs using process
mining techniques: An application to online bookstores,” ICIC Express
Letters, vol. v. 9, n. 6, 2013.

[36] Y. C. B. Park, I. Cho and W. Lee, “A log analysis of smartphone
application usage: Focusing on domestic iphone users,” Journal of the
HCI Society of Korea, vol. v. 2011, n.1, 2011.

https://www.mais-journal.ru/jour/article/view/297
https://www.mais-journal.ru/jour/article/view/297
https://ispranproceedings.elpub.ru/jour/article/view/319
https://ispranproceedings.elpub.ru/jour/article/view/1200
https://ispranproceedings.elpub.ru/jour/article/view/1200

	Introduction
	System
	Research Tasks and Questions
	Data
	Data
	Data Preprocessing

	Development Process Analysis
	Analysis
	Main Findings

	Application Behavior Analysis
	Analysis
	Main Findings

	Discussion
	Answers to Research Questions
	Open Questions and Problems

	Related Work
	Conclusion
	References

