
Deployment approaches in distributed complex
event processing

Arsenij Zorin
Southwest State University

Kursk, Russia
zorinarsenij@bk.ru

Irina Chernetskaya
Southwest State University

Kursk, Russia
white731@yandex.ru

Abstract—Big Data technologies have traditionally focused
on processing human-generated data, while neglecting the vast
amounts of data generated by Machine-to-Machine (M2M) in-
teractions and Internet-of-Things (IoT) platforms. These interac-
tions generate real-time data streams that are highly structured,
often in the form of a series of event occurrences. In this
paper, we aim to provide a comprehensive overview of the main
research issues in Complex Event Processing (CEP) techniques,
with a special focus on optimizing the distribution of event
handlers between working nodes. We introduce and compare
different deployment strategies for CEP event handlers. These
strategies define how the event handlers are distributed over
different working nodes. In this paper we consider the distributed
approach, because it ensures, that the event handlers are scalable,
fault-tolerant, and can handle large volumes of data.

Index Terms—complex event processing, distributed process-
ing, event based systems

I. INTRODUCTION

Several complex systems operate by observing a set of
primitive events that happen in the external environment, inter-
preting and combining them to identify higher level composite
events, and finally sending notifications about these events to
the components in charge of reacting to them, thus determining
the overall system’s behavior. This means that the systems are
able to perform complex tasks by breaking them down into
simpler, more manageable events. In order to achieve this,
the systems use a general architecture that includes sources
and sinks at the peripherals of the system. These sources
observe primitive events and report them, while the sinks
receive composite event notifications and react to them.

At the center of the system is the complex event processing
(CEP) subsystem, which is responsible for processing and
routing events from sources to interested sinks. It operates
by interpreting a set of event definition rules, which describe
how composite events are defined from primitive ones [1, 2].
The CEP subsystem is crucial to the operation of the system,
as it is responsible for ensuring that the right events get to the
right places.

Event-based applications usually involve a large number of
sources and sinks, possibly dispersed over a wide number of
working nodes [3, 4, 5]. This means that the CEP subsystem
can be internally built around several, distributed working
nodes, connected together to form an overlay network, and
cooperating to provide the processing and routing service [6].

This allows the system to process and route events more
efficiently, as it can distribute the workload across multiple
working nodes.

This paper introduces and compares different deployment
approaches for CEP, which are designed to optimize the
performance of the system. A deployment approach defines
how the event handlers are distributed over working nodes. The
first aspect is often called operator placement, and it involves
finding the best mapping of the event handlers defined in
rules on available working nodes [7]. Operator placement may
pursue different goals, such as reducing the latency required
to deliver notifications to interested parties, or minimizing the
usage of network resources. In the last few years, different
solutions have been proposed for operator placement. How-
ever, the problem is known to be extremely complex to solve,
even for small instances with a reduced number of workers
and rules. Accordingly, existing approaches are often based
on approximated optimization algorithms or heuristics, and
they usually rely on a centralized decider, which collects all
the relevant information about the network status and locally
computes a solution to the problem.

The novelty of this work is the study of the applied use of
scaling approaches in systems for processing complex events
in real time. The solutions presented in this paper are explicitly
tailored to large scale distributed scenarios. They try to take
into account the topology of the processing network as well
as the location of event sources and their generation rates [8].

II. APPROACHES

A. Uniform distribution of handlers between working nodes

This approach for distributing handlers is based on an even
distribution of handlers among all the working nodes. The
implementation of this approach is simple and requires a
few steps. Firstly, the handler distribution storage must be
expanded to include information about the number of running
handlers on each of the working nodes. The data schema in
DBML format might look like this:

Tab le h a n d l e r s {
i d i n t e g e r [p r i m a r y key]
w node id i n t e g e r
o t h e r d a t a d a t a

}

Tab le work ing nodes {
i d i n t e g e r [p r i m a r y key]
o t h e r d a t a d a t a

}

Ref : work ing nodes . i d > h a n d l e r s . w node id

The volume of the information storage depends on the number
of working nodes and handlers, but does not depend on the
number of events occurring in the system. Therefore, the
memory cost for storing the information can be estimated in
O(W +H), where W is the number of working nodes, and
H is the number of handlers.

Fig. 1. Uniform distribution of handlers between working nodes.

Once this information is available, the handler distribution
service can be used to control the even launch of handlers
across all working nodes. Fig. 1 illustrates this approach with
the uniform distribution of four handlers between two working
nodes. The handler distribution storage is used to store infor-
mation about the handlers that are running on specific working
nodes and their numbers. If there is a change in the number
of handlers, the handler distribution service will redistribute
them. When a new handler is added, the handler distribution
service identifies the working node with the fewest running
handlers and deploys the new handler to that node. Conversely,
when a handler is removed, the handler distribution service
removes information about the handler from the handler dis-
tribution storage and sends a handler shutdown command to
the handler management service. However, removing handlers
may cause an imbalance in the number of handlers on each
working node.

To solve this issue, the handler distribution service periodi-
cally balances the number of handlers on each working node.
The service first determines the maximum number of handlers
allowed on each working node using the following formula:

N =

[
H

W

]
(1)

In (1) H is the number of event handlers and W – the number
of working nodes. It then sequentially traverses the sorted list
of working nodes, and if the number of running handlers on the
working node is more than the maximum number allowed, the

service searches for working nodes with a number of handlers
less than the maximum allowed. The excess handlers from
the current working node are transferred to the new working
nodes. The handlers redistribution algorithm will look like this:

Algorithm 1 Function RedistributeHandlers(W,H)
1: wstart ← 0
2: wend ← len(W)− 1
3: n← len(H)/len(W)
4: for wstart ≤ wend do
5: if W [wstart].number of handlers < n then
6: for wstart ≤ wend do
7: if W [wend].number of handlers > n then
8: Redistribute(W [wstart],W [wend])
9: if W [wstart].number of handlers ≥ n then

10: break
11: end if
12: end if
13: wend ← wend − 1
14: end for
15: end if
16: wstart ← wstart + 1
17: end for

The asymptotic complexity of the algorithm in such an
implementation is equal to O(max(W,H)). Although this
approach is easy to implement and allows for horizontal
scaling of handlers, it has some inherent disadvantages. For
instance, it does not take into account the internal complexity
of each handler or possible differences in the number of
resources on the working node. Each handler may contain a
different number of rules, and the frequency of rule triggering
may vary. Additionally, working nodes may have differing
amounts of resources, which can lead to low efficiency in the
distribution of handlers across working nodes.

B. Distribution of handlers based on the number of rules

This approach shares similarities with the previous one, but
there is a key difference in how the handlers are distributed.
Instead of relying on a simple criterion, such as the number of
active handlers, this approach takes into account the number
of handlers running on each working node. To accomplish
this, the handler distribution storage is expanded to include
information about the number of rules in each handler. The
extended data schema in DBML format for that approach
might look like this:

Tab le h a n d l e r s {
i d i n t e g e r [p r i m a r y key]
n u m b e r o f r u l e s i n t e g e r
w node id i n t e g e r
o t h e r d a t a d a t a

}

Tab le work ing nodes {
i d i n t e g e r [p r i m a r y key]

o t h e r d a t a d a t a
}

Ref : work ing nodes . i d > h a n d l e r s . w node id

This allows for a more nuanced approach to balancing the
workload between working nodes, which is illustrated on fig.
2.

Fig. 2. Distribution of handlers based on the number of rules

The volume of the information storage depends on the
number of working nodes and handlers as for the previous ap-
proach. Therefore, the memory cost for storing the information
can be estimated in O(W +H). The redistribution algorithm
requires an analysis of the number of rules executed on the
working node, instead of calculating the number of handlers.
The complexity of the algorithm corresponds to the complexity
of the previous algorithm and is equal to O(max(W,H)).

One of the main advantages of this approach is that the
handler distribution service can monitor the total number
of handler rules running on each working node. Like the
previous approach, the handler distribution service performs
balancing at fixed intervals. However, the key difference is
the inclusion of additional information about the number of
rules, which allows for a more complex balancing algorithm
to be used. By evenly distributing handlers, this approach
minimizes the number of rules executed on each working node,
which can lead to more efficient processing. However, it’s
important to note that this approach still does not take into
account the frequency of rule firing or the different amounts
of available resources on working nodes, which could impact
overall performance. Therefore, it may be necessary to explore
additional strategies for optimizing the workload distribution
in the future.

C. Distribution of handlers based on the configuration of the
required resources

This approach involves a preliminary configuration of the
necessary resources for each handler. The system administrator
adds information about the resources that are needed for
each handler and also adds information about the resources
available on each working node. With the help of this informa-
tion, the distribution of handlers between working nodes takes
place. The distribution process ensures that the resources of

working nodes are utilized as much as possible. Before launch-
ing a network of handlers, the configuration of the resources
required by each handler and the resources available on each
working node is performed. The configurable resources can be
the number of CPU cores and the size of RAM. In addition
to being able to configure resources, this approach also allows
for consideration of the frequency of execution of the rules by
each handler. This frequency data could be used to optimize
the distribution of handlers.

The volume of the information storage depends on the
number of working nodes and handlers as for the previous
approach. Therefore, the memory cost for storing the infor-
mation can be estimated in O(W + H). The extended data
schema in DBML format for that approach might look like
this:

Tab le h a n d l e r s {
i d i n t e g e r [p r i m a r y key]
c p u r e q u i r e d i n t e g e r
memory requ i red i n t e g e r
w node id i n t e g e r
o t h e r d a t a d a t a

}

Tab le work ing nodes {
i d i n t e g e r [p r i m a r y key]
cpu i n t e g e r
memory i n t e g e r
o t h e r d a t a d a t a

}

Ref : work ing nodes . i d > h a n d l e r s . w node id

The task of efficiently placing handlers in this approach is
an NP challenge. Therefore, a resource allocation approach
from kubernetes can be used to provide a trade-off between
speed and efficiency [9]. In this case, the algorithm is reduced
to calculating the estimate of the deployment of the handler on
each of the working nodes [10]. The algorithmic complexity
of this algorithm is O(W ∗H).

The scheme of this approach is shown in fig. 3.

Fig. 3. Distribution of handlers based on the configuration of the required
resources

However, one disadvantage of this approach is the need
for manual configuration of allocated resources, which can be
time-consuming. Another disadvantage is that this approach
does not take into account the dynamic nature of resource

availability, which could lead to suboptimal resource uti-
lization. To address these limitations, future research could
explore the use of machine learning algorithms to automate
the allocation of resources and dynamically adjust to changes
in resource availability.

D. Distribution of handlers based on statistics collected dur-
ing operation

All previous diagrams are based on information obtained
from starting the entire system and creating new handlers.
However, it is not always possible to determine how many
resources to allocate to a handler and on which working node it
is most efficient to place them. This problem is due to the fact
that at the time the handlers are launched, there is no informa-
tion about the frequency of the rule’s operation. It is important
to consider the frequency of rule execution when allocating
resources because it can affect the efficiency of the handler. A
handler may contain a large number of rules, but these rules
are fired quite rarely [11]. In contrast, a handler may contain
only one rule, but fire on most events. These scenarios can
lead to resource waste or inefficient allocation. One way to
solve this problem is to collect analytics from handlers while
the system is running. Collecting statistics on the execution
time and frequency of rules can help in balancing handlers
with infrequently executed rules on less productive working
nodes and those with the longest rule execution time and high
execution frequency on high-performance working nodes. To
collect statistics, it is most efficient to run the statistics storage
locally on each working node. This will ensure the shortest
time to send statistics from the handler to the statistics storage.
Each handler sends all necessary statistics to the local statistics
storage on the working node. The handler distribution service
collects handler statistics from each working node through the
handler management service during balancing. After that, the
service aggregates the collected statistics and, based on the
results, redistributes highly loaded processors to the most high-
performance working nodes. This ensures that the system is
balanced and optimized for efficient execution. The extended
data schema in DBML format for that approach might look
like this:

Tab le r u l e s {
i d i n t e g e r [p r i m a r y key]
p r o c e s s i n g t i m e q 9 5 i n t e g e r
n u m b e r o f a c t i v a t i o n s i n t e g e r
h id i n t e g e r

}

Tab le h a n d l e r s {
i d i n t e g e r [p r i m a r y key]
w node id i n t e g e r
o t h e r d a t a d a t a

}

Tab le work ing nodes {
i d i n t e g e r [p r i m a r y key]

cpu i n t e g e r
memory i n t e g e r
o t h e r d a t a d a t a

}

Ref : work ing nodes . i d > h a n d l e r s . w node id
Ref : h a n d l e r s . i d > r u l e s . h id

The volume of the information storage depends on the
number of working nodes, handlers and rules. Therefore, the
memory cost for storing the information can be estimated in
O(W +H+R), where W is the number of working nodes, H
is the number of handlers and R is the number of rules. Also
this approach uses local storage for rule execution statistic.
This collected statistic can be collapsed, so the space used
does not exceed O(R), since all statistics are duplicated in
the handler distribution storage.

Fig. 4. Distribution of handlers based on statistics collected during operation

On fig. 4, we can see the distribution of handlers based on
the statistics collected during the work. The diagram shows
that each working node has local statistics storage. The handler
distribution service, at the time of balancing, collects and
aggregates data from local statistics storages and creates it.
So, as shown in fig. 4, the handler distribution service receives
information about the 95th percentile of the rule execution
time and the number of rule firings. Based on the aggregated
statistics, the handler distribution service performs balancing
and places the most loaded H2 handler on a separate working
node 2. This algorithm also reduces to solving the bin packing
problem, like the previous one, and has a similar complexity
- O(W ∗H)

In conclusion, collecting analytics can help in efficient
resource allocation and balancing of handlers, leading to a
more optimized system. By running the statistics storage
locally on each worker node, the system can ensure the shortest
time to send statistics from the handler to the statistics storage.

III. COMPARISON OF APPROACHES

Let’s make a comparative analysis of the described schemes
for working with events according to the following criteria
[12]:

• Support for working with working nodes with different
amounts of resources;

• Level of support for accounting for the frequency of
operation of handler rules;

• The need to develop additional services and repositories
with information storages;

• The complexity of the algorithm for redistributing han-
dlers between working nodes.

Consider the rating scale for each criterion. The criterion for
supporting work with working nodes with different amounts
of resources can be evaluated on the following scale:

• Present - 1;
• Absent - 0.

The criteria for the level of support for accounting for the
frequency of triggering of handler rules can be assessed on a
scale:

• Dynamic support - 1;
• Static support - 0.5;
• Absent - 0.

Dynamic support implies the ability of the system to indepen-
dently collect statistics on the frequency of rule triggering and,
based on the collected data, balance handlers. Static support
allows configuration of the frequency of rule triggering at the
system startup stage. This approach does not allow efficient
utilization of resources in the case of a changing frequency of
rule firings over time.

The criteria for the need to develop additional services
and repositories can be estimated based on the assessment of
overhead costs for information storage. Thus, the criterion can
be assessed on the following scale:

• Development of additional services and repositories is not
required, no overhead - 1;

• Requires the development of information storage, the
volume of which does not depend on the number of rules
specified - 0.5;

• Requires the development of information storage, the
volume of which depends on the number of rules or a
value of a higher order - 0.

The criteria for the complexity of the algorithm for redis-
tributing handlers between working nodes can be estimated
using the following scale:

• Algorithm complexity not exceeding O(max(W,H)) - 1;
• Algorithm complexity not exceeding O(W * H) - 0.5;
• Algorithm has quadratic complexity and higher - 0.

Criteria 1 and 2 are the most important as they affect
the efficiency of resource utilization at working nodes [13].
Therefore, the weight of criteria 1 and 2 is 0.3, and the weight
of criterion 3 and 4 is 0.2. The weighted sum method shows
(Table 1) that the approach of distributing handlers based on
run-time statistics is more appropriate.

It allows working with working nodes that have different
amounts of resources and provides a redistribution of han-
dlers between working nodes, taking into account the actual
frequency of rule firing. This approach also has disadvantages
in the form of the need to create additional local storage
of statistics and implement the aggregation of the collected
statistics.

TABLE I
COMPARISON BY WEIGHTED SUM METHOD

Approaches
Criteria A B C D

C1 0 0 1 1
C2 0 0 0.5 1
C3 0.5 0.5 0.5 0
C4 1 1 0.5 0.5

Weighted sum 0.35 0.35 0.65 0.7

IV. CONCLUSION AND FUTURE WORK

Having thoroughly reviewed the state-of-the-art approaches
that focus on efficient event handler distribution and can be
applied in CEP systems. We have come to the conclusion that
the approach using statistics collected during the operation of
the system to redistribute handlers between working nodes is
the most suitable approach for modern systems. This approach
utilizes not only the static configuration of the distribution
strategy at the stage of system startup but also dynamic
redistribution based on statistics collected during the operation
of the system. This can improve the efficiency of resource
utilization in the system. Therefore, we recommend that future
research focus on the study of hybrid approaches to managing
the distribution of handlers between working nodes, where
both static configuration and dynamic redistribution can be
used to maximize system efficiency.

In addition to this, we suggest that it would be beneficial to
select the optimal set of metrics that can effectively redistribute
event handlers. Further research in this area may lead to the
identification of the most relevant metrics.

Although we have considered centralized approaches to
managing the distribution of event handlers in this work. There
are also decentralized approaches that provide a higher level
of fault tolerance and have the potential to scale efficiently
[14,15]. Therefore, we suggest that future work may explore
these decentralized approaches as well. By investigating both
centralized and decentralized approaches, we can gain a better
understanding of the advantages and disadvantages of each and
ultimately identify the best approach for a given system.

REFERENCES

[1] A. Paschke, and A. Kozlenkov, “Rule-Based Event Processing and
Reaction Rules: Lecture Notes in Computer Science,“, pp. 53-66, 2009.

[2] G. Cugola, and A. Margara, “Deployment strategies for distributed
complex event processing: Computing,“, vol. 95, no. 2, pp. 129-156,
2012.

[3] M. Fardbastani, and M. Sharifi, “Scalable complex event processing
using adaptive load balancing: Journal of Systems and Software,“ v.
149, pp. 305-317, 2019.

[4] A. Sun, Z. Zhong, H. Jeong, and Q. Yang, “Building complex event
processing capability for intelligent environmental monitoring: Environ-
mental Modelling and Software,“ v. 116, pp. 1-6, 2019.

[5] D. Loreti, F. Chesani, P. Mello, L. Roffia, F. Antoniazzi, T. Cinotti,
G. Paolini, D. Masotti, and A. Costanzo, “Complex reactive event
processing for assisted living: The Habitat project case study: Expert
Systems with Applications,“ v. 126, pp. 200-217, 2019.

[6] E. Brazález, H. Macià, G. Dı́az, M. Baeza Romero, E. Valero, and V.
Valero, “FUME: An air quality decision support system for cities based
on CEP technology and fuzzy logic: Applied Soft Computing,“ v. 129,
pp. 109536, 2022

[7] A. Paschke, and A. Kozlenkov, “Rule-Based Event Processing and
Reaction Rules: Lecture Notes in Computer Science,“ pp. 53-66, 2009.

[8] A. Alakari, K. F. Li, and F. Gebali, “A situation refinement model for
complex event processing,“ Knowledge-Based Systems [online] 198,
105881, 2020.

[9] K. Hightower, B. Burns, and J. Beda, “Kubernetes: Up and Running:
Dive into the Future of Infrastructure,“ O’Reilly Media, 2017.

[10] M. Luksa, “Kubernetes in Action,“ Hanser Fachbuchverlag, 2018, ISBN
9783446455108.

[11] D. Wang, M. Zhou, S. Ali, P. Zhou, Y. Liu, and X. Wang, “A Novel
Complex Event Processing Engine for Intelligent Data Analysis in
Integrated Information Systems: International Journal of Distributed
Sensor Networks,“ vol. 12, no. 3, pp. 6741401, 2016.

[12] A. Alakari, K. F. Li, and F. Gebali, “A situation refinement model for
complex event processing,“ Knowledge-Based Systems [online] 198,
105881, 2020.

[13] A. Margara, and G. Cugola, “High-Performance Publish-Subscribe
Matching Using Parallel Hardware: IEEE Transactions on Parallel and
Distributed Systems,“ vol. 25, no. 1, pp. 126-135, 2014.

[14] G. Cugola, and A. Margara, “Complex event processing with T-REX:
Journal of Systems and Software,“ vol. 85, no. 8, pp. 1709-1728, 2012.

[15] S. Jayasekara, S. Kannangara, T. Dahanayakage, I. Ranawaka, S. Perera,
and V. Nanayakkara, “Wihidum: Distributed complex event processing:
Journal of Parallel and Distributed Computing,“ vol. 79-80, pp. 42-51,
2015.

