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Abstract—Electronic designs are developed using Hardware 
Description Languages (HDL), such as Verilog and VHDL. 
These languages describe electronic designs at the Register 
Transfer Level (RTL). As electronic designs increase in both size 
and complexity the task of developing them using HDL becomes 
difficult. There comes the concept of High-Level 
Synthesis (HLS). HLS tools translate programs described at the 
behavioral level to the RTL. Most of them use imperative 
languages, such as C/C++, as their input languages. However, 
these languages are based on von Neumann model which does 
not describe parallelism. This usually results in a poor quality of 
the resulting electronic designs. So the use of the language with 
a model which describes parallelism is preferable. One of such 
models is the dataflow model. 

In this paper we present DFC, a language that uses 
synchronous dataflow to explicitly express parallelism in 
programs while remaining time-agnostic. DFC supports the 
usage of configurable IP cores. DFC also accepts different 
optimization criteria which help developers to control synthesis 
process. 

Keywords—HLS, Dataflow, IP core, IP reuse, IP-XACT, 
RTL library, Verilog, Dataflow languages. 

I. INTRODUCTION 

Hardware Description Languages (HDL) have been used 
to develop electronic designs since 1980s. Two of these 
languages have become de-facto standards for developing 
electronic designs, namely Verilog [1] and VHDL [2]. These 
languages describe the desired functionality at the Register 
Transfer Level (RTL). This level has to deal with low-level 
details such as timing constraints, explicit register allocation, 
etc. Designing circuits at this level is a tedious and an error-
prone task. 

High-level synthesis (HLS) addresses this issue by 
translating a high-level behavioral description of a program 
to RTL. Most HLS tools accept programs written in 
imperative languages. For example, Vitis HLS [3] translates 
a C/C++ program to either a Verilog or a VHDL program; 
Bambu [4] and LegUp [5] translate a C program to Verilog; 
Xilinx’ AccelDSP [6] uses Matlab as an input language and 
Verilog or VHDL as an output language. The use of these 
languages supports widespread adoption of HLS. However, 
the results show that the designs, synthesized by these tools, 
mostly exhibit poor quality compared to the corresponding 
hand-written implementations. One of the reasons for this is 
that von Neumann model, which underlies these imperative 
languages, does not describe parallelism. Other tools use the 
input languages with underlying models which are more 
suitable for describing parallelism. For example, 
MaxCompiler [7] uses Java-like language MaxJ and XLS [8] 
uses Rust-like language DSLX, which follow the 
synchronous dataflow model [9]. These tools produce RTL 
models, comparable with the hand-written RTL models in 
terms of performance.

 

The other important issue in hardware design is 
component reuse. Nowadays electronic designs need to 
implement complex logic. To implement this complex logic 
from scratch requires a lot of time. The idea is to decompose 
this complex logic into smaller parts and construct the design 
using existing solutions for the smaller parts. These existing 
solutions are called Intellectual Property cores (IP cores). 

This concept is called IP reuse. If IP core has an open 
implementation, then the integration is straightforward. 
However, due to the intellectual property issue sometimes it 
is not possible to get an open implementation. Unfortunately, 
existing HLS tools that follow the dataflow paradigm either 
do not have the support of external IP cores [10] or support 
only static (non-parameterized) external IP cores with open 
implementations [11]. 

In this paper we introduce DFC, a language that follows 
the paradigm of synchronous dataflow. DFC has a C-like 
syntax which eases the adoption of the language by the 
developers. DFC has an internal library of configurable 
standard components such as adders, multipliers, 
multiplexers, etc. which are tailored in an optimization step 
to achieve better quality of the design. DFC supports the use 
of external HDL libraries of configurable IP cores which are 
described using IP-XACT [12] standard. It also gives the 
developers an ability to control the design synthesis by 
applying various optimization criteria. DFC is a part of the 
bigger project Utopia, developed in Institute for System 
Programming of the Russian Academy of Sciences (ISPRAS). 

II. BACKGROUND 

The purpose of HLS is to allow programmers without 
the knowledge and experience in the field of hardware 
design to construct RTL models. HLS usually takes the 
following steps. First, a behavioral description is 
transformed into some formal representation that explicitly 
exhibits intrinsic parallelism of the description. In the 
following step allocation of available resources (functional 
units, memory, etc.) is performed. Next, the operations are 
scheduled into clock cycles. Finally, resource binding 
assigns operations and data elements to resources, allocated 
in the previous step. It should be noted that HLS also 
performs the interface synthesis.

 

One approach in HLS is to use one of imperative 
languages, for example, C/C++ [13][14][15]. Most 
programmers are used to imperative languages, which are 
based on von Neumann model. Therefore, the programmers 
do not have to learn new languages and, moreover, they 
don’t need to develop a new way of thinking in terms of 
unfamiliar models.

 

However, von Neumann model, which underlies these 
languages, does not describe parallelism. This results in 
performance loss of these RTL models when compared to 
the hand-written implementations. So HLS tools use 
facilities to orchestrate parallelism in computations, for 
example, pragmas. Still, the imperative nature of these 
languages still plays a major part in the performance loss. 

Other tools use languages with computation model 
which describe parallelism in some form [16][17][18]. One 
of these models is the dataflow model. The dataflow model 
describes a program in a form of a graph. Nodes represent 
operations on data. The operations themselves can be 
described as dataflow graphs so the model is hierarchical. 
Arcs represent data dependencies between operations. Data 
are carried on tokens which travel along the arcs. Dataflow 
model operates on potentially limitless streams of data. 
Nodes can execute in parallel assuming there are no data 
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dependencies between them. A node can execute (or fire) 
when there are enough tokens on the inputs. A dataflow 
model is said to be synchronous if the number of consumed 
and produced tokens is constant for each firing in every 
node. In the cycle-static model the number of tokens 
consumed and produced changes periodically. Nodes in the 
dynamic dataflow model consume and produce various 
numbers of tokens depending on the input data [19][20]. 
Since the firing rules are static in synchronous dataflow, the 
scheduling can be done at compile time. This means that 
complex scheduler logic will not be implemented in 
hardware resulting in more productive schemes compared to 
other types of dataflow.

 

III. RELATED WORK 

In recent years various HLS tools have emerged, both free 
and commercial. In this section we review HLS tools which 
use languages based on dataflow models. 

MaxCompiler: MaxCompiler [21] is a mature tool for 
designing heterogeneous systems. It follows the synchronous 
dataflow computing paradigm. The input language of the tool 
is MaxJ with a Java-like syntax. It produces synthesizable 
designs in VHDL language. A program is described as a set 
of communicating components named Kernels which are 
responsible for computation. Communication between 
Kernels is orchestrated by a Manager component. 
Unfortunately, the support of external IP cores is lacking. It 
only supports the use of static (non-parameterized) IP cores. 
It also does not support HDL code generators. Moreover, to 
integrate an external IP core one must manually integrate this 
IP core in system.

 

XLS: XLS [22] is an open-source HLS tool for producing 
synthesizable designs in Verilog and SystemVerilog from 
high-level behavioral descriptions. The program is described 
in DSLX language with a syntax similar to that in Rust [23] 
language. The underlying model of the language is 
synchronous dataflow. A program in DSLX is called a module 
and consists of functions which describe computations. 
Communication is organized by means of procs. A proc 
contains a config function that initializes constant proc state 
and spawns any other dependent procs needed for execution 
and a recurrent next function that contains the logic to be 
executed by the proc. Channels are used to get and send 
information between different procs. DSLX does not support 
the usage of external IP cores at all. 

IV. CONCEPT 

A. Language constructs 

We introduce DFC, a synchronous dataflow language 
with the support of external HDL libraries. DFC produces 
synthesizable designs described in Verilog language. DFC has 
a C-like syntax, helping developers in learning this language. 
The reuse of IP cores is one of the key factors in achieving 
productivity in hardware design. So one of the features of 
DFC is the use of IP core libraries specified by IP-XACT 
specification. DFC also gives the developers an ability to 
control synthesis by applying different optimization criteria 
such as performance, area and energy consumption. The 
proposed language is described below. 

A program in DFC is divided into Kernels. An example 
illustrating program structure presented in Listing I. Kernel 
performs computations. Kernels are essentially graphs of 
pipelined arithmetical units. Other Kernels can be instantiated 
in the Kernel and connected to the Kernel. Also, a Kernel is 

responsible for loading and integrating external HDL libraries. 
A simple analogy for a Kernel is a Verilog module [24]. 

DFC define basic and composite types. There are three 
basic types: fixed type, float type and bits type. Fixed type 
represents fixed point number type. Float type represents 
floating point number type. Bits type represents a stream of 
raw bits. The bit width of all basic types is configurable. For 
the fixed type one can also configure its sign and the number 
of bits for the integer and the fraction part. For the float type 
the sign and the number of bits needed to represent the 
mantissa and the exponent can also be configured. There are 
two composite types in DFC: tuple type and tensor type. 
Tuple type represents a mathematical tuple, that is, a finite 
sequence of elements. Tensor type represents a mathematical 
tensor. Table I describes implemented operations for complex 
and basic types. 

It should be noted that if there is a type mismatch the 
developer must explicitly transform data from one type to 
another. This is done using cast operator. Cast operator is 
defined only on basic types and accepts the following 
transformations: fixed to float and vice versa, float to bits and 
vice versa and bits to fixed and vice versa. It also must be used 
in cases when there is a mismatch in type size. 

DFC define control flow constructs: ternary operator (?:), 
if else and switch case constructs with the standard semantics. 

Sometimes there is a need to operate on more than one 
data value in a particular stream, for example, when 
computing a moving average. Because DFC operates on 
streams index operation cannot be used to access data at a 
particular location in a stream. To do this a stream offset 
operation is introduced with the following semantics. Positive 
offset values allow to access next values relative to a current 
position in a stream and negative offset values allow to access 
previous values relative to a current position in a stream. Zero 
offset value corresponds to a current position in a stream. 
DFC supports only static offsets, meaning the value of the 
offset must be known at compile time. In Listing II there is an 
example of the program using offsets to calculate a three-
point moving average. 

The key feature of DFC is the support of external HDL 
libraries. An external HDL library is a collection of IP cores 
usually from a particular vendor. In DFC these libraries need 
to be specified using IP-XACT standard [25]. It should be 
noted that DFC supports both static and configurable IP cores, 
such as parameterized modules in Verilog or VHDL. It also 
supports the use of external HDL code generators. This 
particular feature highly improves design space exploration. 
Ideally, an external HDL generator is accompanied with the 
corresponding estimation functions. These functions allow to 
estimate important characteristics of an IP core to be 
generated by the generator. This allows to choose the desired 
configuration based on input optimization criteria without the 
actual synthesis. This is done during an optimization step. In 
the following steps external HDL code generators will be 
called with different parameters and generate different 
implementations for the desired functionality. These 
implementations will be integrated in the output design 
resulting in different design configurations. One of these 
design configurations will be chosen depending on 
optimization criteria. Listing III gives an example of using 
external HDL libraries in a DFC program. 

B. Language semantics 

To explain the semantics of DFC language a simple DFC 
program is considered. The code of this program is presented 



in Listing IV. The program takes as an input a number of fixed 
type. If the number is greater than 255 then the result is taken 
as the sum of the current input value, the previous input value 
and the next input value, divided by 3. Otherwise the result is 
the sum of the current input value and 1. The dataflow graph 
corresponding to this code is presented in Figure 1. For 
illustrative purposes nodes in the graph are divided into 
different types. Node types and their semantics are described 
in Table II. 

TABLE II. Kernel dataflow graph node types. 

 

Source node receives input data tokens 

from external sender 

 

Sink node sends output data tokens to 

some receiver 

 

Constant node sends data tokens of 

constant value x 

 

Stream offset node allows to access 

next/previous value at position n 

relative to the current position in the 

input stream 

 

Computation node performs some 

arithmetic or logic operation op as well 

as cast operation 

 

Mux(multiplexer) node is used for 

making decisions 

 

First, an input stream and an output stream are defined. 
This creates the source node (1) and the sink node (2). If else 
construct is synthesized into the mux(multiplexer) node (3). 
Comparison operator inside the if else construct is 
synthesized into the computation node (4). The constant 
inside the condition is synthesized into the constant node (5) 
which output is then connected to the computation node (4), 
along with the output of the source node (1). The output of 
the computation node (4) is then connected to the input of the 
mux node (3). The body of the if block is synthesized into the 
stream offset node (6), the stream offset node (7), the 
computation node (8), the computation node (9), the 
computation node (10) and the constant node (11). The output 
of the source node (1) and the output of the stream offset node 
(6) are connected to the input of the computation node (8). 
The output of the computation node (8) is connected to the 
input of the computation node (9) along with the output of the 

stream offset node (7). The output of the computation node (9) 
is connected to the input of the computation node (10) along 
with the output of the constant node (11). The body of the else 
block is synthesized into the computation node (12) and the 
constant node (13). The output of the source node (1) is 
connected to the input of the computation node (12) along 
with the output of the constant node (13). The output of the 
computation node (10) and the output of the computation 
node (12) are connected to the inputs of the mux node (3). 
Finally, the output of the mux node (3) is connected to the 
input of the sink node (2). 

Following the dataflow paradigm, nodes execute (or fire) 
in parallel if there are no data dependencies between them. A 
node executes if there is enough data units (tokens) on the 
inputs, passing its output data tokens to other nodes. So the 
data flows from sources to sinks provided there are no loops 
in the dataflow graph. Pipelining is automatic so the 
programmer can focus on other aspects of development. DFC 
operates on streams, that is, on potentially unbounded data 
sequences. 

 

Fig 1. A Kernel dataflow graph. 

 

V. CONCLUSION 

In this paper we presented DFC, a dataflow language for 
constructing electronic designs with support of external IP 
core libraries. We described its semantics and its key features. 
Future work may include the support of pragmas helping to 
achieve better quality of results. 
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LISTING I. DFC program structure. 

 

LISTING II. Calculating three-point moving average. 

DFC_KERNEL(MovingAverage) {
 

 

  DFC_KERNEL_CTOR(MovingAverage) { 
 

    dfc::stream<dfc::sint16> input;
 

    dfc::stream<dfc::sint16> result;
 

    result = (input.offset(-1) + input + input.offset(1)) / 3;
 

 

  } 

 

}; 

 

  

DFC_KERNEL(Kernel1) { 

  static const int SIZE = 4; 

 

  DFC_KERNEL_CTOR(Kernel1) { 

 

    std::vector<dfc::stream<dfc::sint16>> lhs; 

    std::vector<dfc::stream<dfc::sint16>> rhs; 

… 

    for (std::size_t i = 0; i < SIZE; i++) { 

      res[i] = lhs[i] + rhs[i]; 

    } 

 

  } 

 

}; 

… 

DFC_KERNEL(Kernel2) { 

 

  DFC_KERNEL_CTOR(Kernel2) { 

    std::vector<dfc::stream<dfc::sint16>> blk; 

… 

    DFC_CREATE_KERNEL(Kernel1); 

 

    dfc::instance("Kernel1", "KernelInstance1"); 

    dfc::connectionToInstanceInput("KernelInstance1", blk[0], "lhs_0"); 

    dfc::connectionToInstanceInput("KernelInstance1", blk[1], "lhs_1"); 

    dfc::connectionToInstanceInput("KernelInstance1", blk[2], "lhs_2"); 

    dfc::connectionToInstanceInput("KernelInstance1", blk[3], "lhs_3"); 

 

    dfc::connectionToInstanceOutput("KernelInstance1", blk[8], "res_0"); 

    dfc::connectionToInstanceOutput("KernelInstance1", blk[9], "res_1"); 

    dfc::connectionToInstanceOutput("KernelInstance1", blk[10], "res_2"); 

    dfc::connectionToInstanceOutput("KernelInstance1", blk[11], "res_3"); 

… 

 

 

  } 

}; 

… 



LISTING III. Usage of external HDL libraries. 

DFC_KERNEL(Kernel) {
 

 

DFC_IMPORT_HDL_LIBRARY(“path_to_library/ipxact_catalog.xml”); 
 

  DFC_KERNEL_CTOR(Kernel) {
 

    dfc::external_generator(FFT_generator, “FFT_generator_instance”);
 

    dfc::stream<dfc::sint16> first;
 

    dfc::stream<dfc::sint16> second;
 

    dfc::stream<dfc::sint16> result;
 

    dfc::connectionToInstanceInput("FFT_generator_instance", first, "first");
 

    dfc::connectionToInstanceInput("FFT_generator_instance", second, "second");
 

    dfc::connectionToInstanceOutput("FFT_generator_instance", result, "res");
 

 

  } 

 

}; 

 

LISTING IV. An example of DFC program. 

DFC_KERNEL(MovingAverage) {
 

 

  DFC_KERNEL_CTOR(MovingAverage) { 
 

    dfc::stream<dfc::sint16> input;
 

    dfc::stream<dfc::sint16> output;
 

    if (input > 255) {
 

      output = (input.offset(-1) + input + input.offset(1)) / 3;
 

    } else {
 

      output = input + 1;
 

    }
 

 

  } 

 

}; 

 

TABLE I. DFC operations. 

Type / Operation fixed float bits tuple tensor 

Assignment (=) 
✓ ✓ ✓ ✓ ✓ 

Addition (+) 
✓ ✓ 

  
✓ 

Subtraction (-) 
✓ ✓ 

  
✓ 

Multiplication (*) 
✓ ✓ 

  
✓ 

Division (/) 
✓ ✓ 

  
✓ 

Bitwise operations: 

AND(&), OR(|), XOR(^), 

NOT(~) 

✓ 
 

✓ 
  

Shifts: 

logical (<<, >>), arithmetical 

(<<<, >>>) 

✓ 
 

✓ 
  

Comparison operators: 

EQ(==), NE(!=), LE(<=), 

GE(>=), LT(<), GT(>) 

✓ ✓ ✓ 
  

Indexation ([]) 
✓ ✓ ✓ 

 
✓ 

 


