
Predicate Abstraction Refinement in
Thread-Modular Analysis

Veronika Rudenchik
Ivannikov Institute for System Programming of RAS,

Moscow, Russia
Email: rudenchik@ispras.ru

Pavel Andrianov
Ivannikov Institute for System Programming of RAS,

Moscow, Russia
Email: andrianov@ispras.ru

Abstract—Thread-modular approach over predicate abstrac-
tion is an efficient technique for software verification of com-
plicated real-world source code. One of the main problems
in the technique is a predicate abstraction refinement in a
multithreaded case. A default predicate refiner considers only
a path related to one thread, and does not refine the thread-
modular environment. For instance, if we have applied an effect
from the second thread to the current one, then the path in
the second thread to the applied effect is not refined. Our goal
was to develop a more precise refinement procedure, reusing
a default predicate refiner to refine both: a path in a current
thread and a path to an effect in the environment. The idea is to
construct a joined boolean formula from these two paths. Since
some variables may be common, a key challenge is to correctly
rename and equate variables in two parts of the formula to
accurately represent the way threads interact. It is essential to
get reliable predicates that can potentially prove spuriousness of
the path.

The proposed approach is implemented on top of CPAchecker
framework. It is evaluated on standard SV-COMP benchmark
set, and the results show some benefit. Evaluation on the
real-world software does not demonstrate significant accuracy
increase, as the described flaw of predicate refinement is not the
only reason of false positive results. While the proposed approach
can successfully prove some specific paths to be spurious, it is not
enough to fully prove correctness of some programs. However,
the approach has further potential for improvements.

Index Terms—static verification, predicate abstraction, thread-
modular analysis

I. INTRODUCTION

Program verification is a process of checking if a pro-
gram satisfies certain requirements. In static verification a
program or its model is analyzed without actually running
the code. There are multiple tools for program verification
that implement various techniques targeted at different types
of tasks. One of them is a reachability problem - a task of
determining if a given point in a program is reachable. For
reachability problem verification process can be broken down
into two separate parts: 1) building a set of reached states; 2)
checking if target state is in this set. While the second part
is relatively simple, the first part is complex and resource-
intensive. Various techniques and optimizations are developed
to solve it. One of such approaches is abstraction.

There are many different types of analyses, which imple-
ment different kinds of abstractions. Using several abstractions
at once can make analysis more efficient, especially for com-

plicated pieces of code. CPA (Configurable Program Analysis)
[1], [2] was introduced as an approach of unifying different
techniques for software verification (including abstractions).
It allows combining different kinds of abstractions in various
ways, so they can be used simultaneously and construct a more
accurate model of a program.

In software verification approaches a model of a program
is automatically extracted from the source code. It may not
be accurate enough to prove certain properties of a program.
Constructing more complex models is not always resource-
efficient. This problem can be solved by using algorithms
of iterative model refinement such as CEGAR [3], which
refines abstractions using a counterexample. The algorithm
iteratively refines the abstraction until it achieves a level of
precision suitable for proving a specific property. Further, we
will consider predicate abstraction [4], which assigns to each
state a predicate that limits possible values of variables in the
state.

Multithreaded programs traditionally cause additional prob-
lems for software verification. Classic approaches, which con-
sider different combinations of thread interleavings, quickly
result in state space explosion. There are other approaches, for
example, Thread-Modular approach [5]–[7], which considers
each thread separately in combination with some environ-
ment. The environment is constructed automatically during
the verification process, and may be unique for every process.
Thread-Modular approach demonstrates good performance and
precision for industrial software as a target code. However, as
we use abstraction technique, we need to have a refinement
procedure. This presents a challenge, as the threads may
interact with each other, for example, they may operate with
the same shared variables or use local variables with the same
names.

The paper presents a way of refining predicate abstraction
in Thread-Modular approach. In Thread-Modular an error path
is a path in a one thread, as threads are analyzed separately.
However, it may contain effects from other threads, and there
are paths to the effects in other threads We introduce an
efficient way to construct a joined boolean formula for two
different thread paths. The idea is to rename local variables to
avoid matching and add specific equalities of shared variables
to represent dependencies of values of shared variables in
different threads. Constructing a joined formula allows reusing



a basic predicate refinement procedure to refine multiple
paths all together. However, practical implementation poses
some technical problems such as hanging caused by repeated
analysis of the same path.

A current limitation of the approach is complicated thread
interleavings. For example, if the analyzed thread interleaves
with the second one that is also affected by the third one, the
proposed approach might not be effective.

Experiments show that the approach allows refining more
paths than the default predicate refinement procedure. It can
successfully prove absence of errors for a certain number of
tasks. However, the benefit is shown mostly on small artificial
tests, as large real-world examples have a complicated thread
interaction. Thus, even if the proposed predicate refinement
procedure is able to remove some infeasible paths from
abstractions, there are still other spurious paths due to other
reasons, which do not allow to prove the correctness.

The main contributions are:
• an approach for environment refinement in predicate

abstraction;
• implementation of the approach on top of the CPAchecker

framework1. The source code is already merged in the
main branch.

The rest of the paper is organized as follows. The section II
gives brief introduction to the theory. The section III contains
a motivation example with a description of the problem. The
proposed solution is presented in the section IV. In the section
V some implementation features are described. Evaluation
details are given in the section VI. And the section VII contains
brief information about related work.

II. PRELIMINARIES

A. Software model checking

We consider a multithreading program as target software.
This is a program, which contains more than one execution
thread. The threads can operate with local variables, which
are available only to specific threads, and shared variables,
which are available to all threads. We do not specify any
interface, like, POSIX, ARINC, or other, as it is irrelevant
to our analysis.

Further we consider software model checking approach
for static verification. Such approaches allow the automatic
extraction of a formal model from the source code and check
it against predefined specifications or properties.

One of such properties is reachability. If a specific error
state is reachable, then the property is violated and the program
is incorrect. Accordingly, if no error state is found, the
program is considered to be correct.

Another possible property is absence of data races [8].
Theoretically, it can be expressed via reachability [9], however
in practice it is more efficient to consider it separately. Further,
we will consider only reachability problem, as it is simpler.
However, it is possible to apply the proposed refinement

1https://gitlab.com/p.andrianov/cpachecker/

procedure for verification of other properties. Also, we do not
consider any specifics of weak memory models [10].

B. Abstractions

As mentioned above, instead of analyzing a program itself
we analyze a model of a program. Traditionally, a model of
a program is a graph built upon Control Flow Automaton
(CFA). The edges represent program operators from CFA and
the states represent program memory, including location from
CFA (pc) and assignment of values to all variables. The states
are called concrete ones.

Even for a one integer counter possible values are numerous.
Real-world software contains thousands of variables, and using
concrete states in analysis leads to combinatorial explosion
of a state-space. One of the ideas to reduce the number
of considered states is abstraction. Abstract states represent
multiple concrete data states. There are many different kinds
of possible abstractions. Our approach is based on predicate
one, so, further we will consider it. In predicate abstraction [3]
an abstract state contains predicates over program variables.
For example, abstract state (x = 0) represents many concrete
states, including (x → 0, y → 0), (x → 0, y → 1),
(x → 0, y → 2), etc. It constrains x to have a value of zero,
but does not specify values of other variables. The same way
abstract state (x ⩾ 0) ∧ (y ⩽ 1) constrains variables x and y
in the way defined by the predicates.

An operator transfer allows to build a next abstract state
for a parent state and program operation (control flow edge).
In predicate abstraction the operator transfer is the strongest
postcondition of the parent state and program operation. A
set of states, which are reachable by a transfer from some
initial state, is a reached set. Note, that the reached set is
a set of abstract states, and potentially, some abstract states
may represent those concrete states, which are impossible in a
real execution of a program. This is, because an abstraction is
an overapproximation of a program. This is necessary for the
soundness of an analysis i.e. in order for the program to not be
falsely considered correct. Reached set is usually represented
by Abstract Reachability Graph (ARG).

Abstraction is built with a certain precision: high precision
means more precise abstraction. Precision is formally defined
by an analysis. In predicate analysis a precision π is a
set of predicates, which are used in constructing predicate
abstract states. The lowest (the weakest) predicate precision
is an empty set π = ∅. Predicate abstraction with the empty
precision will contain only trivial predicate states ⊤, which
corresponds to formula True. They represent any concrete
state.

And how can the precision be changed? For example, if the
abstraction is not precise enough and contains spurious paths,
there is a need to refine it. This question will be addressed in
the following section.

C. Refining predicate abstractions with CEGAR

As we have already described, abstraction is an overapprox-
imation of a program, so, it may omit some details. Because



of such imprecision, a program can be falsely considered
incorrect. Therefore, there should be a way to refine the
abstraction.

Counter-Example Guided Abstraction Refinement (CE-
GAR) [3] is an approach for increasing precision of an abstrac-
tion. It iteratively refines an abstraction using counterexamples.
In case of reachability problem, counterexample is a path to
an error state. Let us consider the way CEGAR refines the
abstraction.

First, an initial abstraction (a set of reached states) is built
with a given precision. By default the initial precision is set
to the lowest precision, i.e to the empty one, meaning the
abstraction is built imprecisely.

Then we should check if an error state is present in the
abstraction. For the initial abstraction it means just syntactical
reachability, as there are no valuable predicates. If the error
state is unreachable, the program is correct and the analysis
finishes.

If the error state is present in the abstraction, it does not
mean that it is reachable in the program since the abstraction
can be imprecise. The counterexample (a path to this state)
needs to be checked for feasibility precisely. If the error
path is feasible in a precise model, the program is incorrect
and the analysis finishes. If the error path is infeasible in
the precise model, abstraction needs to be recomputed with
the new precision provided by CEGAR. That is a default
CEGAR loop. There are two points of interest here: how the
counterexample is checked for precise feasibility and how new
precision is obtained. Further we will consider these issues in
case of predicate abstractions.

In predicate abstraction a path formula is calculated in order
to check the counterexample for feasibility. Path formula is
a conjunction of predicates that correspond to path operators.
For instance, if a path contains three consecutive operators: an
assignment operator a = 1, a conditional operator if(a ≥ 0)
and another assignment operator b = 1, the corresponding path
formula is a = 1∧a ≥ 0∧ b = 1. There is no contradiction in
the formula, so it is satisfiable. Formula a = 1∧a < 0∧b = 2
corresponds to operators a = 1, if(a < 0) and b = 2. This
formula is unsatisfiable.

Satisfiability of a path formula is equivalent to existence of
such input data (initial values of variables) that the error state
is reachable. The satisfiability of the formula is checked by a
specific external tool - SAT solver. If the formula is satisfiable,
then the error state is considered reachable and analysis ends.
Feasibility of the path in the abstraction but not in the program
means that the abstraction is not precise enough and needs to
be refined.

The way precision is extracted from spurious counterexam-
ple depends on the abstraction. Moreover, there are different
ways to refine predicate or any other abstraction. We are
using Craig interpolation [11] to extract predicates from an
unsatisfiable path formula. There is an interpolation theorem,
which claims that for any logical formulas φ,ψ such that
φ∧ψ ≡ ⊥ there exists logical formula ρ, called an interpolant,

such that every non-logical symbol in ρ occurs both in φ and
ψ, φ→ ρ and ψ ∧ ρ ≡ ⊥.

In practice, we use interpolating solvers such as MathSAT
[12], Z3 [13], or CVC5 [14], to calculate the interpolants.
Being a conjunction of predicates, an unsatisfiable path for-
mula can be split in two parts, usually in multiple ways,
to satisfy the precondition of the theorem. Solver extracts
multiple interpolants from a path formula, those interpolants
are then added to precision. Note that interpolants are not the
only way to extract new precision.

It is important to mention one of the optimizations for
efficient abstraction rebuild. It is called lazy abstraction [15].
The main idea is to rebuild not all abstraction after refinement,
but to identify the changed parts and reconstruct only them.
During the refinement procedure a refinement root is identified.
This is the state, which is a common parent of all changed
subtrees in the reached set. The subtree is removed after
refinement, and the analysis continues from the refinement
root.

One more optimization, which also should be mentioned,
is Adjustable Block Encoding (ABE) [16]. Its main idea is to
avoid reconstructing predicate formulas in every state. Instead,
formulas are constructed for every block that is composed
of multiple states. Because of it, interpolants are usually not
set for every abstract state. We do not need to describe this
optimization in detail since it is irrelevant to our work.

This concludes an overview of predicate abstraction re-
finement with CEGAR. So far, we have only considered a
path in a single thread. It is not immediately obvious how
this refinement procedure can be applied to an analysis of
multithreaded programs where a path contain operators from
different threads. In the following section we describe an
approach to analysis of multithreaded programs that can be
combined with CEGAR.

D. Thread-Modular Analysis

Thread-Modular analysis [5]–[7] is an approach for veri-
fication of multi-threaded programs. Unlike algorithms that
rely on complete enumeration of possible thread interleavings,
Thread-Modular analysis uses an abstraction of thread interac-
tions. It analyzes each thread individually with consideration
of an environment, which is a model (abstraction) of possible
effects that threads can have on each other [7]. The more
accurate the environment is, the more precise an analysis is
going to be. And less accurate and more abstract models can
be used for analyzing large programs for which brute-force
approaches are not applicable.

Interactions of threads can be formally described in terms of
projections. A projection of an operation is an effect that the
operation can have on other threads or an overapproximation
of such effect. A projection can also contain a condition under
which its effect can be applied. For instance, assigning a
value to a local variable does not affect other threads, so a
projection of this operation is empty. Now let us consider an
assignment x = 0 to a global variable x. Its projection may
contain the same assignment x = 0. Alternatively, a projection



Fig. 1. Thread-Modular approach

may be more abstract and contain assignment x = ∗, meaning
”the thread can change a value of variable x to anything”.
Therefore, environment can be defined as a set of projections
of all operators in the program.

While analyzing each individual thread, Thread-Modular
analysis builds projections of every operator of this thread. The
projections are part of the environment for other threads. After
the primary analysis of each thread, Thread-Modular analysis
considers an effect of the environment. For that purpose it
checks each projection from the environment and each state
in other threads if they are compatible, i.e. if the projection can
be applied to the state. In predicate abstraction two predicate
abstract states are considered compatible if a conjunction of
their predicates is satisfiable. If a projection and a state are
compatible, the effect of the projection is applied to the state
which results in creation of a new state called applied state.
Projections express an effect of other threads, and applied
states contain the effect, which is applied to the particular
state in the current thread.

Applied states and the states that are reachable from them by
operator transfer are added to the reached set. The state to
which the projection was applied is considered to be a parent
state of the applied state. Because of this, new paths are created
that represent how threads interact with each other. Note that
the applied state may be the same as the parent state, meaning
the effect does not change anything.

An illustration of the approach is given in Fig. 1. There is
a part of ARG representing the first thread and a part of ARG
representing the second thread. Assignment operator x = 0
that follows state B from the second thread can be projected.

Fig. 2. Example of a program.

If the new projection is compatible with the state A from the
first thread, it can be applied to the state A. The new applied
state corresponds to application of the effect x = 0 to the first
thread. The analysis continues in the first thread from the new
applied state.

As Thread-Modular approach considers threads separately,
the error path is also a path in a separate thread. However,
the path may contain different effects, representing the thread
interaction. The next section shows the problem during refine-
ment of paths in the Thread-Modular case.

III. MOTIVATING EXAMPLE

Let us consider the program in the Fig.2. It contains two
threads thread1 and thread2, both can change values of
global variables a and b. The first thread assigns the value of
1 to variables a and b with mutex protection. Then it releases
the mutex and checks that the value of b has not changed.
The second thread checks if the value of a has changed and
if it has not, then it changes the value of b to 2; all while
the mutex is locked. The error label (assertion in line 8) is
not reachable, because change of the variable b is allowed
only in case of a ̸= 1. However, analyzing the program
with CPAchecker using Thread-Modular analysis with default
predicate refinement returns a counterexample, meaning the
error label is feasible. The reason this is happening is the
inability to refine the predicate abstraction.

First, the analysis constructs a path to the error state. The
path is in the first thread, as the error state (assert in line 8) is
in the first thread. Initially, the predicate precision in empty,
the path corresponds to operators a = 1 in line 5, b = 1 in
line 6, and assert in line 8 and does not contain any effects.



Fig. 3. Counterexample.

The corresponding path formula: (a = 1)∧ (b = 1)∧ (b ̸= 1).
It is unsatisfiable, because the value of b is not considered in
the abstraction. So, the abstraction is successfully refined and
the interpolant b = 1 is added to the predicate precision.

In the next iteration of the analysis another path is con-
structed. The path is in the first thread and it contains an
application of the effect b = 2 (line 14) from the second
thread right before line 8. The path corresponds to succession
of operators a = 1 (line 5), b = 1 (line 6), b = 2 (line 14,
thread 2), and assert in line 8. Actually, this effect can not
be applied since the operation b = 2 can only be executed if
a does not equal 1 (line 13) but the value of variable a before
line 8 is equal to 1.

The path is spurious, abstraction is not precise enough,
because it does not contain any predicate over value of a. And
the abstraction is supposed to be refined. But default refiner
fails to prove that the effect can not be applied.

The counterexample is shown in Fig.3 (highlighted in dark
color). State A corresponds to the line 8, before assertion

check. State B corresponds to the line 14 with operation b = 2.
So, the projection represents the effect from operation b = 2
for other threads. It is indeed feasible as a path in a single
thread if the projection is applied. But the projection could not
have been applied. Default predicate refiner refines only a path
to the error state, and it does not check the projection, state
from which it was projected (state B in Fig.2) or a path to that
state. Predicate abstraction of the second thread is not refined,
and it stays not precise enough to exclude the application of
the projection. Because of that, spurious counterexample is not
ruled out.

If the predicate precision contained predicates a == 1 and
a ̸= 1 then state A would contain predicate a == 1 and both
state B and the projection would contain predicate a ̸= 1. That
would make state A and the projection incompatible and the
projection would have been applied. The question is, how to
obtain such predicates.

IV. PROPOSED SOLUTION

A. An approach overview

Let us consider a path to an error state in an abstraction.
This is a path in a single thread, and it contains an applied
effect, meaning it is affected by another thread. Let the path in
the single thread be reachable in the abstraction. If the effect
can not been applied, the path is technically unreachable. One
would naturally expect a refiner to detect the unreachability of
the path and construct a more precise environment in which
the effect would not be applied. However, the default refiner
lacks the capability to do so as it only refines the path in a
single thread and does not refine the environment. It is unable
to prove that the effect can not be applied. Therefore, the
analysis considers the path feasible and the error label can be
falsely recognized as reachable.

The problem arises, as the default refinement procedure
considers only thread abstraction and misses the environment.
So, we need an efficient way to refine two parts of the
abstraction (thread and environment) together. And it means,
that the counterexample now consists of two parts: a path in
thread (main path) and a path in an environment. If the two
paths are spurious, we need to obtain interpolants, that can
potentially prove the incompatibility of these paths, and add
them to precision. The next step is to determine an imprecise
part of the abstraction and rebuild it with new precision.

One of the options to refine two paths is to develop a new
refiner specifically for this task. However, this approach would
lead to a considerable amount of code duplication, since only
the refinement target is changed, not the refinement technique
itself. Instead, we choose to extend an existing approach, and
refine two paths altogether by reusing an existing refiner.
While reusing a large piece of code is generally practical
and efficient, it requires addressing certain issues to ensure
successful code reuse. Since the input of a default refiner is
a single path, the two paths need to be joined into one to be
refined by it. Moreover, names of local variables may overlap,
and global variables may appear in both paths, so they need
to be carefully renamed in order to avoid false dependencies.



Although the interpolation procedure stays the same, we still
need some post-processing of obtained interpolants. Now we
present the approach in more detail.

Consider an instance of a projection depicted in Fig.3, where
the projection originates from state B and is applied to state
A. We consider two paths: the first is a path to state A and the
second is the path to state B. The paths are reconstructed using
ARG relations. A path formula, which is a conjunction of
predicates that correspond to program operators, is constructed
for each path, as it is performed in default predicate analysis.
In order to check simultaneous feasibility of these two paths,
we check satisfiability of a conjunction of these two path
formulas. Since the resulting formula is still a conjunction
of predicates, it can be processed like a regular path formula
of a single path. And then we request SAT solver about its
satisfiability. However, the process is not as straightforward
due to complications in joining the formulas.

B. Joining formulas

The path to the error state in Fig.3 contains multiple as-
signments to the same variable. For instance, b = 0 and b = 1
are successive assignments to variable b. If the path formula
contained the unsatisfiable conjunction of the corresponding
predicates b = 0 ∧ b = 1, it would be unsatisfiable regardless
what other predicates it contains. Thus, path formulas are
built with SSA indexation [17], which assigns an index to
each variable that increments with each assignment. Variables
with different indices are considered different. And since each
variable is only assigned a value once, there are no collisions
in path formula caused by multiple assignments.

SSA indexation can cause problems when joining formulas.
Each thread (path) has its own SSA indexation. That means
that a global variable can have multiple overlapping sets of
indices, one for each thread. In a joined formula two instances
of the same global variable from different threads but with
equal indices will be considered as the same variable. This can
cause unexpected dependencies. This problem can be solved
by renaming variables in one of the threads.

For instance, we rename global variable b in the second
(environment) formula to env b. Adding a special symbol,
which is not permitted in a variable name in real code, to
the variable ensures that the newly renamed variable does not
coincide with any other variable.

However, renaming loses relation between two threads, and
we need to artificially restore it. Values of global variables
at the point of projection application in both threads must be
equal. In the opposite case, for example, if a global variable
b in one thread is equal to 1 and in the second thread the
same variable b is equal to 2, it means that the two states
are incompatible. In order for a path formula to reflect that,
we need to add variable equalities. Each global variable with
the latest index in one thread is considered equal to this global
variable with the latest index in the other thread. The equalities
are then added to the joined path formula as new predicates in
a conjunction. That ensures that the formula reflects relation
between threads.

Another problem occurs if formulas contain local variables.
There can be two local variables in different threads with
identical names. When joined into one path formula they can
potentially be treated as one global variable, which can affect
satisfiability of the formula. To avoid that, all local variables
of one of the two threads should be renamed. For instance,
similarly to global variables, we rename local variable i in the
second (environment) formula to env i. However, we do not
add any variable equalities for the local variables.

The resulting formula accurately represents two paths and
a relation between them. If the formula is satisfiable then the
two paths are considered feasible simultaneously and the error
state is reachable. If this formula is unsatisfiable then the two
paths are not feasible simultaneously and abstraction needs to
be refined. The default Craig interpolation can be used to get
interpolants. Usually, a path formula can be split into parts φ
and ψ such that φ∧ψ ≡ ⊥ in multiple ways. Interpolation is
then performed for each partition to obtain more potentially
useful predicates. The joined path formula is no exception. It
is a conjunction of predicates and interpolants are extracted
from it just like from any other path formula.

Let’s take a closer look at predicates that are obtained during
the interpolation. Let’s consider a projection proj that was
applied after state A and that was projected from the state B.
Let µ1 and µ2 be path formulas for the paths to A and B
respectively. If µ1 ∧ µ2 ≡ ⊥ (meaning proj could not have
been applied) then Craig interpolation theorem can be applied
for such unsatisfiable conjunction. Therefore, there exists a
predicate ρ1 such that every non-logical symbol in ρ1 occurs
both in µ1 and µ2, µ1 =⇒ ρ1 and µ2∧ρ1 ≡ ⊥. Since µ2∧ρ1
is an unsatisfiable conjunction, there exists predicate ρ2 such
that every non-logical symbol in ρ2 occurs both in µ2 and ρ1,
µ2 =⇒ ρ2 and ρ1 ∧ ρ2 ≡ ⊥.

Predicates ρ1 and ρ2 are then added to precision. A part
of the abstraction is reconstructed with the updated precision
(see lazy abstraction). In the default refinement procedure
the rebuilt part of abstraction does not include states in the
environment, but in order to eliminate the infeasible paths a
part of the environment also has to be reconstructed. Predicate
ρ1 is an implication of path formula µ1 which resembles a
path to state A. Since predicate state is built as the strongest
postcondition of the path, predicate state of state A will contain
predicate ρ1 in the rebuilt ARG. Likewise, predicate state of
state B will contain predicate ρ2. Since ρ1 ∧ ρ2 ≡ ⊥, states A
and B are now considered incompatible, and the projection can
not be applied. That proves infeasibility of the counterexample.

Finally, let’s see how the counterexample in fig. 3 is refined.
The first path is the path to state A and its path formula is
a1 = 0∧b1 = 0∧a2 = 1∧b2 = 1. Note, the subscript here is an
SSA index. The second path is the path to state B and its path
formula is a1 = 0 ∧ b1 = 0 ∧ a1 ̸= 1. By renaming variables
in the second formula we obtain env a1 = 0 ∧ env b1 =
0∧ env a1 ̸= 1. After that we join the two formulas and add
variable equalities: a2 = env a1∧b2 = env b1. The resulting



formula is

a1 = 0 ∧ b1 = 0 ∧ a2 = 1 ∧ b2 = 1∧

∧env a1 = 0 ∧ env b1 = 0 ∧ env a1 ̸= 1∧

∧a2 = env a1 ∧ b2 = env b1

Precise extracted interpolants depend on the solver and
block encoding (see ABE). In theory, we can obtain inter-
polants a2 = 1 and env a2 ̸= 1. The variables in the
interpolants are then reverted to their original names, in our
case by removing the prefix. Resulting predicates a = 1
and a ̸= 1 are added to precision. In the rebuilt abstraction
predicate state of state A would contain predicate a = 1 and
predicate state of state B would contain predicate a ̸= 1.
Since a = 1 ∧ a ̸= 1 ≡ ⊥, states A and B are now
incompatible, meaning the projection can not be applied. That
proves infeasibility of the counterexample.

C. Limitations of the approach

In theory new interpolants must exclude a spurious error
path from the abstraction. Actually, an error path may be
found again due to different reasons: optimizations, errors,
unsupported cases, and so on. To avoid infinite loops of
CEGAR loop, there is a technique for detection of repeated
counterexamples. The default predicate refinement procedure
compares error paths from last two CEGAR iterations and if
they are equal stops the analysis. However, there are some
difficulties in thread-modular case.

First, paths with effects can be falsely deemed equal. The
default technique for detection of repeated counterexamples
considers paths equal if their edges are identical, i.e. if paths
correspond to the same sequence of executed operators. This
approach does not take into account paths to effects if there
are effects applied. For instance, two similar paths, each with
different effects applied to the same state, are considered equal.
The issue leads to false errors. In our approach this issue is
more crucial since the environment can be refined and a new
path can differ from the previous one solely based on paths
in the environment.

Secondly, reusing the refiner multiple times in a single
CEGAR iteration can lead to losing information about repeated
paths, potentially resulting in looping. The default refiner
procedure is run multiple times for one counterexample with
applied effects. Both the path to the error state itself and
the pairs of main paths and paths in the environment are
refined, all within the same iteration. That interferes with
error path detection. Default refiner only caches one path
from the previous refinement, and deletes it after comparing
it with a next path. So, if a repeated counterexample contains
an effect, the refinement procedure will be executed at least
twice for it. The counterexample will be cached during the
first execution but will be overwritten in the second one.
As a result, the repetition of such a counterexample will go
undetected, causing looping.

Caching all paths, which is an existing option, will not
resolve the issue either. The same effect can be applied to the

same state in different iterations. That means that the same
joined path may be refined multiple times. However, that does
not indicate repetition of counterexample and should not stop
the analysis.

So far we have only considered a case where an error path
contains only one applied projection that originates from a
single state from the other thread. But in reality there might be
several projections applied. If multiple projections are applied
to the main path, meaning there are several effects applied
to the first thread, we may iteratively check all of them one
by one. If a main path and any path to one of these effects
are not feasible together, the path is considered spurious and
abstraction needs to be refined.

One more problem occurs when a projection is projected
from multiple effects. Such projection can be created by the
optimization which merges projections from different states
into a single one. In that case all pairs of a path to each of
these states and a path to the applied state are refined. In
theory, the path should be considered spurious if at least one
of the pairs of paths is infeasible simultaneously. But in reality,
that projection merging optimization is not consistent with this
theory. Because of this, we consider a projection application
spurious if each path to each effect it was projected from is
spurious.

Another problem occurs when projections are applied to
the different threads. For example, one projection is applied
to the first path, and a path to that projection in the second
thread contains an effect from the third thread. The part of the
environment that is important for the path to the projection
will not be refined. The natural idea is to include recursion
in the refinement process, but it is not yet clear if it would
work somewhat effectively or work at all, considering other
already existing limitations. The problem occurs when effects
are applied not successively, multiple times and etc. Currently,
this is a limitation of our approach.

V. IMPLEMENTATION FEATURES

The proposed approach was implemented on top of the
CPAchecker framework as a separate predicate refiner. Its
input is an error path in a main thread. First, the default
refinement procedure is applied. If the path is spurious, the
abstraction is refined with default predicate abstraction refine-
ment procedure. It means that the contradiction is found in the
path in one thread without any thread interaction. If the main
path is feasible, it is analyzed with the proposed approach. For
that purpose, we find all applied states in the path. An applied
state is applied from a projection that can be projected from
multiple states in another thread. For each such state the refiner
checks feasibility of two paths: a path to the state in another
thread and the main path.

It is important to note that the implemented approach
differs from the presented theory. Theoretically, the first set of
predicates should be obtained by interpolating a combination
of two path formulas. That part is fully implemented in the
actual code. However, the second set of predicates, in theory,
should be obtained from interpolating a combination of path



formula and the first set of predicates. Implementing this
within the framework of the given task would be problematic.
Given our decision to reuse an existing refiner which only
input is a path, not a set of predicates; it would be quite a
challenge to acquire these exact predicates. Nonetheless, the
implemented method still has potential to prove infeasibility
of a path.

One of the implementation features is refining two different
combinations of paths. A main path and a path to an effect
are concatenated in both possible ways and both combinations
are refined. Solver extracts different predicates from these
two constructed paths and both of these sets of predicates
are necessary to prove spuriousness of the counterexample.
Additionally, if two combinations of paths are refined, the
already existing code provides correct refinement root (a root
of the subtree in the ARG that is rebuild with new precision).

As it has been established, repeated counterexample detec-
tion is a problem. The same error path can be rediscovered
again and again, which leads to hanging. To solve it, we inte-
grated detection of repeated counterexample into our refiner.
It checks if the last two paths in main thread are equal and
caches the main path to the error state until next iteration. That
effectively prevents looping.

The previously mentioned issue of paths being falsely
regarded as equal also requires a suitable solution. In default
repeated counterexample detection paths are considered equal
if the (ordered) sets of executed operators are equal. Com-
paring paths by states is problematic since it would require
caching a considerable part of ARG. We implemented an
enhanced method of comparing paths by edges. Apart from
edges in main paths it also compares edges in all paths to
applied effects. It allows differentiating between paths with
effects more effectively, but does not completely eliminate the
possibility of false repeated counterexample detection.

VI. EVALUATION

The proposed approach was evaluated on standard bench-
mark set SV-COMP2. The benchmark set contains 161 tasks
from directories:

• pthread/ ;
• pthread-C-DAC/ ;
• pthread-divine/ ;
• pthread-ext/ ;
• pthread-memsafety/ ;
• pthread-atomic/ ;
• pthread-complex/ ;
• pthread-driver-races/ ;
• pthread-lit/ ;
• pthread-nondet/.

The tasks are mostly artificially created tests with about 1
KLoc and 2-3 worker threads. They may contain a specific
synchronization, like atomics, Dekker algorithms and others.

We evaluated the new approach against two existing ones.

2https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks

• Default. The default predicate refiner, which refines only
one error path without considering other threads.

• Simple. The simplified version of refinement that checks
feasibility of every path (including paths to effects)
separately. Thus, it is more precise than Default, as it
is possible to exclude paths to infeasible effects.

• Effect. The proposed approach for simultaneous refine-
ment of two paths.

The tool was run with the thread modular approach over
predicate analysis. The following options were used:

• precise encoding of environment actions;
• SMTInterpol is used for SAT check and interpolation;
• support for the same threads in tests.
The experiments were performed on a machine with Intel®

Core™ i5-8250U CPU @ 1.60GHz × 8 and 8 GB of RAM,
using 4 CPU cores; with Ubuntu 22.04.2 LTS. Timeout was
set to 5 minutes.

The results are presented in a table I.

Approach Default Simple Effect
Correct results: 50 38 44
• Correct true 20 20 22
• Correct false 30 18 22
Incorrect results 71 51 52
• Incorrect true 0 0 0
• Incorrect false 71 51 52
Unknowns 40 72 65
• Timeouts 12 6 12
• Repeated Counterexample error 0 41 40
• Other Unknowns 28 25 13
CPUtime, s 6040 3969 6780

TABLE I
EVALUATION ON SV-COMP BENCHMARKS

The proposed approach was able to prove correctness of two
tests, which both thread-modular analysis and the simplified
version of presented approach falsely considered incorrect.
The simplified version didn’t show any improved results.

The most frequently encountered error (both for Effect
and Simple) was the repeated counterexample error, which
indicates that the analyses recognized a counterexample as
spurious but failed to refine the abstraction, leading to the
counterexample being rediscovered. One possible explanation
for this is that the obtained interpolants were insufficient to
eliminate the path. Some errors were falsely reported due to
the imperfect nature of repeated counterexample detection. At
least three tests falsely reported a repeated counterexample
error. The decreased amount of correct (and incorrect) false
results is also caused by the repeated counterexample error.

As expected, the proposed approach is more time-
consuming. Most of the extra time is spent on refining joined
paths. The simplified version (Simple) averaged in less time
than the default approach only because it reported repeated
counterexample error almost immediately on several time-
consuming tests.

The proposed approach was able to prove correctness of a
motivation example (program in fig.2).

We also evaluated the approach on a benchmark set of more
complicated tasks, based on Linux device drivers. Each task



contains about 10 KLoc and about 5 threads. There are 7 such
tasks. The proposed approach did not show any improvement,
it mostly reported repeated counterexample error.

The reason for that is complicated thread interleavings. The
proposed approach can refine specific paths, but eventually
a path will be constructed that it can not refine. A common
example of such path is one where effects are applied to the
different threads: one effect is applied from the second thread
to the first thread and a path to that effect contains another
effect application. However, in smaller tests, the predicates
obtained during the first few iterations are typically enough to
prevent such path from being constructed in the first place.

The evaluation results show benefit on a small subset of
the benchmarks. The proposed approach did not show any
improvement on complicated tests, since it is not targeted to
analyze intricate thread interleavings. While it can successfully
prove infeasibility of counterexamples, this is often, but not
always, not enough to prove correctness of a program. It works
in a reasonable time and has potential for future improvement,
as the issue with repeated counterexamples is mostly technical.

VII. RELATED WORK

There are different approaches to the analysis of multi-
threaded programs. They have different features and perfor-
mance.

Precise approaches, based on bounded model checking
techniques, investigate different techniques to reduce state
space. The examples of the optimizations are partial-order
reduction [18], context bounding [19], [20], etc. They consider
thread interleavings, and they do not have such problems
with environment refinement. We do not dive deep into BMC
approaches, and concentrate on thread-modular ones.

Thread-modular approach was first suggested by [21] and
a predicate abstraction was composed with a thread-modular
approach in [22]. There was only one thread in several copies,
so, the environment of the thread is formed by itself.

An extension of the thread-modular approach, which also
uses an abstraction, is firstly presented in [23] and then
implemented in TAR [5]. One of the main difference is
underapproximation of the environment. So, the approach does
not need environment refinement.

A similar approach was also implemented in Threader
tool [24]. Threader uses over-approximation for an environ-
ment, based on Horn clauses.

A thread modular approach to formal verification was
presented in [25]. The idea is to provide invariants for every
process, which together imply the formal requirement.

VIII. CONCLUSION

The paper presents an approach for predicate refinement
in case of Thread-Modular analysis. The basic idea is to
join thread-parted formulas into a single one, and check
its satisfiability to determine whether two paths are feasible
simultaneously.

Refinement of two paths in combination provides higher
precision for the analysis. Because of this, specific spurious

paths can be eliminated and a program can be proven to be
correct. The evaluation results show benefit on medium-sized
programs. Large programs contain intricate thread interleav-
ings and the proposed approach is not enough to prove their
correctness.

While the results show potential of the approach, there is
room for future improvement. Some ideas for future work
include recursive application of the approach to paths in
the environment and improving the detection of repeated
counterexamples.

Overall, the approach presented in this paper can be used in
analysing small and medium-sized multithreaded programs. It
can successfully prove the correctness of programs that it is
targeted at. And its efficiency can be increased by resolving
technical problems that arise in its implementation.

REFERENCES

[1] D. Beyer, T. A. Henzinger, and G. Théoduloz, “Configurable software
verification: concretizing the convergence of model checking and pro-
gram analysis,” in Proceedings of CAV, (Berlin, Heidelberg), pp. 504–
518, Springer-Verlag, 2007.

[2] D. Beyer, T. Henzinger, and G. Theoduloz, “Program analysis with
dynamic precision adjustment,” in Automated Software Engineering,
2008. ASE 2008. 23rd IEEE/ACM International Conference on, pp. 29–
38, sept. 2008.

[3] M. Mandrykin, V. Mutilin, and A. Khoroshilov, “Vvedenie v metod
CEGAR – utochnenie abstraktsii po kontrprimeram [Introduction to
CEGAR – Counter-Example Guided Abstraction Refinement],” Trudy
ISP RAN [Proceedings of ISP RAS], vol. 24, pp. 219–292, 2013.

[4] S. Graf and H. Saidi, “Construction of abstract state graphs with PVS,”
in Computer Aided Verification (O. Grumberg, ed.), (Berlin, Heidelberg),
pp. 72–83, Springer Berlin Heidelberg, 1997.

[5] T. A. Henzinger, R. Jhala, R. Majumdar, and S. Qadeer, Thread-Modular
Abstraction Refinement, pp. 262–274. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2003.

[6] A. Gupta, C. Popeea, and A. Rybalchenko, “Threader: A constraint-
based verifier for multi-threaded programs,” in Proceedings of the 23rd
International Conference on Computer Aided Verification, CAV’11,
(Berlin, Heidelberg), pp. 412–417, Springer-Verlag, 2011.

[7] P. Andrianov, “Analysis of correct synchronization of operating system
components,” vol. 46(8), p. 712–730, Programming and Computer
Software, 2020.

[8] P. Andrianov and V. Mutilin, “Scalable thread-modular approach for data
race detection,” Frontiers in Software Engineering Education, pp. 371–
385, 2020.

[9] D. Kroening and M. Tautschnig, “Cbmc – c bounded model checker,”
vol. 8413, pp. 389–391, 04 2014.

[10] J. Alglave, D. Kroening, V. Nimal, and M. Tautschnig, “Software
verification for weak memory via program transformation,” ESOP’13,
(Berlin, Heidelberg), p. 512–532, Springer-Verlag, 2013.

[11] W. Craig, “Three uses of the herbrand-gentzen theorem in relating model
theory and proof theory,” Journal of Symbolic Logic, vol. 22, pp. 269–
285, Sep 1957.

[12] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, and R. Sebastiani,
“The mathsat 4smt solver,” in CAV, pp. 299–303, 2008.

[13] L. de Moura and N. Bjørner, “Z3: an efficient smt solver,” vol. 4963,
pp. 337–340, 04 2008.

[14] H. Barbosa, C. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann,
A. Mohamed, M. Mohamed, A. Niemetz, A. Nötzli, A. Ozdemir,
M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli, and Y. Zohar, cvc5: A
Versatile and Industrial-Strength SMT Solver, pp. 415–442. 01 2022.

[15] T. A. Henzinger, R. Jhala, and R. Majumdar, “Lazy abstraction,” in
Symposium on Principles of Programming Languages, pp. 58–70, ACM
Press, 2002.

[16] D. Beyer, M. E. Keremoglu, and P. Wendler, “Predicate abstraction
with adjustable-block encoding,” in Proceedings of the 10th Inter-
national Conference on Formal Methods in Computer-Aided Design
(FMCAD 2010, Lugano, October 20-23), pp. 189–197, FMCAD, 2010.



[17] R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck, “Effi-
ciently computing static single assignment form and the control depen-
dence graph,” ACM Trans. Program. Lang. Syst., vol. 13, pp. 451–490,
10 1991.

[18] P. Abdulla, S. Aronis, B. Jonsson, and K. Sagonas, “Optimal dynamic
partial order reduction,” SIGPLAN Not., vol. 49, pp. 373–384, jan 2014.

[19] S. Qadeer and J. Rehof, “Context-bounded model checking of concurrent
software,” in Tools and Algorithms for the Construction and Analysis
of Systems (N. Halbwachs and L. D. Zuck, eds.), (Berlin, Heidelberg),
pp. 93–107, Springer Berlin Heidelberg, 2005.

[20] L. Cordeiro, J. Morse, D. Nicole, and B. Fischer, “Context-bounded
model checking with esbmc 1.17,” in Proceedings of the 18th Interna-
tional Conference on Tools and Algorithms for the Construction and
Analysis of Systems, TACAS’12, (Berlin, Heidelberg), pp. 534–537,
Springer-Verlag, 2012.

[21] C. Flanagan and S. Qadeer, “Thread-modular model checking,” in
Proceedings of the 10th International Conference on Model Checking
Software, SPIN’03, (Berlin, Heidelberg), pp. 213–224, Springer-Verlag,
2003.

[22] T. A. Henzinger, R. Jhala, and R. Majumdar, “Race checking by context
inference,” in Proceedings of the ACM SIGPLAN 2004 Conference on
Programming Language Design and Implementation, PLDI ’04, (New
York, NY, USA), pp. 1–13, ACM, 2004.

[23] A. Malkis, A. Podelski, and A. Rybalchenko, “Thread-modular veri-
fication is cartesian abstract interpretation,” in Theoretical Aspects of
Computing - ICTAC 2006 (K. Barkaoui, A. Cavalcanti, and A. Cerone,
eds.), (Berlin, Heidelberg), pp. 183–197, Springer Berlin Heidelberg,
2006.

[24] A. Gupta, C. Popeea, and A. Rybalchenko, “Predicate abstraction
and refinement for verifying multi-threaded programs,” SIGPLAN Not.,
vol. 46, pp. 331–344, jan 2011.

[25] A. Cohen and K. S. Namjoshi, “Local proofs for global safety proper-
ties,” Form. Methods Syst. Des., vol. 34, pp. 104–125, Apr. 2009.


