

DFC: A Dataflow C language

Ivan Grigorov1,2
1 Ivannikov Institute for System Programming of the Russian Academy of Sciences (ISP RAS)

2 National Research University – Higher School of Economics (HSE)

Email: grigorovia@ispras.ru

Abstract—Electronic designs are developed using Hardware
Description Languages (HDL), such as Verilog and VHDL.
These languages describe electronic designs at the Register
Transfer Level (RTL). As electronic designs increase in both size
and complexity the task of developing them using HDL becomes
difficult. There comes the concept of High-Level
Synthesis (HLS). HLS tools translate programs described at the
behavioral level to the RTL. Most of them use imperative
languages, such as C/C++, as their input languages. However,
these languages are based on von Neumann model which does
not describe parallelism. This usually results in a poor quality of
the resulting electronic designs. So the use of the language with
a model which describes parallelism is preferable. One of such
models is the dataflow model.

In this paper we present DFC, a language that uses
synchronous dataflow to explicitly express parallelism in
programs while remaining time-agnostic. DFC supports the
usage of configurable IP cores. DFC also accepts different
optimization criteria which help developers to control synthesis
process.

Keywords—HLS, Dataflow, IP core, IP reuse, IP-XACT,
RTL library, Verilog, Dataflow languages.

I. INTRODUCTION

Hardware Description Languages (HDL) have been used
to develop electronic designs since 1980s. Two of these
languages have become de-facto standards for developing
electronic designs, namely Verilog [1] and VHDL [2]. These
languages describe the desired functionality at the Register
Transfer Level (RTL). This level has to deal with low-level
details such as timing constraints, explicit register allocation,
etc. Designing circuits at this level is a tedious and an error-
prone task.

High-level synthesis (HLS) addresses this issue by
translating a high-level behavioral description of a program
to RTL. Most HLS tools accept programs written in
imperative languages. For example, Vitis HLS [3] translates
a C/C++ program to either a Verilog or a VHDL program;
Bambu [4] and LegUp [5] translate a C program to Verilog;
Xilinx’ AccelDSP [6] uses Matlab as an input language and
Verilog or VHDL as an output language. The use of these
languages supports widespread adoption of HLS. However,
the results show that the designs, synthesized by these tools,
mostly exhibit poor quality compared to the corresponding
hand-written implementations. One of the reasons for this is
that von Neumann model, which underlies these imperative
languages, does not describe parallelism. Other tools use the
input languages with underlying models which are more
suitable for describing parallelism. For example,
MaxCompiler [7] uses Java-like language MaxJ and XLS [8]
uses Rust-like language DSLX, which follow the
synchronous dataflow model [9]. These tools produce RTL
models, comparable with the hand-written RTL models in
terms of performance.

The other important issue in hardware design is
component reuse. Nowadays electronic designs need to
implement complex logic. To implement this complex logic
from scratch requires a lot of time. The idea is to decompose
this complex logic into smaller parts and construct the design
using existing solutions for the smaller parts. These existing
solutions are called Intellectual Property cores (IP cores).

This concept is called IP reuse. If IP core has an open
implementation, then the integration is straightforward.
However, due to the intellectual property issue sometimes it
is not possible to get an open implementation. Unfortunately,
existing HLS tools that follow the dataflow paradigm either
do not have the support of external IP cores [10] or support
only static (non-parameterized) external IP cores with open
implementations [11].

In this paper we introduce DFC, a language that follows
the paradigm of synchronous dataflow. DFC has a C-like
syntax which eases the adoption of the language by the
developers. DFC has an internal library of configurable
standard components such as adders, multipliers,
multiplexers, etc. which are tailored in an optimization step
to achieve better quality of the design. DFC supports the use
of external HDL libraries of configurable IP cores which are
described using IP-XACT [12] standard. It also gives the
developers an ability to control the design synthesis by
applying various optimization criteria. DFC is a part of the
bigger project Utopia, developed in Institute for System
Programming of the Russian Academy of Sciences (ISPRAS).

II. BACKGROUND

The purpose of HLS is to allow programmers without
the knowledge and experience in the field of hardware
design to construct RTL models. HLS usually takes the
following steps. First, a behavioral description is
transformed into some formal representation that explicitly
exhibits intrinsic parallelism of the description. In the
following step allocation of available resources (functional
units, memory, etc.) is performed. Next, the operations are
scheduled into clock cycles. Finally, resource binding
assigns operations and data elements to resources, allocated
in the previous step. It should be noted that HLS also
performs the interface synthesis.

One approach in HLS is to use one of imperative
languages, for example, C/C++ [13][14][15]. Most
programmers are used to imperative languages, which are
based on von Neumann model. Therefore, the programmers
do not have to learn new languages and, moreover, they
don’t need to develop a new way of thinking in terms of
unfamiliar models.

However, von Neumann model, which underlies these
languages, does not describe parallelism. This results in
performance loss of these RTL models when compared to
the hand-written implementations. So HLS tools use
facilities to orchestrate parallelism in computations, for
example, pragmas. Still, the imperative nature of these
languages still plays a major part in the performance loss.

Other tools use languages with computation model
which describe parallelism in some form [16][17][18]. One
of these models is the dataflow model. The dataflow model
describes a program in a form of a graph. Nodes represent
operations on data. The operations themselves can be
described as dataflow graphs so the model is hierarchical.
Arcs represent data dependencies between operations. Data
are carried on tokens which travel along the arcs. Dataflow
model operates on potentially limitless streams of data.
Nodes can execute in parallel assuming there are no data

mailto:grigorovia@ispras.ru

dependencies between them. A node can execute (or fire)
when there are enough tokens on the inputs. A dataflow
model is said to be synchronous if the number of consumed
and produced tokens is constant for each firing in every
node. In the cycle-static model the number of tokens
consumed and produced changes periodically. Nodes in the
dynamic dataflow model consume and produce various
numbers of tokens depending on the input data [19][20].
Since the firing rules are static in synchronous dataflow, the
scheduling can be done at compile time. This means that
complex scheduler logic will not be implemented in
hardware resulting in more productive schemes compared to
other types of dataflow.

III. RELATED WORK

In recent years various HLS tools have emerged, both free
and commercial. In this section we review HLS tools which
use languages based on dataflow models.

MaxCompiler: MaxCompiler [21] is a mature tool for
designing heterogeneous systems. It follows the synchronous
dataflow computing paradigm. The input language of the tool
is MaxJ with a Java-like syntax. It produces synthesizable
designs in VHDL language. A program is described as a set
of communicating components named Kernels which are
responsible for computation. Communication between
Kernels is orchestrated by a Manager component.
Unfortunately, the support of external IP cores is lacking. It
only supports the use of static (non-parameterized) IP cores.
It also does not support HDL code generators. Moreover, to
integrate an external IP core one must manually integrate this
IP core in system.

XLS: XLS [22] is an open-source HLS tool for producing
synthesizable designs in Verilog and SystemVerilog from
high-level behavioral descriptions. The program is described
in DSLX language with a syntax similar to that in Rust [23]
language. The underlying model of the language is
synchronous dataflow. A program in DSLX is called a module
and consists of functions which describe computations.
Communication is organized by means of procs. A proc
contains a config function that initializes constant proc state
and spawns any other dependent procs needed for execution
and a recurrent next function that contains the logic to be
executed by the proc. Channels are used to get and send
information between different procs. DSLX does not support
the usage of external IP cores at all.

IV. CONCEPT

A. Language constructs

We introduce DFC, a synchronous dataflow language
with the support of external HDL libraries. DFC produces
synthesizable designs described in Verilog language. DFC has
a C-like syntax, helping developers in learning this language.
The reuse of IP cores is one of the key factors in achieving
productivity in hardware design. So one of the features of
DFC is the use of IP core libraries specified by IP-XACT
specification. DFC also gives the developers an ability to
control synthesis by applying different optimization criteria
such as performance, area and energy consumption. The
proposed language is described below.

A program in DFC is divided into Kernels. An example
illustrating program structure presented in Listing I. Kernel
performs computations. Kernels are essentially graphs of
pipelined arithmetical units. Other Kernels can be instantiated
in the Kernel and connected to the Kernel. Also, a Kernel is

responsible for loading and integrating external HDL libraries.
A simple analogy for a Kernel is a Verilog module [24].

DFC define basic and composite types. There are three
basic types: fixed type, float type and bits type. Fixed type
represents fixed point number type. Float type represents
floating point number type. Bits type represents a stream of
raw bits. The bit width of all basic types is configurable. For
the fixed type one can also configure its sign and the number
of bits for the integer and the fraction part. For the float type
the sign and the number of bits needed to represent the
mantissa and the exponent can also be configured. There are
two composite types in DFC: tuple type and tensor type.
Tuple type represents a mathematical tuple, that is, a finite
sequence of elements. Tensor type represents a mathematical
tensor. Table I describes implemented operations for complex
and basic types.

It should be noted that if there is a type mismatch the
developer must explicitly transform data from one type to
another. This is done using cast operator. Cast operator is
defined only on basic types and accepts the following
transformations: fixed to float and vice versa, float to bits and
vice versa and bits to fixed and vice versa. It also must be used
in cases when there is a mismatch in type size.

DFC define control flow constructs: ternary operator (?:),
if else and switch case constructs with the standard semantics.

Sometimes there is a need to operate on more than one
data value in a particular stream, for example, when
computing a moving average. Because DFC operates on
streams index operation cannot be used to access data at a
particular location in a stream. To do this a stream offset
operation is introduced with the following semantics. Positive
offset values allow to access next values relative to a current
position in a stream and negative offset values allow to access
previous values relative to a current position in a stream. Zero
offset value corresponds to a current position in a stream.
DFC supports only static offsets, meaning the value of the
offset must be known at compile time. In Listing II there is an
example of the program using offsets to calculate a three-
point moving average.

The key feature of DFC is the support of external HDL
libraries. An external HDL library is a collection of IP cores
usually from a particular vendor. In DFC these libraries need
to be specified using IP-XACT standard [25]. It should be
noted that DFC supports both static and configurable IP cores,
such as parameterized modules in Verilog or VHDL. It also
supports the use of external HDL code generators. This
particular feature highly improves design space exploration.
Ideally, an external HDL generator is accompanied with the
corresponding estimation functions. These functions allow to
estimate important characteristics of an IP core to be
generated by the generator. This allows to choose the desired
configuration based on input optimization criteria without the
actual synthesis. This is done during an optimization step. In
the following steps external HDL code generators will be
called with different parameters and generate different
implementations for the desired functionality. These
implementations will be integrated in the output design
resulting in different design configurations. One of these
design configurations will be chosen depending on
optimization criteria. Listing III gives an example of using
external HDL libraries in a DFC program.

B. Language semantics

To explain the semantics of DFC language a simple DFC
program is considered. The code of this program is presented

in Listing IV. The program takes as an input a number of fixed
type. If the number is greater than 255 then the result is taken
as the sum of the current input value, the previous input value
and the next input value, divided by 3. Otherwise the result is
the sum of the current input value and 1. The dataflow graph
corresponding to this code is presented in Figure 1. For
illustrative purposes nodes in the graph are divided into
different types. Node types and their semantics are described
in Table II.

TABLE II. Kernel dataflow graph node types.

Source node receives input data tokens

from external sender

Sink node sends output data tokens to

some receiver

Constant node sends data tokens of

constant value x

Stream offset node allows to access

next/previous value at position n

relative to the current position in the

input stream

Computation node performs some

arithmetic or logic operation op as well

as cast operation

Mux(multiplexer) node is used for

making decisions

First, an input stream and an output stream are defined.
This creates the source node (1) and the sink node (2). If else
construct is synthesized into the mux(multiplexer) node (3).
Comparison operator inside the if else construct is
synthesized into the computation node (4). The constant
inside the condition is synthesized into the constant node (5)
which output is then connected to the computation node (4),
along with the output of the source node (1). The output of
the computation node (4) is then connected to the input of the
mux node (3). The body of the if block is synthesized into the
stream offset node (6), the stream offset node (7), the
computation node (8), the computation node (9), the
computation node (10) and the constant node (11). The output
of the source node (1) and the output of the stream offset node
(6) are connected to the input of the computation node (8).
The output of the computation node (8) is connected to the
input of the computation node (9) along with the output of the

stream offset node (7). The output of the computation node (9)
is connected to the input of the computation node (10) along
with the output of the constant node (11). The body of the else
block is synthesized into the computation node (12) and the
constant node (13). The output of the source node (1) is
connected to the input of the computation node (12) along
with the output of the constant node (13). The output of the
computation node (10) and the output of the computation
node (12) are connected to the inputs of the mux node (3).
Finally, the output of the mux node (3) is connected to the
input of the sink node (2).

Following the dataflow paradigm, nodes execute (or fire)
in parallel if there are no data dependencies between them. A
node executes if there is enough data units (tokens) on the
inputs, passing its output data tokens to other nodes. So the
data flows from sources to sinks provided there are no loops
in the dataflow graph. Pipelining is automatic so the
programmer can focus on other aspects of development. DFC
operates on streams, that is, on potentially unbounded data
sequences.

Fig 1. A Kernel dataflow graph.

V. CONCLUSION

In this paper we presented DFC, a dataflow language for
constructing electronic designs with support of external IP
core libraries. We described its semantics and its key features.
Future work may include the support of pragmas helping to
achieve better quality of results.

REFERENCES

[1] IEEE Standard for Verilog Hardware Description Language. IEEE Std
1364-2005, 2006. DOI: 10.1109/IEEESTD.2006.99495.

[2] IEEE Standard VHDL Language Reference Manual. IEEE Std 1076-
2019, 2019. DOI: 10.1109/IEEESTD.2019.8938196.

[3] Vitis HLS – https://www.xilinx.com/support/documentation-
navigation/design-hubs/dh0090-vitis-hls-hub.html

[4] Bambu: A Free Framework for the High-Level Synthesis of Complex
Applications – https://panda.deib.polimi.it/?page_id=31

[5] LegUp High-Level Synthesis – http://legup.eecg.utoronto.ca/

[6] AccelDSP – https://www.xilinx.com/support/documentation-
navigation/development-tools/mature-products/acceldsp.html

[7] MaxCompiler –
https://www.maxeler.com/products/software/maxcompiler

[8] XLS: Accelerated HW Synthesis – https://google.github.io/xls/

[9] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous
data flow programs for digital signal processing. IEEE Trans.
Comput., C-36(1), 1987. P. 24-35. DOI: 10.1109/TC.1987.5009446

[10] XLS: Accelerated HW Synthesis – https://google.github.io/xls/

[11] MaxCompiler –
https://www.maxeler.com/products/software/maxcompiler

[12] IEEE Standard for IP-XACT, Standard Structure for Packaging,
Integrating, and Reusing IP within Tool Flows. IEEE Std 1685-2014,
2014. DOI: 10.1109/IEEESTD.2014.6898803.

[13] Vitis HLS – https://www.xilinx.com/support/documentation-
navigation/design-hubs/dh0090-vitis-hls-hub.html

[14] Bambu: A Free Framework for the High-Level Synthesis of Complex
Applications – https://panda.deib.polimi.it/?page_id=31

[15] LegUp High-Level Synthesis – http://legup.eecg.utoronto.ca/

[16] Intel FPGA SDK for OpenCL –
https://www.intel.com/content/www/us/en/software/programmable/sd
k-for-opencl/overview.html

[17] MaxCompiler –
https://www.maxeler.com/products/software/maxcompiler

[18] XLS: Accelerated HW Synthesis – https://google.github.io/xls/

[19] G. Bilsen, M. Engels,R. Lauwereins, J. Peperstraete. Cycle-static
dataflow. IEEE Transactions on Signal Processing, 44(2), 1996. P. 397-
408. DOI: 10.1109/78.485935.

[20] T.M. Parks,J.L. Pino, E.A. Lee. A Comparison of Synchronous and
Cyclo-Static Dataflow. Conference Record of The Twenty-Ninth
Asilomar Conference on Signals, Systems and Computers, 1995. P. 1-
7. DOI: 10.1109/ACSSC.1995.540541.

[21] MaxCompiler –
https://www.maxeler.com/products/software/maxcompiler

[22] XLS: Accelerated HW Synthesis – https://google.github.io/xls/

[23] Rust Programming Language – https://www.rust-lang.org/

[24] IEEE Standard for Verilog Hardware Description Language. IEEE Std
1364-2005, 2006. DOI: 10.1109/IEEESTD.2006.99495.

[25] IEEE Standard for IP-XACT, Standard Structure for Packaging,
Integrating, and Reusing IP within Tool Flows. IEEE Std 1685-2014,
2014. DOI: 10.1109/IEEESTD.2014.6898803.

https://google.github.io/xls/
https://google.github.io/xls/
https://www.maxeler.com/products/software/maxcompiler
https://www.maxeler.com/products/software/maxcompiler
https://google.github.io/xls/
https://www.maxeler.com/products/software/maxcompiler
https://google.github.io/xls/

LISTING I. DFC program structure.

LISTING II. Calculating three-point moving average.

DFC_KERNEL(MovingAverage) {

 DFC_KERNEL_CTOR(MovingAverage) {

 dfc::stream<dfc::sint16> input;

 dfc::stream<dfc::sint16> result;

 result = (input.offset(-1) + input + input.offset(1)) / 3;

 }

};

DFC_KERNEL(Kernel1) {

 static const int SIZE = 4;

 DFC_KERNEL_CTOR(Kernel1) {

 std::vector<dfc::stream<dfc::sint16>> lhs;

 std::vector<dfc::stream<dfc::sint16>> rhs;

…

 for (std::size_t i = 0; i < SIZE; i++) {

 res[i] = lhs[i] + rhs[i];

 }

 }

};

…

DFC_KERNEL(Kernel2) {

 DFC_KERNEL_CTOR(Kernel2) {

 std::vector<dfc::stream<dfc::sint16>> blk;

…

 DFC_CREATE_KERNEL(Kernel1);

 dfc::instance("Kernel1", "KernelInstance1");

 dfc::connectionToInstanceInput("KernelInstance1", blk[0], "lhs_0");

 dfc::connectionToInstanceInput("KernelInstance1", blk[1], "lhs_1");

 dfc::connectionToInstanceInput("KernelInstance1", blk[2], "lhs_2");

 dfc::connectionToInstanceInput("KernelInstance1", blk[3], "lhs_3");

 dfc::connectionToInstanceOutput("KernelInstance1", blk[8], "res_0");

 dfc::connectionToInstanceOutput("KernelInstance1", blk[9], "res_1");

 dfc::connectionToInstanceOutput("KernelInstance1", blk[10], "res_2");

 dfc::connectionToInstanceOutput("KernelInstance1", blk[11], "res_3");

…

 }

};

…

LISTING III. Usage of external HDL libraries.

DFC_KERNEL(Kernel) {

DFC_IMPORT_HDL_LIBRARY(“path_to_library/ipxact_catalog.xml”);

 DFC_KERNEL_CTOR(Kernel) {

 dfc::external_generator(FFT_generator, “FFT_generator_instance”);

 dfc::stream<dfc::sint16> first;

 dfc::stream<dfc::sint16> second;

 dfc::stream<dfc::sint16> result;

 dfc::connectionToInstanceInput("FFT_generator_instance", first, "first");

 dfc::connectionToInstanceInput("FFT_generator_instance", second, "second");

 dfc::connectionToInstanceOutput("FFT_generator_instance", result, "res");

 }

};

LISTING IV. An example of DFC program.

DFC_KERNEL(MovingAverage) {

 DFC_KERNEL_CTOR(MovingAverage) {

 dfc::stream<dfc::sint16> input;

 dfc::stream<dfc::sint16> output;

 if (input > 255) {

 output = (input.offset(-1) + input + input.offset(1)) / 3;

 } else {

 output = input + 1;

 }

 }

};

TABLE I. DFC operations.

Type / Operation fixed float bits tuple tensor

Assignment (=)
✓ ✓ ✓ ✓ ✓

Addition (+)
✓ ✓

✓

Subtraction (-)
✓ ✓

✓

Multiplication (*)
✓ ✓

✓

Division (/)
✓ ✓

✓

Bitwise operations:

AND(&), OR(|), XOR(^),

NOT(~)

✓

✓

Shifts:

logical (<<, >>), arithmetical

(<<<, >>>)

✓

✓

Comparison operators:

EQ(==), NE(!=), LE(<=),

GE(>=), LT(<), GT(>)

✓ ✓ ✓

Indexation ([])
✓ ✓ ✓

✓

