
Discovering Process Models from Event Logs of
Multi-Agent Systems Using Event Relations

Anastasiya A. Sherstyugina, Roman A. Nesterov
HSE University

11 Pokrovsky Bulvar, Moscow, Russia
Email: aasherstyugina@edu.hse.ru, rnesterov@hse.ru

Abstract—The structure of a process model directly discovered
from an event log of a multi-agent system often does not reflect
the behavior of individual agents and their interactions. We
suggest analyzing the relations between events in an event log
to localize actions executed by different agents and involved in
their asynchronous interaction. Then, a process model of a multi-
agent system is composed from individual agent models between
which we add channels to model the asynchronous message
exchange. We consider agent interaction within the acyclic and
cyclic behavior of different agents. We develop an algorithm
that supports the analysis of event relations between different
interacting agents and study its correctness. Experimental results
demonstrate the overall improvement in the quality of process
models discovered by the proposed approach in comparison to
monolithic models discovered directly from event logs of multi-
agent systems.

Index Terms—Multi-agent systems, event logs, process discov-
ery, Petri nets, event relations, asynchronous interaction.

I. INTRODUCTION

The behavior of an information system is frequently
recorded in event logs. They can register, for instance, user
activities, transaction executions, or message exchanges. An
event log consists of finite sequences (traces) of events ordered
by the occurrence time. Process mining uses event logs to
discover models reflecting the actual state of processes in an
information system. Process models discovered from event
logs capture considerable changes that can be introduced to
an information system during its operation, while models
manually created at the initial life-cycle stages do not take
these changes into account [1].

A record in a trace of an event log usually includes not
only the identifier of an action, but also other attributes, which
can specify the resources necessary for executing the recorded
action. These attributes can also designate who executes an
action. For example, Table I shows a trace of an event log,
where an action record has the “Agent” attribute, and actions
are executed by two agents: Peter or Alex. We say that an
event log where actions are attributed with the information on
agents records the behavior of a multi-agent system.

Process models can be discovered in a variety of notations,
including different classes of Petri nets, transition systems,
and BPMN (Business Process Model and Notation). In our
paper, we focus on modeling the control-flow of processes,
i.e., the causal dependencies among events in a log. Thus, we
will apply Petri nets [2] — the formalism extensively used to
model and analyze the properties of process behavior.

TABLE I
A TRACE IN AN EVENT LOG OF A MULTI-AGENT SYSTEM

Timestamp Action Agent

30-12-2022:14.45 prepare msg Peter
05-01-2023:09.34 send msg Peter
07-01-2023:12.12 receive msg Alex
12-01-2023:13.25 send ack Alex
12-01-2023:14.55 receive ack Pete
12-01-2023:14.55 local check Alex

Petri nets are also a convenient tool to model the interac-
tion between different components in a multi-agent system.
Figure 1 shows two Petri nets N1 and N2 representing two
agents with the sequential behavior. They exchange messages
through two distinguished channel nodes a and b.

Recent papers in the field of process mining also demon-
strate the shift in a focus to a discovery of process models
with an understandable structure reflecting the complex syn-
chronizations between objects [3], the hierarchy of activities
[4, 5], or the interaction-oriented viewpoints of the architecture
of a multi-agent system [6].

prepare msg

send msg

receive ack

receive msg

send ack

local check

a

b

N1 N2

Fig. 1. A multi-agent system with two asynchronously interacting agents

The paper [6] proposed a compositional approach to dis-
covering an architecture-aware process model from an event
log of a multi-agent system. The structure of an architecture-
aware process model explicitly reflects agent behavior and
their interactions similar to Fig. 1, where two agents exchange

message through channels a and b. A model is constructed
by a composition of individual agent models controlled by a
manually selected interface pattern model. An interface pat-
tern provides a high-level specification of agent interactions.
However, in the case of the poor selection of an interface
model, one has to reconfigure it and perform an additional
check of a reconfigured model.

Here, we propose to ease this restriction on making the
preliminary choice of an interface pattern. We suggest to
identify asynchronous agent interactions using causal relations
between events extracted directly from an event log of a
multi-agent system. For instance, in an event log obtained by
simulating a process model shown in Fig. 1 the occurrence
of “send msg“ action will always be recorded before the
occurrence of “receive msg” action. Extracting such causality
relations will help us to localize events in a log corresponding
to the occurrence of actions executed by different agents and
involved in their asynchronous communication. Correspond-
ingly, we will determine transitions in individual agent models
to be connected via an asynchronous channel.

Note that the automated discovery of process models from
event logs is supported by a wide range of algorithms [7]. They
usually deal with typical problem of event data representation,
including, for instance, noise (missing or duplicated records)
and incompleteness, i.e., a finite event cannot cover all possible
process executions. The paper [6] also stressed that an event
log of a multi-agent system requires the additional inspection
of agent behavior, since the direct discovery from a multi-agent
system event log produces process models the structure of
which does not explicitly reflect agent behavior as sub-models
and agent interactions as distinguished nodes. This happens
because the concurrent execution of relatively independent
agents leads to a wide range of possible traces recorded in
an event log of a multi-agent system.

The quality of discovered process models is the main subject
in conformance checking [8], which proposes a collection of
different dimensions to evaluate the correspondence between
an event log and a process model. Fitness and precision are two
widely-used quality metrics that can characterize a discovered
process model. Fitness is an estimation of the ratio of the
traces executable by the model to the total number of traces
in an event log. A model with the perfect fitness can execute
every trace in an event log. For example, the model shown
in Fig. 1 can execute the trace in Table I, if we consider N1

as the behavior of Peter, and N2 as the behavior of Alex.
Precision evaluates the ratio of the behavior recorded in an
event log and the behavior allowed by a process model. A
process model with the perfect precision can only execute
traces in an initial event log. The perfect precision limits the
use of a discovered process model, since any event log of an
information system represents only a finite “snapshot” of all
possible process executions.

An architecture-aware process model discovered from an
event log of a multi-agent system using the compositional
approach of [6] is guaranteed to possess the perfect fitness.
The approach to the analysis of agent interactions using causal

event relations in a log, proposed in our study, will also
ensure the perfect fitness of the process model of a multi-
agent system obtained by connecting individual agent models
via asynchronous channels.

The main results presented in this paper are:
1) An approach to the analysis of causality relations be-

tween events in an event log of a multi-agent system
for the identification of specific events involved in the
asynchronous communication between different agents.

2) Demonstration of the approach correctness and its ex-
perimental evaluation.

The remainder of this paper is organized as follows. In
the next section, we collect the formal background of our
approach to the analysis of event relations in an event log,
including generalized workflow nets (GWF-nets) — a class of
Petri nets used to model the behavior of agents and multi-agent
systems. Section III considers the localization of events in an
event log corresponding the asynchronous agent interactions
within the acyclic agent behavior. Section IV explores the case
of localizing asynchronous interactions among agents with
cycles. Section V reports the outcomes from the experimental
evaluation. In Section VI, we review the related research, and
Section VII concludes the paper.

II. BACKGROUND

In this section, we aim to provide the basic definitions
concerning several general notions, event logs, and generalized
workflow nets. We refer to these definitions when describing
our approach to the analysis of causal event relations involving
different agents.

S+ denotes the set of all finite non-empty sequences over a
finite set S, and S∗ = S+∪{ε}, where ε is the empty sequence.
Let σ ∈ S∗ and S′ be a subset of S. Then σ|S′ denotes the
projection of σ on S′. In other words, σ|S′ is the subsequence
of σ obtained by removing elements not belonging to S′. For
example, let S = {a, b, c, d}, σ = abadabcdcb ∈ S∗, and
S′ = {b, c}. Projecting σ on S′ gives σ|S′ = bbccb. If s ∈ S
occurs in a sequence σ ∈ S∗, then we write s ∈ σ.
N denotes the set of non-negative integers. A function

m : S → N defines a multiset m over a non-empty set S. We
write s∈m iff m(s) > 0. The set of all finite multisets over S
is denoted by B(S). Let m1,m2 ∈ B(S). Then m1 ⊆ m2 iff
m1(s) ≤ m2(s); m′ = m1 ∪m2 iff m′(s) = m1(s) +m2(s);
m′′ = m1 \m2 iff m′′(s) = max(m1(s) −m2(s), 0) for all
s ∈ S.

A. Event Logs

An event log is the main input to a process discovery
algorithm. It contains a multiset of traces — ordered event
sequences.

Definition 1 (Event log). Let A denote the set of actions. A
trace σ is a finite non-empty sequence over A, i.e., σ ∈ A+.
An event log L is a multiset of traces over A, i.e., L ∈ B(A+).

When we consider an event log of a multi-agent system
with two asynchronously interacting agents, the set A can be

partitioned into two disjoint subsets, i.e., A = A1 ∪ A2, s.t.
A1 ∩ A2 = ∅, where A1 (A2) is the set of actions executed
only be the first (second) agent.

To discover an individual agent model from an event log L
of a multi-agent system, we need two project all traces in L
onto the set of actions executed by the corresponding agent.
The projection of an event log L over A = A1 ∪A2 on A1 is
denoted by LA1

. Constructing LA1
requires projecting every

trace σ ∈ L on LA1 , i.e., taking σ|A1 . We take into account
only non-empty projections σ|A1 and pay additional attention
to coinciding projections.

For example, a trace shown in Table I can be projected onto
the set of actions executed only by Peter or by Alex.

Let us consider basic causality relations between events
recorded in a log L over A, which are determined by the
order of corresponding records in the traces of L. Thus, two
events a1, a2 ∈ A are:

1) in the precedence relation (a1 precedes a2), denoted
a1 < a2, iff ∀σ ∈ L : if a1, a2 ∈ σ, then σ =
σ′a1σ

′′a2σ
′′′, where σ′, σ′′, σ′′′ ∈ (A \ {a1, a2})∗;

2) in the following relation (a1 follows a2), denoted a1 >
a2, iff ∀σ ∈ L : if a1, a2 ∈ σ, then σ = σ′a2σ

′′a1σ
′′′,

where σ′, σ′′, σ′′′ ∈ (A \ {a1, a2})∗;
3) in the parallel relation (a1 is in parallel with a2),

denoted a1 >< a2, iff there exists a trace σ ∈ L,
s.t. σ = σ′a1σ

′′a2σ
′′′, and a trace w ∈ L, s.t.

w = w′a2w
′′a1w

′′′, where σ′, σ′′, σ′′′, w′, w′′, w′′′ ∈
(A \ {a1, a2})∗.

It follows that the precedence and the following relations
are transitive. For example, a1 < a2 and a2 < a3 together
leads to traces of the form σ = ...a1...a2...a3..., which implies
a1 < a3. If required by the context, we can also use the <L

relation sign to explicitly show to which event log this relation
corresponds.

B. Generalized Workflow Nets

Workflow nets (WF-nets) [9] are among basic process
models discovered from event logs. A WF-net is a special class
of a Petri net with the distinguished initial and final places.
The execution of a trace in an event log directly corresponds
to the execution of a WF-net from its initial to its final place.

We will use generalized workflow nets (GWF-nets), as in
[6], to model the behavior of agents and multi-agent systems.
Here, we define GWF-nets and their behavior.

Definition 2 (Net). A net is a triple N = (P, T, F) where
P and T are two disjoint sets of places and transitions, and
F ⊆ (P × T) ∪ (T × P) is the flow relation. For any node
x ∈ P ∪ T :

1) •x = {y ∈ X | (y, x) ∈ F} is the preset of x.
2) x• = {y ∈ X|(x, y) ∈ F} is the postset of x.
3) •x• = •x ∪ x• is the neighborhood of x.

In our study, we consider nets without self-loops, i.e.,
∀x ∈ P ∪ T : •x ∩ x• = ∅ and isolated transitions, i.e.,
∀t ∈ T : |•t| ≥ 1 and |t•| ≥ 1.

The •-notation is also extended to subsets of nodes. Let
N = (P, T, F) be a net, and Y ⊆ P∪T . Then •Y =

⋃
y∈Y

•y,
Y • =

⋃
y∈Y y

• and •Y • = •Y ∪Y •. N(Y) denotes the subnet
of N generated by Y , i.e., N(Y) = (P∩Y, T∩Y, F∩(Y×Y)).

Let N = (P, T, F) be a net, and t1, t2 ∈ T . Transitions t1
and t2 are in conflict iff •t1 ∩ •t2 6= ∅. N is conflict-free iff
no transitions are in conflict.

A marking (state) m in a net N = (P, T, F) is a multiset
over P , i.e., m : P → N. Marking m is safe iff ∀p ∈
P : m(p) ≤ 1, i.e., a safe marking is a set of places. Marking
m of place p ∈ P is depicted by putting m(p) black dots
inside p.

Definition 3 (Net system). A net system a quadruple N =
(P, T, F,m0) where (P, T, F) is a net, and m0 : P → N is
the initial marking.

A marking m in a net N = (P, T, F) enables transition
t ∈ T , denoted m[t〉, iff •t ⊆ m. Enabled transitions may fire.
Firing t at m evolves N to a new marking m′ = (m\ •t)∪ t•,
denoted m[t〉m′.

A sequence w ∈ T ∗ is a firing sequence in a net sys-
tem N = (P, T, F,m0) if w = t1t2...tn and m0[t1〉m1

[t2〉...mn−1[tn〉mn. Then we write m[w〉mn. The set of all
firing sequences in N is denoted by FS(N).

A marking m in N = (P, T, F,m0) is reachable if ∃w ∈
FS(N) : m0[w〉m. Any marking can be reached from itself
by the empty sequence, i.e., m[ε〉m. The set of all markings
reachable from m is denoted by [m〉. N is safe iff all reachable
markings in N are safe.

A state machine is a connected net (P, T, F), where ∀t ∈
T : |•t| = |t•| = 1. A subnet of N = (P, T, F,m0) generated
by Y ⊆ P and •Y •, i.e., N(Y ∪ •Y •), is a sequential
component of N if it is a state machine and has a single token
in the initial marking. N is covered by sequential components
if every place belongs to at least one sequential component.
In this case, N is state machine decomposable (SMD).

State machine decomposability is a basic feature bridging
structural and behavioral properties of nets, also considered in
[9] as an important feature of workflow nets. It is easy to see
that SMD net systems are safe since their initial markings are
safe. We further work with SMD net systems, unless otherwise
stated explicitly. Thus, we omit SMD in their descriptions.

In a GWF-net, we impose additional restrictions on its
initial marking (no arcs incoming to corresponding places) and
distinguish its final marking (places without outgoing arcs).
Compared to a classical WF-net, initial and final marking in
a GWF-net can be sets of places rather than singletons.

Definition 4 (GWF-net). A generalized workflow net is a net
system N = (P, T, F,m0) equipped with the final marking
mf ⊆ P such that:

1) •m0 = ∅.
2) mf

• = ∅.
3) ∀x ∈ P ∪ T ∃s ∈ m0 ∃f ∈ mf : (s, x), (x, f) ∈ FRT

where FRT is the reflexive transitive closure of F .

According to the third requirement in Definition 4, any node
in a GWF-net lies on a path from a place in its initial marking
to a place in its final marking. For instance, the Petri net shown
earlier in Fig. 1 is a GWF-net, while the behavior of agents
N1 and N2 can be considered as classical WF-nets with the
single initial and final places.

III. LOCALIZING ACYCLIC AGENT INTERACTIONS

Here we discuss our approach to finding pairs of actions
in an event log representing sending and receiving operations
executed by different agents. Given an event log of a multi-
agents system, we construct a matrix representation of event
relations. Then we show how to identify the candidate pairs of
events that may represent the asynchronous communication of
different agents and connect corresponding transitions in the
individual agent models.

A. Matrix Representation of Event Relations

Matrix representation of relations among events recorded in
an event log facilitate the pair-wise analysis of events. For what
follows, we consider the basic case of a multi-agent system
with the sequential agent behavior, s.t., actions executed by
a specific agent are recorded in an event log only in the
precedence or in the following relation. We also show how
our reasoning can be extended to agents with parallel and
alternative behavioral constructs.

Let L be an event log over A = A1∪A2, s.t. A1∩A2 = ∅.
Correspondingly, A1 and A2 are two disjoint sets of actions
executed by two asynchronously interacting agents. Assume
|A1| = m and |A2| = n.

We construct matrix RL of size m×n, which stores relations
between the pairs of events representing the occurrence of
actions executed by different agents. Given a1i ∈ A1 and a2i ∈
A2 with i = 1, 2, ...,m and j = 1, 2, ..., n, every element rij
in RL is defined by the following cases:

1) ri,j = “<” iff a1i <L a
2
j ;

2) ri,j = “>” iff a1i >L a
2
j ;

3) ri,j = “><” iff a1i ><L a
2
j .

Thus, event relations extracted from an event log L fully
determines the values of the elements in the corresponding
matrix RL.

Figure 2 shows the example of a matrix representation for
event relations constructed from an event log a multi-agent
system with asynchronously interacting agents, where the first
agents executes actions from the set A1 = {a0, a1, a2},
and the second agent executes actions from the set A2 =
{b0, b1, b2, b3}. For the convenience of the representation, we

b0 b1 b2 b3

a0 >< < < <

a1 >< < < <

a2 > >< >< ><

Fig. 2. A matrix of event relations between two asynchronously interacting
agents

use names of actions instead of the indices of rows and
columns. This matrix says that, for example, in all traces of the
initial event log L, actions b1 and a2 are executed concurrently
(independently), while action a1 always precedes action b1.

In addition, recall that agent behavior is considered to be
conflict-free and sequential. Then we can easily order actions
executed by the same agent according to the event relations,
i.e., using the precedence relation. For instance, in Fig. 2, we
have that a0 < a1 < a2 and b0 < b1 < b2 < b3. This
ordering of actions is done before constructing a matrix of
event relations. It will help us simplify the further processing
and identification of events representing the occurrence of
sending-receiving operations between two agents.

The intuition behind the asynchronous message exchange is
rather straightforward. After putting a message to a channel,
an agent can freely continue its job, while the other agent
expecting to receive a message cannot continue to operate until
the message is delivered.

This reasoning can also be shifted to our matrix repre-
sentation of event relations. In a matrix of event relations
constructed out of an event log of a multi-agent system with
two sequential asynchronously interacting agents, we will be
able to locate a “rectangle” formed by the adjacent rows and
columns filled by the same event relation “<” or “>”. This
is justified by the fact that in all traces of an initial event log
several events corresponding to the actions executed by the
agent receiving a message are recorded strictly after several
events corresponding to the actions executed by the agent who
sends a message. Rectangular sections in an event relation
matrix filled by the same precedence or following relation are
called regions.

Definition 5. Let L be an event log over A = A1 ∪ A2, s.t.
A1 ∩ A2 = ∅, |A1| = m, |A2| = n. Let RL be an event
relation matrix constructed as described above. A rectangular
section in RL formed by k adjacent rows i, i+1, ..., i+ k− 1
and by ` adjacent columns j, j +1, ..., j + `− 1 is a p-region
(f-region) of RL if and only if for all i′ = i, i+1, ..., i+k−1
and j′ = j, j + 1, ..., j + ` − 1 we have that ri′,j′ =“<”
(ri′,j′ =“>”).

The region in an event relation matrix RL starting from row
a, column c and finishing at row b and at column d is briefly
denoted by RL(a− b, c− d).

Note that we do not consider a region which is included
in another one. We are looking for maximal regions in an
event relation matrix. For instance, in the event relation matrix
shown in Fig. 2, region RL(a2−a2, b0−b0) is maximal, since
it cannot be extended with other adjacent rows and columns,
while RL(a0−a1, b1−b2) is not maximal, since it is a part of
the bigger region RL(a0−a1, b1−b3) that is indeed maximal.

Further, while analyzing regions in an event relation matrix,
we always consider maximal regions that cannot be extended
with more adjacent rows and columns.

Let us take a closer look at the p-region RL(a0−a1, b1−b3)
in the event relation matrix shown in Fig. 2. The occurrences
of actions a0 and a1 were recorded before the occurrences of

actions b1, b2 and b3 in an event log L. Taking into account the
sequential agent behavior, i.e., a0 < a1 < a2 and b0 < b1 <
b2 < b3, we can easily simplify three event relations a0 < b1,
a0 < b2 and a0 < b3 to the single relation a0 < b1, which
automatically ensures the remaining two relations. By analogy,
three relations a1 < b1, a1 < b2 and a1 < b3 are simplified
to a1 < b1. Finally, two relations a0 < b1 and a1 < b1 with
a0 < a1 give us the single event relation a1 < b1.

Thus, the p-region RL(a0−a1, b1−b3) in the event relation
matrix from Fig. 2 can be fully described by the single event
relation a1 < b1 — the lower left corner of the corresponding
rectangular area in the event relation matrix.

Event relation that fully describes a region in an event
relation matrix is called the minimum of a region, i.e., other
event relations within this region coincides with the minimum.
It is easy to see that, if the minimum of a p-region is its
lower left corner, then the minimum of an f-region is its upper
right corner, as illustrated in Fig. 3, where the minimum is
highlighted in red.

The minimum event relation in a region is the pair of events
which can represent the occurrence of actions agents use for
the asynchronous communication.

... bj ... bj+`−1 ...

...

ai < ... <

... < ... <

ai+k−1 < ... <

...

... bj ... bj+`−1 ...

...

ai > ... >

... > ... >

ai+k−1 > ... >

...

Fig. 3. Localizing minimum in a region of an event relation matrix

For example, the event relation matrix RL shown in Fig. 2
has the p-region RL(a0 − a1, b1 − b3) with the minimum
relation a1 < b1 and the f-region RL(a2 − a2, b0 − b0) with
the minimum relation a2 > b0. The sequential behavior of
corresponding agents can be easily represented via a Petri net
with consequent transitions (see N1 and N2 in Fig. 4).

According to the minimal event relation of region in the
event relation matrix RL from Fig.2, we introduce two channel
places between transitions a1, b1 (green place) and transitions
b0, a2 (red place). Arcs connecting these places with tran-
sitions in Fig. 4 follow the direction of the corresponding
minimum event relation.

In the following paragraph, we propose an algorithm, which
identifies regions in the event relation matrix and finds their
corresponding minimal event relations. We prove the algorithm

correctness from the point of view of preserving the perfect
fitness. We also show that there can be redundant minimum
event relations representing different overlapping regions.

B. Algorithm for Finding Minimal Event Relations in Regions
of an Event Relation Matrix

We start with an event log L over A = A1∪A2 of a multi-
agent system with two asynchronously interacting agents. Let
A1 = m and A2 = n. To simplify the processing of traces
in L, we will construct a square event relation matrix RL

0 of
size (m + n) × (m + n) storing event relations between all
possible pairs of events in A. The indices of an element r0ij
in RL

0 will directly correspond the indices of actions ai and
aj in A. Afterwards, choosing necessary rows and columns
in a square RL

0 representing the behavior of different agents,
we will be able to easily form a required event relation matrix
RL, as described in the previous paragraph.

Here, instead of directly using relation signs, we will assign
numbers: −1 for < (precedence), 1 for > (following), and 0
for >< (parallel). Initially, RL

0 is filled by the ordering of
indices, where i, j = 1, 2, ...,m + n: (a) if i < j, then rij =
−1; (b) i > j, then rij = 1. We do not care about the values
in RL

0 at its main diagonal (for r0i,i), since we do not consider
the reflexive event relations.

a0

N1

a1

a2

b0

b1

b2

b3

N2

Fig. 4. Introducing channel places according to the matrix from Fig. 2

Subsequently, we update RL
0 according to the actual rela-

tions between event pairs in L. Algorithm 1 shows how we
process traces in L to extract corresponding event relations.

Given a trace σ in an event log L, we consider every pair of
two events preceding each other in σ and update r0ij to 0 only
if it was 1 before, taking into account that actions executed by
different agents are also sorted by the preceding relation. This
intuitively means that we have the pair of events recorded in
both following and precedence relation in a log representing
the sequentialization of parallel execution.

Algorithm 1: Populating an event relation matrix
Input: L – an event log over A = {a1, a2, ..., am+n}, RL

0 –
an initial square even relation matrix

Output: RL
0 , where r0i,j = −1 if ai <L aj ;

r0i,j = 0 if ai ><L aj ; r0i,j = 1 if ai >L aj

foreach σ ∈ L do
foreach ai, aj ∈ A, s.t. σ = σ′aiσ

′′ajσ
′′′ do

if r0i,j = −1 or r0i,j = 0 then
continue

end
if r0i,j = 1 then

r0i,j = 0
end

end
end

For instance, Fig. 5 shows the square event relation matrix
RL

0 , built according to Algorithm 1, corresponding to the
earlier discussed RL (see Fig. 2). The main diagonal in this RL

0

is filled with asterisk signs, since we ignore reflexive relations.
We filled two areas in this square matrix with different

colors to demonstrate two possible ways of choosing rows and
columns for further analysis of event relations corresponding
to the occurrence of actions executed by different agents. It is
also easy to refine the notion of a region w.r.t. the numerical
representation of event relations.

a0 a1 a2 b0 b1 b2 b3

a0 ∗ −1 −1 0 −1 −1 −1
a1 1 ∗ −1 0 −1 −1 −1
a2 1 1 ∗ 1 0 0 0

b0 0 0 −1 ∗ −1 −1 −1
b1 1 1 0 1 ∗ −1 −1
b2 1 1 0 1 1 ∗ −1
b3 1 1 0 1 1 1 ∗

Fig. 5. A square matrix of event relations constructed by Algorithm 1

The p-region is the rectangular area of the numerical event
relation matrix filled completely with −1, while the f-region
should be filled only with 1. Here, we also consider maximal
region only, which fully correspond to the representation
discussed in the previous paragraph.

Let us consider another example of an event relation matrix
RL, shown in Fig. 6, constructed from an event log L
over A = A1 ∪ A2, where A1 = {x0, x1, x2, x3} and
A2 = {y0, y1, y2}.

In this event matrix, there are two p-regions RL(x0 −
x1, y0 − y2) with the minimum event relation x1 < y0 and
RL(x0−x3, y0−y1) with the minimum event relation x3 < y0.
However, since x0 < x1 < x2 < x3, there is enough to keep
x3 < y0, which will automatically satisfy x1 < y0 because
x3 occurs after x1. This agrees with the transitivity of the
precedence relation. The redundancy of these event relations
can be easily shown in the corresponding agent models (see

Fig. 7). We do not need to add a place between transitions x1
and y0 having a place between transitions x2 and y0.

Transition x3 will fire only after transition x1. Thus, adding
the direct channel place between transitions x1 and y1 will
not introduce new event relations different from those already
present in the matrix from Fig. 6, unless this channel is not
necessary according to the practical requirements.

y0 y1 y2

x0 −1 −1 −1
x1 −1 −1 −1
x2 −1 −1 0

x3 −1 −1 0

Fig. 6. An event relation matrix with two overlapping p-regions

Х0

Х1

Х2

Х3

У0

У1

У2

Fig. 7. Redundant channel according to the event matrix shown in Fig. 6

The same transitivity principle can also be applied to the
case of two overlapping f-regions. The example of an event
relation matrix with two overlapping f-regions is shown in Fig.
8. The minimum event relation x0 > y3 will cover all event
relations in both f-regions.

y0 y1 y2 y3

x0 0 0 1 1

x1 0 0 1 1

x2 1 1 1 1

x3 1 1 1 1

Fig. 8. An event relation matrix with overlapping f-regions

Note that the localization of the minimum in a region of an
event relation matrix RL actually boils down to finding the
cell ri,j , s.t.:

• if ri,j = −1, where ri+1,j 6= −1 and ri,j−1 6= −1,
then ri,j is the minimum of a p-region in RL with the
corresponding event relation ai < aj ;

• if ri,j = 1, where ri−1,j 6= 1 and ri,j+1 6= 1, then ri,j is
the minimum of an f-region in RL with the corresponding
event relation ai > aj ;

Thus, the main scheme for the compositional discovery of
a process model from an event log L over A = A1 ∪A2 of a
multi-agent system using minimal event relations in the event
relation matrix RL includes the following steps:

1) population of the square event relation matrix RL
0 (Al-

gorithm 1) and selection of columns and rows (for RL)
with the actions corresponding to different agents;

2) identification of minimum event relations in p-regions
and f-regions in RL;

3) discovery of individual agent process models N1 and N2

from projected event logs LA1 and LA2 , respectively;
4) introduction of channel places between transitions in N1

and N2 corresponding to the events associated by the
minimal event relations constructed at step 2.

Individual agent models can be discovered from projected
event logs using any existing process discovery algorithm. We
recommend to use Inductive miner [10], since it can guarantee
the perfect fitness of a discovered model.

The soundness of the compositional discovery procedure
presented above is formalized in the following Theorem 1,
where we prove that a process model of a multi-agent system
inherits the perfect fitness of agent models discovered from
projected event logs. In other words, a process model obtained
by adding channel places between transitions in the individual
agent models with respect to the minimal event relations can
execute all traces in the event log L of a multi-agent system.

Theorem 1. Let L be an event log of a multi-agent system
over A = A1 ∪ A2. Let E ⊆ (A1 × A2) ∪ (A2 × A1) be
the set of event pairs, which correspond to the minimum event
relations extracted from the event relation matrix RL. If Ni

is a GWF-net discovered from the projection LAi
, such that

it perfectly fits LAi with i = 1, 2, then N obtained from N1

and N2 by introducing channel places between transition pairs
corresponding to event pairs in E perfectly fits L as well.

Proof. The proof is done by contradiction. Assume N =
(P, T, F,m0,mf) does not perfectly fits L. Consider a pair
(ai, aj) ∈ E, which corresponds to the minimal event relation
ai < aj . Let σ ∈ L be a trace of the event log L, which
contains ai and aj , which N cannot execute. Since ai < aj ,
σ = σ′aiσ

′′ajσ
′′′. Transitions ti, tj ∈ T corresponding to

events ai and aj are connected in N , such that there is a place
c ∈ P , where (ti, c), (c, tj) ∈ F . If N cannot execute σ, then
transition tj should be able to fire before ti, which will result
in σ = σ′ajσ

′′aiσ
′′′. This contradicts the correct configuration

of the trace σ = σ′aiσ
′′ajσ

′′′. Thus, the initial assumption
that N does not perfectly L is wrong. Hence, N obtained by
adding corresponding channels between transitions in N1 and
N2 perfectly fits L.

Here, we considered the analysis of acyclic interactions
between agents with sequential and conflict-free behavior.
However, we can also generalize our approach to agents with
conflicting (alternative) and parallel branches.

It is necessary to extend the proposed collection of event
relations with the conflicting relation. Two actions a1 and a2
are in conflict (denoted by a1#a2 and 2 for the square matrix
RL

0) if for every trace in an event log a1 and a2 never occur
together. Conflicting and parallel actions can be involved in
the asynchronous interaction among agents.

Application of our approach requires separate investigation
of sequential parts in agent behavior recorded in a log for
the proper construction of regions in the corresponding matrix
with ordered actions. This is by analogy with the identifica-
tion of sequential components in GWF-nets (recall the state
machine decomposability discussed in Section II).

For example, Fig. 9 shows the acyclic interaction between
N1 and N2, where N1 has the conflict between transitions
x3 and x5. In an event log, actions x3 and x5 will never
occur in the same trace. Using RL

0 we can identify maximal
sequential parts in the behavior of N1, i.e., x2 < x3 and x4 <
x5, and construct two inter-agent matrices to localize minimal
event relations in corresponding regions. Two minimal event
relations y2 < x3 and y2 < x5 with the common event y2 are
ensured with a single channel place a connecting transitions
w.r.t. the relation direction.

Х2

Х3

У2

У3

Х4

Х5

a

N1 N2

Fig. 9. Acyclic interaction with choice in the agent behavior

Using a similar reasoning, we can analyze asynchronous in-
teractions involving different parallel branches in the behavior
of agents. In this case, the minimal relations with the common
events are modeled by individual channel places, since, for
parallel actions, the occurrence of one does not exclude the
occurrence of the others.

In the following section, we consider asynchronous interac-
tions among agents, s.t. actions used for the message exchange
are involved in a cycle. The direct analysis of causality relation
is not enough for cyclic behavior, since events within a cycle
can be recorded in an event log in any order.

IV. LOCALIZING CYCLIC AGENT INTERACTIONS

In this section, we consider the problem of identifying
the pairs of events in an event log of a multi-agent system
involved intro the cyclic interaction between different agents.
Cyclic interaction implies that the actions corresponding to the
asynchronous message exchange are executed within a cycle
in the agent behavior. We cannot directly use the minimal
causality relations proposed in the previous section, since
actions within cycles in different agents will be recorded in
an event log in any order.

A. Bounded Asynchronous Channels

The cyclic interaction is directly connected with the problem
of the boundedness in Petri net theory. Consider an example
of cyclic interaction shown in Fig. 10. The cycle in N1 sends
messages to the cycle in N2 via the single channel a.

T3

T1

T2 T4

T5

T6

N1 N2

a

Fig. 10. An unbounded asynchronous channel

The problem with this channel place a is that N1 can put
messages to place a infinitely many times, which will lead
to the possibility of the unbounded number of messages in
a. As a result, the complete system will have infinitely many
different reachable states.

To avoid the problem of the unboundedness, we can in-
troduce an additional place into the model of a multi-agent
system with two interacting agents. This place will act as a
“limiter” of the number of messages an asynchronous channel
can store.

For example, if we add place b, as shown in Fig. 11, the
maximum number of messages that can be put to place a by
N1 will not exceed 1. Such places are called complement in
Petri nets, since they mirror the direction of arcs connected
with the channel place.

T3

T1

T2 T4

T5

T6

N1 N2

a

b

Fig. 11. An asynchronous channel with the bound

In fact, the number of tokens in the complement place
we add to bound an asynchronous channel correspond to the

maximum number of messages this asynchronous channel can
store. In the following paragraph, we show our approach to the
analysis of cyclic interactions between agents in a multi-agent
system with respect to the maximum number of messages a
candidate asynchronous channel place can store.

B. Algorithm for Localizing Cyclic Asynchronous Interactions
and Channel Bounds

In the case of the cyclic asynchronous interactions, we
cannot directly refer to the minimum event relations, since all
involved actions can potentially be recorded in any order in an
event log. For example, by simulating the net from Fig. 11, we
can obtain t2 < t4 as well as t4 < t2. Instead, we are going to
consider the number of occurrences of events in an event log
to devise the maximum number of messages an asynchronous
channel can handle.

For what follows, let L be an event log of a multi-agent
system with two asynchronously interacting agents over A =
A1∪A2. We isolate only the cyclic behavior of agents in these
sets A1 and A2, since the acyclic part can be analyzed before
using the algorithm described in Section III. To avoid the
ambiguity, we assume additionally that actions A1 represent
the behavior of an agent sending messages, while the actions
A2 — the behavior of an agent receiving messages.

The main idea of our approach is to analyze pairs of actions
in A1×A2 to count the maximum number of messages. If in
a trace of L the occurrence of an event a1 ∈ A1 is recorded,
then the bound in the number of messages decreases by 1. If
in a trace of L the occurrence of an event a2 ∈ A2 is recorded,
then the bound in the number of messages increases by 1.

We assume that an asynchronous channels stores k ≥ 0
messages initially. Algorithm 2 shows how to analyze the pairs
of events in A1×A2 according to their behavior with respect
to increasing and decreasing k. This algorithm produces the
range, i.e., the minimum and maximum number of messages
an asynchronous channel between a concrete pair of events
can process.

Consider the example of using Algorithm 2 for the event log
of a multi-agent system L (see Table II) over A = A1 ∪ A2,
where A1 = {t4, t5, t6} and A2 = {t1, t2, t3}.

TABLE II
AN EVENT LOG OF A MULTI-AGENT SYSTEM WITH FOUR TRACES

Trace 1 t4t5t6t4t5t2t3t6t4t5t6t4t5t2t3t6t1t2t3t1t2t3t4t1t5t6t2t3t1
t2t3t1t2t3t1t4t2t3t5t1t6t4t5t6t4t5t6t4t2t5t3t6t1

Trace 2 t2t3t1t2t3t1t2t3t4t1t5t2t6t3t4t1t5t6t4t2t5t3t1t6t2t4

Trace 3 t2t3t1t2t3t1t2t3t1t4t1t5t6t4t1t5t6t4t1t5t6t4t1t5t6t4t1t5t6

Trace 4 t4t1t5t6t4t1t5t6t2t3t1t2t3t1t2t3t1t2t3t1t2t3t1

The result of computing the minimum and maximum num-
ber of messages for different event pairs in Trace 1 in this
event log is presented in Table III.

For instance, we consider the pair of events (t4, t1) of tran-
sitions between which we aim to add a bounded asynchronous
channel place. We check the minimum and maximum number

TABLE III
APPLYING ALGORITHM 2 TO TRACE 1 IN THE LOG FROM TABLE II

Event pair Minimum Maximum
(t1, t4) k − 3 k + 2

(t1, t5) k − 4 k + 1

(t1, t6) k − 4 k + 2

(t2, t4) k − 2 k + 3

(t2, t5) k − 3 k + 3

(t2, t6) k − 2 k + 3

(t3, t4) k − 3 k + 2

(t3, t5) k − 3 k + 2

(t3, t6) k − 3 k + 2

of messages for all traces in the event log from Table II, as
shown in Table IV.

To cover the complete event log from Table II, we need to
construct the range for the channel between events t4 and t1
uniting the individual ranges for all traces. Thus, according to
Table IV, the range of the number of messages that can be
handled by the asynchronous channel between transitions t4
and t1 is [k − 3; k + 3]. The length of this range is k + 3 −
(k − 3) = 6. Therefore, the maximum number of messages
that can be stored in the channel between t4 and t1 is 6.

Algorithm 2: Analyzing cyclic interactions in a trace
Input: σ ∈ L – a trace in an event log over A = A1 ∪ A2,

where A1 ∪ A2 = ∅
Output: Minimum min(p) and maximum max(p) number

of messages for every p = (a1, a2) ∈ A1 ×A2 a
channel between a1 and a2 may process

foreach a1 ∈ A1 do
foreach a2 ∈ A2 do

maxK← k, minK← k, current← k
foreach ei ∈ σ = e1e2...en do

if ei = a1 then
current← k − 1

end
if ei = a2 then

current← k + 1
end
maxK← MAX(current,maxK)
minK← MIN(current,minK)

end
end
min(a1, a2)← minK, max(a1, a2)← maxK

end

Note also that, since the left border of this range k − 3,
initially the channel place between t4 and t1 should have 3
tokens in it, because the number of tokens in places of a Petri
net cannot go below 0. This is also caused by the fact that
in Trace 2 of the event log from Table II the agent receiving
messages operates before the one who sends messages.

We have everything to construct the model of a multi-
agent system with two agents exchanging messages through
actions t4 and t1 within cyclic sequential behavior regarding
the event log from Table II. Fig. 12 shows the corresponding
process model for this multi-agent system, where N1 is the

agent sending messages with transitions t4, t5, t6, and N2 —
receiving messages with transitions t1, t2, t3.

TABLE IV
THE NUMBER OF MESSAGES IN THE CHANNEL CONNECTING t4 AND t1

Minimum Maximum
Trace 1 k − 3 k + 2

Trace 2 k k + 2

Trace 3 k − 2 k + 3

Trace 4 k − 2 k + 3

We note that the similar analysis can be done for any
pair of transitions representing the behavior of sending and
receiving agents, s.t. one can add an asynchronous channel
between them in different ways, unless there is an additional
information on actions provided. For instance, one can choose
those transitions with the channel the capacity of which does
not exceed 1 (for safe Petri nets). In addition, as in the case
of the acyclic interaction, it is possible to analyze the cyclic
behavior of agents with parallel and alternative behavioral
constructs inside cycles by checking interactions between
separate sequential components.

T5

T6

T4 T1

T2

T3

N1 N2

a

b

Fig. 12. A multi-agent system with two interacting agents with cyclic behavior

Moreover, the same property on preserving the perfect
fitness of the individual agent models (see Theorem 1) will
also hold for the cyclic interaction, since we add channel
places between transitions in the strict accordance with an
initial event log.

V. EXPERIMENTAL EVALUATION

This section reports the key outcomes obtained from the
series of experiments conducted to evaluate the proposed
approach to the identification of the pairs of events involved
into the acyclic and cyclic interactions among different agents
in a multi-agent system.

A. Layout of Experiments

We compared process models discovered by our approach
and directly from an event log of a multi-agent system. We
also considered a specific case of a process model with “dis-
connected” agents, i.e., we do not add asynchronous channels
between them.

Within the experimental evaluation, we used the synthetic
event logs of multi-agent systems recording different ways of
agent asynchronous interactions provided in [11]. They were

also used to test the compositional approach to discovering
architecture-aware process model of multi-agent systems [6].
This dataset was constructed with respect to various wide-
spread service interaction patterns described in [12].

Thus, process models of multi-agent systems obtained by
our approach to introducing channels were compared with the
following other models:

1) reference models, also provided in [11], which repre-
sent the ideal model of a multi-agent system with the
minimum number of asynchronous channels;

2) disconnected agent models, where individual agent mod-
els discovered from projected event logs are put together
without adding any asynchronous channels;

3) monolithic models discovered from directly event logs .
We characterized these models according to the following

two quality dimensions:
1) precision evaluating the extra amount of behavior al-

lowed by a process models regarding the behavior
recorded in an event log (see the gray area in Fig. 13);

2) the number of asynchronous channels connecting tran-
sitions in the models of different agents.

Process model N

Event log L

Fig. 13. The behavior of a process model and traces in an event log

The perfect fitness of discovered process models is guaran-
teed by our approach and by the paper [6]. A model with the
disconnected agent behavior also ensures the perfect fitness,
since the concurrent execution of fully independent agents can
also cover all possible ways of their asynchronous interactions.
Therefore, we did not need to measure the fitness of considered
process models. As for the precision, we used the approach
from [13] as the one, which provides the balanced estimation
of this quality dimension. The experimental evaluation was
supported by the ProM software [14].

B. Experiment Results and Discussion

Table V reports the results on comparing the quality of
process models discovered from an event log of a multi-agent
system using our approach with the quality of directly discov-
ered models (monolithic) and models with the disconnected
agent behavior. The dataset [11] used in our experiments
contains seven different event logs of multi-agent system
corresponding to different ways of acyclic (IP-1, ..., IP-6) and
cyclic (IP-7) patterns of asynchronous interactions. We also
did not evaluate the number of channels in monolithic process
models of multi-agent systems, since in the structure of such

a model one cannot unambiguously identify the behavior of
individual agents and asynchronous channel places.

According to the experimental results provided in Table V,
we may conclude the following. Firstly, our approach detects
considerably more “points” of the asynchronous interactions
between different agents compared to the ideal reference
model. A finite sequential record of the concurrent execution
of relatively independent agents cannot cover all possible
scenarios. Thus, there are more candidate relations among
event pairs that can be considered for adding asynchronous
channel places between the corresponding transitions. We can
further analyze all found minimum event relations from the
point of view on their frequencies w.r.t. an initial event log
to exclude some of them. Secondly, process models obtained
by our approach exhibits the increase in the precision esti-
mations, since introduction of other asynchronous channels
decreases the amount of extra behavior allowed by a model
and not recorded in a log. Thirdly, we generally outperform
the quality of the monolithic process model the structure of
do not correspond to the architecture of a multi-agent system
regarding the individual agent behavior and their interactions.

We believe that increasing the number of traces in an event
log will bring the quality of process models obtained by
adding channels using our approach closer to the evaluations of
reference models, since an event log will exhibit more different
execution scenarios. As one of the possible directions of future
research, we will consider the analysis of connections between
the precision of agent models and of system models obtained
by our approach based on event relation.

VI. RELATED WORK

As we mentioned in Introduction, different algorithms were
proposed for the computer-aided discovery of process models
from event logs. The most popular ones include Inductive
miner [10], Fuzzy miner [15], Region Theory-based miner
[16], and Genetic miner [17]. These algorithms can guarantee
that discovered process models will exhibit certain properties.
For example, Inductive miner can guarantee perfect fitness and
soundness of discovered workflow nets. In the recent study
[7], the authors gave an extensive review and comparison
of process discovery algorithms. Note that these algorithms
are aimed to tackle different internal limitations of event
data representation rather than to analyze interactions among
different information system components.

The quality of discovered process models takes an important
part in choosing an algorithm for discovering process models
from event logs. Conformance checking [7] provides several
dimensions that allow one to evaluate the correspondence
between a model and an event log (fitness, precision, gen-
eralization), and the structure of a discovered model (sim-
plicity). Researchers stress that there is a lack of universally
applicable properties and requirements that can constitute the
formal basis for computing conformance checking dimensions
[7, 18]. Thus, our study also considers the formal analysis of
preserving the perfect fitness of agent models discovered from

TABLE V
EXPERIMENTAL RESULTS: THE NUMBER OF ASYNCHRONOUS CHANNELS AND PRECISION EVALUATION

Reference model Disconnected agents Monolithic model Our approach
Channels Precision Precision Precision Channels Precision

Acyclic interaction

IP-1 1 0.7156 0.6949 0.5825 14 0.8109
IP-2 2 0.4014 0.3719 0.3880 33 0.5337
IP-3 2 0.7545 0.7097 0.8984 26 0.8861
IP-4 2 0.7589 0.6752 0.6684 10 0.8420
IP-5 4 0.3902 0.3503 0.1342 39 0.5724
IP-6 4 0.5636 0.5256 0.6849 34 0.7034

Cyclic interaction IP-7 3 0.8165 0.5945 0.1327 5 0.6782

filtered logs in a multi-agent system models with introduced
asynchronous channels recovered using event relations.

The problem of discovering process models with a clear
structure is studied from different perspectives. Inductive
miner produces well-structured process models that are recur-
sively constructed from “building blocks” representing stan-
dard behavioral constructs: sequential, cyclic, parallel, and
alternative execution of actions. A series of papers [19, 20, 21]
proposed different approaches to improving the structure of
discovered models by the additional localization of the en-
vironment of events in a log and by composing fragments
of regular and frequent behavior with the rare “exceptional”
scenarios. Discovery of hierarchical process models, where
a high-level event represents a sub-process, was studied in
[4]. The identification of low-level and high-level events in
an event log is a natural way to improve the structural
representation of a process model. The paper [3] proposed
a novel approach to discover object-centric Petri nets from
event logs. Interactions of objects is represented through com-
plex synchronizations which allow one to model consumption
and production of objects of different types. Compositional
discovery of behaviorally correct and “architecture-aware”
process models from event logs of multi-agent systems was
studied in [6]. Using interface patterns and structural property-
preserving mapping helped to achieve the clear structure of
a model reflecting independent behavior of agents and their
communication.

Our study continues [6] in a way that we are trying to
analyze and identify “points” of asynchronous interactions —
actions involved in the asynchronous message passing between
agents — directly from event logs. Based on the causality
relations among events in a log, we can find, for example,
pairs of actions that are always executed in a fixed order. Such
actions are then considered to be the candidates to represent
send-receive operations within the asynchronous interaction.
Then we may relax the requirement on the manual selection
of interface patterns, as originally proposed.

Patterns are typically used in the software development as
the collection of best practices and recurring development
scenarios [22]. Frequently used control-flow constructs in
business process modeling — workflow patterns — were sys-
tematically studied in [23]. In [12, 24], the authors generalized
workflow patterns for modeling widespread correct service

interactions in complex and large-scale systems. Within the
context of process discovery, several papers also proposed
different approaches for the analysis of behavioral patterns
in event logs, including, among the others, [25, 26], but
these patterns were not considered from the point of view of
interactions among different information system components.

VII. CONCLUSION

In this paper, we considered the problem of discovering a
process model in terms of a generalized workflow net from
an event log of a multi-agent system with the understandable
structure reflecting the architecture of a system. A model
of a multi-agent system is obtained from a composition of
individual agent models through the introduction of asyn-
chronous channels. To identify transitions in agent models
to be connected via a channel place, we analyze causal
relations between events recorded in an event log. Within the
asynchronous agent interactions, several actions of one agents
are executed before certain actions of the other. This idea
helped us to localize the so-called minimum relations between
events corresponding to the occurrence of actions executed by
different agents. The pairs of events representing these min-
imum relations can be seen as “points” of the asynchronous
communication between agents. Transitions corresponding to
these events can be connected with an asynchronous channel
place. We also showed that certain minimum event relations
can cover other minimum relations between events in a log.

The pair-wise analysis of relations between events recorded
in an event log was based on matrices with rows and columns
representing events. Matrix representation of event logs was
used in process mining in different contexts (cf. the footprint
matrix in the basic α-algorithm [27] and the analysis of
unchanged sections in BPMN models [28]).

We separately considered the cases of the acyclic and cyclic
asynchronous interactions, since, within the latter one, events
can be recorded in any possible order. To localize events in
the cyclic communication, we analyzed the number of event
occurrences regarding the maximum number of messages that
a potential asynchronous channel can handle. This allows us to
achieve the boundedness, i.e., the finite number of reachable
states, in a complete process model of a multi-agent system.

The correctness of the proposed approach to adding asyn-
chronous channels between behavioral models of individual
agents is justified by the fact that we preserve the perfect

fitness, i.e., the ability to execute all traces in the event log
of a multi-agent system, of agent model in a complete system
model. We conducted a series of experiments to evaluate our
approach. The experimental results demonstrate the overall
improvement in process models discovered by adding asyn-
chronous channels in comparison to models directly discov-
ered from event logs of multi-agent systems.

As for the future research, we plan to continue it in
the following directions. Firstly, we would like to consider
more complex ways of the asynchronous communications,
including, for instance, message broadcasting. Secondly, we
also intend to make a deeper analysis of the preservation of
behavioral properties, including deadlock-freeness, in a pro-
cess model of a multi-agent system obtained from individual
agent models connected by asynchronous channel places. For
example, we need to avoid the introduction of channels leading
to the “circular wait”, as shown in Fig. 14, where N1 waits
for N2, while N2 waits for N1 at the same time. Finally, we
plan to conduct more experiments using real-life event logs.

Х0

Х1

Х2

У0

У1

У2

N1 N2

Fig. 14. Asynchronous interaction may result in a deadlock

ACKNOWLEDGMENT

This work is supported by the Basic Research Program at
the HSE University, Russia.

REFERENCES

[1] W. van der Aalst, Process Mining: Data Science in Action. Springer,
Heidelberg, 2016.

[2] W. Reisig, Understanding Petri Nets: Modeling Techniques, Analysis
Methods, Case Studies. Springer, Heidelberg, 2013.

[3] W. van der Aalst and A. Berti, “Discovering object-centric petri nets,”
Fundamenta Informaticae, vol. 175, pp. 1–40, 2020.

[4] A. Begicheva and I. Lomazova, “Discovering high-level process models
from event logs,” Modeling and Analysis of Information Systems, vol. 24,
no. 2, pp. 125–140, 2017.

[5] C. Li, S. van Zelst, and W. van der Aalst, “An activity instance based
hierarchical framework for event abstraction,” in 2021 3rd International
Conference on Process Mining (ICPM), 2021, pp. 160–167.

[6] R. Nesterov, L. Bernardinello, I. Lomazova, and L. Pomello, “Discover-
ing architecture-aware and sound process models of multi-agent systems:
a compositional approach,” Software & Systems Modeling, vol. 22, pp.
351–375, 2023.

[7] A. Augusto, R. Conforti, M. Dumas, M. Rosa, F. Maggi, A. Marrella,
M. Mecella, and A. Soo, “Automated discovery of process models from
event logs: Review and benchmark,” IEEE Transactions on Knowledge
and Data Engineering, vol. 31, no. 4, pp. 686–705, 2019.

[8] J. Carmona, B. van Dongen, A. Solti, and M. Weidlich, Conformance
Checking: Relating Processes and Models. Springer, Cham, 2018.

[9] W. van der Aalst, “Workflow verification: Finding control-flow errors
using petri-net-based techniques,” in Business Process Management:
Models, Techniques, and Empirical Studies, ser. Lecture Notes in Com-
puter Science, vol. 1806. Springer, Heidelberg, 2000, pp. 161–183.

[10] S. Leemans, D. Fahland, and W. van der Aalst, “Discovering block-
structured process models from event logs – a constructive approach,”
in Application and Theory of Petri Nets and Concurrency, ser. LNCS,
vol. 7927. Springer, Heidelberg, 2013, pp. 311–329.

[11] R. Nesterov, “Compositional discovery of architecture-aware and
sound process models of multi-agent systems: experimental: data
experimental data. (version 1) [data set].” [Online]. Available:
https://doi.org/10.5281/zenodo.5830863

[12] A. Barros, M. Dumas, and A. ter Hofstede, “Service interaction
patterns,” in Business Process Management, ser. LNCS, vol. 3649.
Springer, Heidelberg, 2005, pp. 302–318.

[13] J. Muñoz-Gama and J. Carmona, “A fresh look at precision in process
conformance,” in Business Process Management, ser. Lecture Notes in
Computer Science, vol. 6336. Springer Heidelberg, 2010, pp. 211–226.

[14] “ProM Tools,” https://www.promtools.org/doku.php.
[15] C. Günther and W. van der Aalst, “Fuzzy mining – adaptive process

simplification based on multi-perspective metrics,” in Business Process
Management, ser. LNCS, vol. 4714. Springer, Heidelberg, 2007, pp.
328–343.

[16] R. Bergenthum, J. Desel, R. Lorenz, and S. Mauser, “Process mining
based on regions of languages,” in Business Process Management, ser.
LNCS, G. Alonso, P. Dadam, and M. Rosemann, Eds., vol. 4714.
Springer, Heidelberg, 2007, pp. 375–383.

[17] W. van der Aalst, A. de Medeiros, and A. Weijters, “Genetic process
mining,” in Applications and Theory of Petri Nets, ser. Lecture Notes
in Computer Science, G. Ciardo and P. Darondeau, Eds., vol. 3536.
Springer, Heidelberg, 2005, pp. 48–69.

[18] W. van der Aalst, “Relating process models and event logs – 21 con-
formance propositions,” in Proceedings of the International Workshop
ATAED-2018, ser. CEUR Workshop Proceedings, vol. 2115. CEUR-
WS.org, 2018, pp. 56–74.

[19] A. Kalenkova, I. Lomazova, and W. van der Aalst, “Process model
discovery: A method based on transition system decomposition,” in
Application and Theory of Petri Nets and Concurrency, ser. LNCS, vol.
8489. Springer, Cham, 2014, pp. 71–90.

[20] A. Kalenkova and I. Lomazova, “Discovery of cancellation regions
within process mining techniques,” Fundamenta Informaticae, vol. 133,
pp. 197–209, 2014.

[21] W. van der Aalst, A. Kalenkova, V. Rubin, and E. Verbeek, “Process dis-
covery using localized events,” in Application and Theory of Petri Nets
and Concurrency, ser. Lecture Notes in Computer Science, R. Devillers
and A. Valmari, Eds., vol. 9115. Springer, Cham, 2015, pp. 287–308.

[22] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, 1994.

[23] W. van der Aalst, A. ter Hofstede, B. Kiepuszewski, and A. Barros,
“Workflow patterns,” Distributed and Parallel Databases, vol. 14, pp.
5–51, 2003.

[24] D. Campagna, C. Kavka, and L. Onesti, “BPMN 2.0 and the service in-
teraction patterns: Can we support them all?” in Software Technologies,
ser. Communications in Computer and Information Science, vol. 555.
Springer, Cham, 2015, pp. 3–20.

[25] S. Suriadi, R. Andrews, A. ter Hofstede, and M. Wynn, “Event logs
imperfection patterns for process mining: Towards a systematic approach
to cleaning event logs,” Information Systems, vol. 34, pp. 132–150, 2017.

[26] M. Acheli, D. Grigori, and M. Weidlich, “Discovering and analyzing
contextual behavioral patterns from event logs,” IEEE Transactions on
Knowledge and Data Engineering, vol. 34, no. 12, pp. 5708–5721, 2022.

[27] W. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining:
discovering process models from event logs,” IEEE Transactions on
Knowledge and Data Engineering, vol. 16, no. 9, pp. 1128–1142, 2004.

[28] K. Artamonov and I. Lomazova, “What has remained unchanged in your
business process model?” in 2019 IEEE 21st Conference on Business
Informatics (CBI), 2019.

