
SYRCoSE-2023

Alias Analysis and Calculus
based on Segmentation Address Memory Model

Igor Parfenov
Innopolis University
Innopolis, Russia

parfenov 2001@mail.ru

Abstract—We present a straightforward implementation of a
simplified imperative programming language with direct memory
access and address arithmetic, and a simple static analyzer for
memory leaks. Our study continues a line of research attempted
(in Innopolis University in years 2016-2022) on alias calculi
for imperative programming languages with decidable pointer
arithmetic but differs by memory address model — we study
segmented memory model instead linear one.

Index Terms—Imperative programming, memory address
model, memory safety, memory leaks, static analysis

I. INTRODUCTION

There are various different instruments for program code
development. One of the areas that has to be improved for
programming languages is the safety and correctness of suc-
cessfully compiled programs. The C programming language,
like some others, has pointers and direct memory access,
which is a powerful and, at the same time, uncontrollable
instrument, whose safety depends only on the programmer.
Those programming languages need some validation tech-
niques for checking the safety and correctness of using those
features.

The alias calculus is the mathematical model which operates
on an abstract, simplified programming language with dynamic
memory (accessible by explicit or implicit pointers) and some
rules, using which it can validate if the program is memory
safe. This theory can be expanded to real programming lan-
guages.

In this paper, firstly, a new variant of the alias calculus
is suggested and studied up to some extent. Then, based on
the this theory, we present a compiler for a simple model
C-like programming language with direct memory access (via
pointers). The compiler has been implemented from scratches.
For this programming language, a set of programs has been
written, and some metrics and statistics of their executions
have been collected and studied. Finally, we present a static
validator for memory leak safety for programs (with pointers)
written in our model language. We hope that this instrument
can be successfully used in real programming.

II. LITERATURE REVIEW

A. Anderson’s Model

Andersen’s pointer analysis model [1] is the most close
to alias calculus among commonly used static analysis mod-
els. However, it describes a little different, more simplified,

pointer-to model. Nevertheless, definitions and properties in-
troduced there are necessary for this scope’s analysis. Roughly
speaking, Andersen’ pointer analysis is based on theory of
equality for uninterpreted functional symbols. The algorithm
traverses the program by statements and calculates for every
pointer set of other pointers, to which it can be equal.
Such a set is called points-to set. During traversing, once an
assignment is met, a constraint “point-to set of source is subset
of point-to set of destination” is created. After the constraints
are collected, they are solved. The content of the work is over-
complicated, though.

B. Alias Calculus

A simplified description of alias calculus and some other
information out of this scope is described in [2]. Informally,
alias relation is a structure, which specifies for every variable,
to which pointer variable does it belong. The cited paper
presents a set of simple operations: assignment, allocation
and deallocation, if-statements and loops, which affect the
alias relation. The purpose of calculus rules is static over-
approximation Q of actual alias relation after execution of a
program S for a given alias relation P before the program
execution, i.e., such relation Q that Hoare triple [P]S[Q] to
be true. For example, assignment statement copies aliases to
destination replaced by source and removes aliases, which con-
tain source; if-statements calculate relations for all branches
and unite them.

The algorithm from [2] was implemented in the Eiffel Ver-
ification Environment and can be used through the AutoProof
module. The approach used in the algorithm, presented in our
is, however, different and will be explained in detail in the cor-
responding section. One of the main differences is the memory
model used: in [2] memory consists of abstract addresses
while in our model, for every state and for every variable,
alias relation describes the meta-identifier of allocated space
and shift relative to the meta-identifier. This allows swapping
allocated space for variables without triggering the validator.

C. Separation Logic

Separation logic [3] and [4] is an extension of the first-order
logic for specification of the programs over dynamic memory
(heap) in Hoare assertions [P]S[Q]. It operates on a heap,
which is addressed, using a “separating conjunction” operator,
which checks if objects hold different parts of the heap. There

1

were proposed ways to handle unrestricted memory access
with not only static arrays, but also dynamic arrays and recur-
sive functions. The concept of separation logic is widely used
in different proof assistants and frameworks; hence, it can also
be used for validating programs in this scope. Separation logic
semantics is based on a model comprising stores (to represent
static memory) and heaps (to represent dynamic memory),
which are finite-domain maps from variables’ identifiers and,
respectively, locations (accessible via pointers or addresses
which are particular numbers), to data values (e.g. integers).
There are two major heap models in use: linear or flat (where
each location is capable of storing simple data values), and
segmented (where locations can store compound data like
arrays with static size).

D. MoRe Language

[5] presents and describes the MoRe language, which allows
more flexible actions on pointers’ addresses in comparison to
Andersen’s one. The cited paper describes the target theory
in the clearest and most understandable way, so this was the
starting point for our research. MoRe language presents the
linear address arithmetic and has a separate stack and heap
address spaces. The language has direct memory access and
address arithmetic, hence its memory model fully represents
C programming language address memory model. There are
only integer and pointer data types in MoRe. The algorithm
traverses the program and calculates a set of configurations
at every moment. The configuration consists of three objects:
a set of address variables, a set of address expressions and a
set of pairs of “synonyms” – variables, which point to one
cell in current configuration. For recalculation the state an
operator “aft” was introduced, which for every possible state
and statement properly defines a new state after execution
of the statement. The syntax grammar of this language is
given in Fig. 1. Bachelor Thesis [6] presents simple imple-
mentation and analysis of MoRe language. Bachelor Thesis
[7] implements simplified C language with MoRe language
interface, which can be compiled using LLVM. The syntax
and semantics of this thesis’ implemented language is close
to MoRe’s.

P ::= skip | var V = C | V := T | V ::= cons(C∗) |
| [V] := V | V := [V] | dispose(V)| (P ;P) |

| (if then P else P) | (while do P)

Fig. 1. The syntax grammar of MoRe language: start variable is P, C is
constant integer, and C* is list of integers with ”,” character between them

III. METHODOLOGY

In this section we informally introduce and overview a
simplified model language Alias. Though the real implemented
language has same syntax as presented here, it’s semantic
is developed more practically oriented and proposes new
instruments.

A. Alias Programming Language Overview

The implemented version of the Alias language has/offers
• Two types — integer and pointer (to be tracked in

analysis)
• Variable definitions, assignments, and annotations (as-

sumptions)
• Blocks, If- and While-statements, Procedures.

Program may be split on multiple files. BNF syntax definition
of language is given in Figure 2. However, the semantics are
very restricted.

• Type ::= int | ptr
• Program ::= Block
• Block ::= {[Statement]}
• Statement ::=

– Block Block
– def Ident Type Definition
– Ident := Expression Assignment
– Ident <- Expression Movement
– free(Ident) Deallocation operator
– if (Expression) Block If statement
– if (Expression) Block else Block If/Else statement
– while (Expression) Block While statement
– func([int Ident | ptr Ident Integer Integer] Block

Function definition
– call Ident([Ident]) Function call

• Expression ::=
– Ident
– Integer
– $Ident Dereference
– Expression + Expression
– alloc(Int) Allocation operator

Fig. 2. The syntax grammar of implemented language

B. Outlines of validation algorithm (static semantics)

Memory safety validation is done using the following
method (algorithm).

• Program (text) is parsed line by line maintaining (in form
of states) a set of known relations “pointer points to
cell in heap” but ignoring any information about integer
variables.

– At some stages the states (known relations “pointer
points to cell in heap”) can split, as there is no
information about integer variables.

– If in a current line there is no pointer variable, which
points to any heap cell, then it means memory leak
happened.

– if there is a dereference of a pointer variable, which
at some state points out of allocated area, then access
violation happened.

C. Configuration

Every configuration contains

I: A set of local variables/identifiers, which have
pointer type.

A: a set of allocated cells in the heap (each cell in the
form “Meta-variable + Integer-phase”)

S: For every identifier in I appointed cell in A, or an
exceptional value “OUT”.

D. Legal Types of Assignments

There are three types of assignments:
1) int := int – i.e., an integer expression is assigned to an

integer variable
2) [ptr -> ptr] := ptr – i.e., a pointer expression is assigned

to a pointer
3) [ptr -> int] := int – i.e., an indirect assignment to integer

variable
Only the second type affects on configuration.

Note, that storage pointer variables on heap doesn’t affect
on configuration. Hence validation of multidimensional arrays
of structures, for example, is not supported by our analysis.

E. Some optimizing assumptions

We make the following (informal) assumptions about pro-
grams (for boosting of validator).

• The number of local variables is not very big, while the
number of heap cells can be very big, but (as now) is
assumed constant.

• Since the number of configurations grows exponentially,
we implement ‘assume’ statement, which filters the con-
figurations which pass given condition (but programmer
is responsible for the correctness of this assumption).

• The current number of configurations is counted, so the
programmer can get number of configurations in real time
in IDE.

F. Static semantics for pointers

Program traversed recursively. For the following statements
corresponding actions made:

• Block affects only on visibility scopes of variables. It
doesn’t change state.

• Definition affects only on visibility scopes of variables.
It doesn’t change state.

• Assignment depending on types does following:
– Destination has pointer type, and source has pointer

type. If assignment has form a := b+x and in some
configuration a = av + ap and b = bv + bp then in
new state this configuration has a = bv+(bp+x). For
example, if there was configuration with (b = 0+3)
and statement a := b+ (−1) was executed, the next
configuration will be with (b = 0+ 2). If after this
in some configuration there is no av , then memory
leak happened.

– Destination has pointer type, and source has integer
type. For every configuration and every allocated cell
new configuration created where destination points to
such cell.

– If destination has integer type, the state is not
changed.

• Assumption works as a guard, i.e., it removes config-
urations, where the assumption condition is false. If
assumption has form assume(a = b + x) and in some
configuration a = av + ap and b = bv + bp, then if
av ̸= bv or ap ̸= bp + x, then condition is false. If
assumption has form assume(a < b + x) and in some
configuration a = av+ap and b = bv+bp, then if av ̸= bv
or ap ≥ bp + x, then condition is false.

• If-statement is traversed in the following steps. Firstly,
the first branch is validated. Then the sizes of all lists,
which were allocated during this are saved and set to 0.
Finally, the second branch is validated, and finally the
sizes of lists are restored. If there is allocation in one
branch, then the list will be added to states, but it won’t
appear in any configuration in second branch, hence it is
guaranteed, that an alert will be shown. (Probably it is a
solvable problem, we can force to allocate to the variable
the same size at the last assignment in both branches.)

• While-statement is traversed in the following steps. The
body is validated, and if state has been changed, the body
validated again. There is a threshold (set in validator) for
number of these iterations, after exceeding which, it is
assumed that the loop is infinite. The variables declared
in a loop are scoped in the loop.

• A function actually is a procedures, its definition contains
set of formal parameters (as arguments) in its signature.
Each pointer parameter has two associated integer values,
which guarantee the minimal number of sells before and
after a call. The function doesn’t return values, but can
change its pointer arguments (i.e., actual arguments are
passed name to function).

• Function call contains parameters as actual arguments of
function. If in some configuration some pointer variable
variable (passed to the function as an actual argument)
doesn’t satisfy the minimal size of allocated space, then
it causes a run-time error.

IV. IMPLEMENTATION

This section describes implemented language, which is
based on model language described previously, but mostly
oriented on practical usage.

A. Overview

By default, the whole process of building and execution
consists of the following sequential stages.

Parsing calias parses input files and builds ab-
stract syntax tree;
Validation calias traverses tree and does static
analysis;
Compilation calias traverses tree and writes
equivalent x86 assembly code;
Assembly nasm builds object file;
Linking gcc links object file and provides its
malloc and free functions.

B. Tool-chain for the Alias Language

The compiler is implemented using language C++ for
GNU G++ compiler and preferably uses C++17 standard.
The implementation can be found in corresponding GitHub
repository. The output executable is called calias.

For front-end no lexical and parser generating tools, or a
framework for development of domain specific languages were
used, both lexer and syntax parser were implemented from
scratches.

C. Validation

The validation is done as traversing the abstract syntax tree
with passing and modification a context.

A context consists of the following components (though its
implementation is a bit more complicated):

• stack of variables;
• stack of functions;
• vector of sizes of packets;
• set of states.
A state is a vector, which for every declared variable

contains
• either the pair consisting of a packet, in which it lays, and

a phase (i.e, a shift relative to the beginning of packet,
to which the variable points);

• or a special value OUT.
Note, that here we use a terminology that differs from

terminology in the section III: context here is used instead
of state, and state here is used instead of configuration (since
these terminology is commonly adopted in program languages
implementation community).

D. Rules definitions

This is a formal description of working process of validator.
It omits some non-important cases, for more clear understand-
ing.

The rule is described in two lines. Conclusions are written
in the bottom line A ⊢ B → C and premises — in the top line
D ⊢ E → F . This means, that if we have to traverse node B
of abstract syntax tree and the current context is A, then we
have to create new context D, do recursive call on node E,
which will return context F and then return context C. If a
rule has no premises it is an axiom (i.e., no further recursive
calls).

Let us introduce some notation conventions. Meta-variable
V S stands for variable stack, FS — for function stack, PS
— for vector of packet sizes, and SS — for set of states.
If the actual value of some of the listed meta-variables does
not change in a rule, then it is presented implicitly, while any
change of actual value must be specified in the rule explicitly.
For example, if there is a line C[FS] ⊢ statement → C[FS :
foo], then it means that the output context is almost the same
as input, but the value of FS (to which foo is appended to the
end of the function stack).

Operation ”:” appends the value to the end of the stack; it
is also used to denote, that the element has instances in the

structure. Operation ”::” concatenates two stacks or vectors;
it is also used to denote, that the elements of second list are
presented in the first list (neglecting the order). As usual, (x, y)
stays for a pair of two elements and x := y denotes an update
assigning the value of y to variable x.

There are following additional operators:

• packet(x, S) returns the identifier of the packet, to which
the variable x is bound in state S;

• phase(x, S) returns the phase with respect to the begin-
ning of the packet, to which variable x is bounded in
state S;

• value(x, S) returns a pair consisting of packet(x, S) and
phase(x, S);

• packet size(x) returns the size of packet x (remark that
it is unique in all states);

The CHECK operator works as a guard, i.e., it is used to
evaluate the expression (after CHECK), and if it is false, stops
validation with corresponding error message.

E. List of Rules

1) Block: Remember the size of stack of variables. Traverse
all statements in body, and crop stack of variables to previous
size.

C ⊢ S1 → C1; . . . ;Cn−1 ⊢ Sn → Cn

C[V S, FS] ⊢ {S1, . . . Sn} → Cn[V S, FS]

2) Definition: Append the variable name to the stack of
variables.

C[V S] ⊢ def a type → C2[V S : a]

3) Assignment: Different behaviour for integer and pointer
types.

For integer we just need to check the right part is a valid
expression.

C[V S : a] ⊢ expr → C

C ⊢ a := expr → C

There are three options for assignments with pointers —
alloc, shift by a constant, and more complicated expressions
in the right-hand side..

Alloc expression creates an additional packet.

C[V S : a, PS, SS] ⊢ a := alloc (x) → C[[PS : x],∀S ∈
SS → value(a, S) := (size(PS), 0)]

Shift (i.e., pointer + constant integer) assigns the corre-
sponding value.

C[V S :: [a, b], SS] ⊢ a := b + x → C[∀S ∈ SS →
value(a, S) := (packet(b, S), phase(b, S) + x)]

https://github.com/ParfenovIgor/alias
https://github.com/ParfenovIgor/alias

For all other cases the state into states, where the variable
points to one of all possible allocated cells, and check right
part expression.

C ⊢ expr → C

C[V S : a, SS] ⊢ a := expr → C[∀S ∈ SS → ∀packet p, x ∈
[0, packet size(p)) → value(a, S) := (p, x)]

4) Movement: Check, that pointer at left size if correct, and
check the right part expression.

C ⊢ expr → C

C ⊢ a <- expr → C
CHECK∀S ∈ SS phase(a, S) ∈
[0, packet size(packet(a)))

5) Free: Check, that the pointer has phase zero, and have
same packet in all states. Assign packets of all pointers, which
point to this packet, to OUT.

C[PS] ⊢ free(a) → C[PS → packet(p) := 0,∀S ∈ SS →
∀x, packet(x, S) = p → value(x, S) := (OUT, 0)]

CHECK∀S ∈ SS : packet(a, S) = p and phase(a, S) = 0

6) Function definition: Flush all variables and append ar-
gument variables. Each pointer variable which has nonzero pre
size lays in own packet with size equal to pre size. Check body.
At the end check that all pointer variables lays in different
packets with at least post size distance from end of packet and
have same packet in all states. Restore variables and append
function.

[[a, b], [foo], [ina, inb], a := (a, 0), b := (b, 0)] ⊢ block →
C2

C[FS] ⊢
func foo (def a ptr in a out a, def b ptr in b out b) block) →

C[FS : foo]
CHECK∀var x, S ∈ SS packet(x, S) =

x and phase(x, S) ∈ [0, packet size(x)−
outx) and ∀var x ̸= var y packet(x, S) ̸= packet(y, S)

7) Function call: Check, that all pre conditions are satis-
fied: all argument variable lay in different packets with at least
pre size distance from end of packet and have same packet in
all states. Remove all passed packets, as if they were freed,
and create new packet for each argument variable.

C[FS : foo, PS, SS] ⊢ call foo(args) → C[PS ::
[outa, outb],∀S ∈ SS → value(a, S) := (new a, 0), b :=

(new b, 0)]
CHECK∀x ∈ args S ∈ SS phase(x, S) ∈
[0, packet size(x)− inx) and ∀x ̸= y ∈

args packet(x, S) ̸= packet(y, S)

F. Compilation

The compilation is done into x86 intel Assembly. The
compiler using almost same structure as validator. But its
context is adapted for compilation. The compilation is done
as traversing abstract syntax tree and building assembly code,
which is the assembled using nasm and linked using gcc,
which provides implementations of functions malloc and free.

G. Assembly structure

There are rules for compilation, which are defined the same
way, as for validation. Though, they are not interested in scope
of this thesis.

• There is an enter point of the program;
• There is declarations of functions malloc and free, their

implementations have to be provided;
• The System V ABI[8] is used, which makes this file

compatible with programs written is C language;
• The 32 bit assembly is used, thus the only data types

have same size of four bytes;
• Only the simple general purpose instructions are used;
• The expressions push calculated result on the top of

current stack. The binary operators do recursive call of
one operand, then pushes stack and do recursive call of
the other operand;

• There are no optimizations.

H. The IDE

The IDE is implemented from scratches in language C++
for GNU G++ compiler and preferably uses C++17 standard.
It widely uses NCurses library for implementation text editor.
The implementation can be found in corresponding GitHub
repository. The output executable is called ideal.

V. EVALUATION: EXAMPLES OF MEMORY ERRORS

A. Detected Errors with one Configuration

In this section will be presented examples of programs (each
with a simple error) that have only one configuration on every
state.

d e f a p t r
a := a l l o c (3)
a := a l l o c (2)

Listing 1. Example of memory leak

After the second assignment, there is a configuration (this
is the only one configuration in this state), where there is
no page, which was allocated first. The validator will show
corresponding error on the third line.

d e f a p t r
a := a l l o c (3)
a := a + 4
d e f b i n t
b := $a

Listing 2. Example of access violation while dereference

https://github.com/ParfenovIgor/ideal
https://github.com/ParfenovIgor/ideal

In the fifth statement there an attempt to dereference the
pointer, while there is a configuration, where this pointer points
out of page (this is the only one configuration in this state).
The validator will show corresponding error on the fifth line.

d e f a p t r
a <− 4

Listing 3. Example of access violation while movement

In the second statement there is an attempt to move value by
pointer, while there is a configuration, where this pointer out
of page (this is the only one configuration in this state). The
validator will show corresponding error on the second line.

d e f a p t r
a := a l l o c (3)
a := a + 1
f r e e (a)

Listing 4. Example of access violation while free

In the forth statement there is an attempt to free page by
pointer, while there is a configuration, where this pointer is not
at the beginning of page (this is the only one configuration in
this state). The validator will show corresponding error on the
forth line.

B. Detected Errors with multiple Configurations
Next let us discuss examples of programs which have

multiple configurations in every state.

d e f a p t r
i f (1) {

a := a l l o c (3)
}

Listing 5. Example of memory leak on branching

In the end of body of if statement there is memory leak,
since there is a configuration, where there is no allocated page
(there are two configurations: with if and without). In general,
the allocations can only be places at root blocks in function
bodies.

d e f a p t r
d e f b p t r
a := a l l o c (3)
b := a l l o c (4)
d e f c p t r
i f (1) {

c := a + 0
}
e l s e {

c := b + 0
}
f r e e (c)

Listing 6. Example of unpredictible free

In the free statement there are two configurations, but in
these configurations the variable c points to different pages. It
is restricted, as there is no way to continue validation.

VI. CONCLUSION

In this work in progress paper, firstly we briefly review
some approaches to memory safety analysis. Then we pro-
ceed to a new variant of alias calculus and propose several
changes, stemmed from the the C programming language
memory model. Finally, we describe our implementation of
a model language, our static analysis tool, and present several
experiments showing analysis’ potential (as we believe).

Still we need to try validator on a “large” source code file
containing more than 100 lines of code. Right now we foresee
a problem with scaling our analysis to “large” programs and
on programs in a programming language from the real world.
Additionally, a crucial missing piece in the theory is the
handling of dynamic arrays and recursive functions.

BIBLIOGRAPHY CITED

[1] L. O. Andersen, “Program analysis and specialization for
c programming language,” in DICU, [Online]. Available:
http://www.cs.cornell.edu/courses/cs711/2005fa/papers/
andersen-thesis94.pdf, May 1994.

[2] S. V. A. Kogtenkov B. Meyer, “Alias calculus, change
calculus and frame inference,” in Science of Computer
Programming, [Online]. Available: http : / / is . ifmo . ru /
articles en/2013/meyer-calculus-2013.pdf, Nov. 2013.

[3] J. C. Reynolds, “Separation logic: A logic for shared
mutable data structures,” in Carnegie Mellon University,
[Online]. Available: https : / / www. cs . cmu . edu / ∼jcr /
seplogic.pdf, Jul. 2022.

[4] P. O’Hearn, “Communications of the acm,” in Carnegie
Mellon University, [Online]. Available: https:/ /dl .acm.
org/doi/pdf/10.1145/3211968, Feb. 2019.

[5] A. V. N.V. Shilov A. Satekbayeva, “Alias calculus for
a simple imperative language with decidable pointer
arithmetic,” in Novosibirsk Computing Center, [Online].
Available: https : / / nccbulletin . ru / files / article / shilov
satekbayeva vorontsov.pdf, 2014.

[6] L. I. Lygin, “Alias calculus in c-like languages,” 2021.
[7] G. Dolgov, “Implementing alias calculus for c program-

ming language using llvm,” 2022.
[8] A. J. Michael Matz Jan Hubicka, System v application

binary interface, [Online]. Available: https : / / refspecs .
linuxbase.org/elf/x86 64-abi-0.99.pdf, Jul. 2012.

http://www.cs.cornell.edu/courses/cs711/2005fa/papers/andersen-thesis94.pdf
http://www.cs.cornell.edu/courses/cs711/2005fa/papers/andersen-thesis94.pdf
http://is.ifmo.ru/articles_en/2013/meyer-calculus-2013.pdf
http://is.ifmo.ru/articles_en/2013/meyer-calculus-2013.pdf
https://www.cs.cmu.edu/~jcr/seplogic.pdf
https://www.cs.cmu.edu/~jcr/seplogic.pdf
https://dl.acm.org/doi/pdf/10.1145/3211968
https://dl.acm.org/doi/pdf/10.1145/3211968
https://nccbulletin.ru/files/article/shilov_satekbayeva_vorontsov.pdf
https://nccbulletin.ru/files/article/shilov_satekbayeva_vorontsov.pdf
https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf
https://refspecs.linuxbase.org/elf/x86_64-abi-0.99.pdf

	Introduction
	Literature Review
	Anderson's Model
	Alias Calculus
	Separation Logic
	MoRe Language

	Methodology
	Alias Programming Language Overview
	Outlines of validation algorithm (static semantics)
	Configuration
	Legal Types of Assignments
	Some optimizing assumptions
	Static semantics for pointers

	Implementation
	Overview
	Tool-chain for the Alias Language
	Validation
	Rules definitions
	List of Rules
	Block
	Definition
	Assignment
	Movement
	Free
	Function definition
	Function call

	Compilation
	Assembly structure
	The IDE

	Evaluation: examples of memory errors
	Detected Errors with one Configuration
	Detected Errors with multiple Configurations

	Conclusion
	Bibliography cited

