
Finding More Bugs with Software Model Checking
using Delta Debugging

Oleg Petrov
Lomonosov Moscow State University

Leninskiye Gory, 1-52, Moscow, 119991, Russian Federation
Ivannikov Institute for System Programming of the Russian Academy of Sciences

Alexander Solzhenitsyn st., 25, Moscow, 109004, Russian Federation
o.petrov@ispras.ru

Abstract—Many verification tasks in model checking (one of
the formal software verification approaches) can’t be solved
within bounded time requirements due to combinatorial state
space explosion. In order to find a bug in the verified program
in a given time, a simplified version of it can be analyzed.
This paper presents DD** algorithms (based on the Delta
Debugging approach) to iterate over simplified versions of the
given program. These algorithms were implemented in software-
verification tool CPAchecker. Our experiments showed that this
technique can be used to find new bugs in real software.

Index Terms—formal software verification, model checking,
delta debugging, CPAchecker

I. Introduction
A significant portion of tasks and problems today are solved

with the aid of software. With the increase in the scale and
complexity of tasks, the scale and complexity of the software
systems that solve them increase, as does the difficulty of
preventing, detecting, and eliminating errors in them.
Approaches to detecting errors in programs can be di-

vided into three types: expertise, dynamic analysis, and static
analysis. Expertise is the manual review of code (or other
development artifacts) by a human with a high enough level
of expertise and is not scalable. Dynamic analysis methods
involve the analysis of a sufficiently long run of the software
system or the analysis of test runs. It can be automated, but
it can only detect bugs on paths that were included in the test
suite and cannot prove program correctness.
Static analysis includes methods for analyzing the source

code of a program or its binary code without running the
program. Program analysis (lightweight static analysis tech-
niques such as control flow analysis and data flow analysis)
is thoroughly used in compilers [1] and can be used to
detect probable defects in a short time. On the other hand,
formal verification methods make it possible to reliably obtain
evidence of an error (counterexample) or even prove the
absence of errors (correctness of a program with respect to
a given formal specification), but this may require significant
computational resources or human aid.
One of the most successful tools for automatic model

checking of C programs is CPAchecker1 [2], [3]. With its help,
several hundred errors were found in the code of the Linux

1https://cpachecker.sosy-lab.org/

operating system drivers [4]. The tool is actively developed2
and wins medals in the program verification competitions SV-
COMP several years in a row [5]–[7].
Although at the 2022 competition this tool received second

place in the summary category Overall, it was unable to
complete the verification of a considerable number of pro-
grams due to a 15-minute CPU time limit. Table I compares
the CPAchecker verification tool and the winners in the
corresponding competition categories in terms of the number
of programs that were verified within the allotted time. Points
in the competition were awarded for the correct verdict with
a correctness or violation witness that was validated, but in
this table, the correctness of the verdict and witness were not
taken into account because they require validation by hand or
by other tools due to the complexity of real software systems.
The table shows that even the winners in the respective

categories failed to verify a significant portion of programs,
especially in the SoftwareSystems category, which consists
of complex programs that are close to the real software
systems used. The obvious solution to the lack of resources
for verification is to allocate more resources, but often this
does not help get a verdict.
In this work, we use the approach of simplifying the

verified program. This approach is known, but we have
proposed an automatic approach to the systematic enumeration
of simplified versions of the program. For this, an algorithm
based on the Delta Debugging algorithm was proposed. The
implementation manipulates (removes) function bodies from
the internal representation of the program in CPAchecker, a
control flow automaton. The enumeration with the help of
the proposed algorithms takes a significant amount of time,
and its limitations lead to the loss of up to 38% of verdicts
that the baseline analysis could find, but in this way, it was
still possible to find 32% unsafes that the baseline analysis
could not find in the same time. Due to the complexity of
proving the correctness of the original program on the basis
of the correctness of simplified programs, the search for safe
verdicts remains outside the scope of this work.

2https://gitlab.com/sosy-lab/software/cpachecker

Table I
Programs verified, SV-COMP 2022

Category Programs in category Verified by CPAchecker Winner in category Verified by winner

ReachSafety 5400 3477 (64%) VeriAbs 4476 (83%)

MemSafety 3321 2992 (90%) Symbiotic 3264 (98%)

ConcurrencySafety 763 377 (49%) Deagle 559 (74%)

NoOverflows 454 369 (81%) CPAchecker —//—

Termination 2293 1023 (45%) UAutomizer 1589 (69%)

SoftwareSystems 3417 1830 (54%) Symbiotic 1261 (37%)

FalsificationOveralla 13355 3726 (28%) CPAchecker —//—

Overallb 15648 10195 (65%) Symbiotic 8962 (57%)
aAll previous categories except Termination.
bAll previous categories including Termination.

II. Related work

There are different techniques that can be applied in model
checking in order to obtain results: a) specific to the problem
of combinatorial explosion in model checking, b) general-
purpose techniques for reduction of the software to be verified,
and c) reuse of partial results of verification.

A. Model checking techniques

Model checking is a formal software verification technique,
i.e. a program is checked against specification—some formally
expressed property (often in a from of a temporal logic
formula [8]). Model checker explores state space of the given
program and checks seen states against the given specification
simultaneously. A state of a program is values of all its
variables and current control location (value of instruction
pointer).
When a state violates the given specification, model checker

can export a counterexample — a trace to this state — as a
specification violation witness. This possibility of systematic
search for error paths makes model checkers potent tools for
bug-finding.
One of the well-known techniques to reduce generic soft-

ware model is abstraction. Explicit model of a program is
overapproximated by an abstract model in a way, that does
not lose counterexamples. Abstraction is often paired with
counterexample-guided abstraction refinement [9]. This way,
model checker starts with the most abstract model; when a
spurious counterexample is present in the abstract model, but
is not feasible in the software verified, it is used to make the
abstraction more precise. Abstract model is refined this way
until a feasible counterexample is found or whole model is
checked.
Other classic techniques include partial order reduction

(taking into account that some asynchronous events simulated
in a different order lead to the same state [10]), and symmetry
reduction (using symmetry in systems with multiple identical
components [11]), both of which are used especially for model
checking of concurrent systems; symbolic model checking

(using binary decision diagrams as compact encoding of state
space [12]).
Bounded model checking [13] bounds depth of model ex-

ploration, and therefore either provides counterexample shorter
than the imposed limit, or proves that there are no such
counterexamples. This technique is throughly improved and
is used in practice for bug-finding.

B. Partial verification and verification of parts
Another approach for state space reduction is to reduce the

input program before modelling it. One well-known approach
that can be viewed as program simplification technique is
program slicing [14]: only statements that affect values of
the given variables at the given instructions (slicing criterion)
through control or data flow remain in program. This tech-
nique was evaluated with CPAchecker twice [15], [16] with
mixed results, and was implemented [17] as a configurable
program analysis inside CPAchecker (i.e. it can be used
alongside other CPA to verify a given program [3]).
Usually large-scale software systems are divided into com-

ponents. Software verification can benefit off this structure via
interface rule, assume-guaranty reasoning, or other techniques
oriented on component-based software verification [18]. Con-
trarily, decomposition of specification can also be useful [19].
Incremental verification [18] and extreme model checking

[20] can be used with incremental software system devel-
opment and extreme programming, respectively. This way
software verification benefits from the fact that most part of
the software system was already verified, therefore verification
of the new version of the software is approachable.
Another technique that is especially useful for regression

verification is precision reuse [21]. In similar fashion, the
precision of abstract model of the software older version can
be used to achieve efficient verification of the newer version.
Conditional model checking [22] proposes to export partial

results of a verification run as a predicate describing safe
(explored) part of the verified software and add such predicate
as an input to a verification tool. Safe verdict is represented
as true, and unsafe verdict is represented as false. This way
different tools can exchange information.

The state-of-the-art verification tools make it possible in
practice to increase the efficiency of verification by trans-
ferring information between two tools (or a tool running
in different configurations). A tool and language “for the
composition of cooperative approaches” have been proposed
[23]. At the SV-COMP 2022 competition [6], such a tool could
have taken second place in the ReachSafety, MemSafety,
and Termination categories and first place in the NoOverflow
category, but it did not participate in the rating because it used
other participating instruments.

C. Delta Debugging
This paper proposes the automatic enumeration of simpli-

fied versions of the program being verified. This technique is
closer to the verification of parts of the program. The most
known approach to changing input data, program version, or
other startup conditions is Delta Debugging, proposed by [24].
These algorithms iterate over subsets of a set of arbitrary
homogenous atomic elements that make up the “changeable
circumstances”. The initial set is split into smaller parts, deltas,
and for both deltas and their complements the interesting
property can be checked. Then deltas are split into ever smaller
parts, until they consist of one element.
In this paper, function bodies of an original analyzed

program are considered elements, i.e., simplified versions of
the same program miss some function bodies. Lines of code,
blocks, and operators can also be considered as less coarse
elements.
Delta Debugging distinguishes three outcomes in terms of

a test run outcome. Let original full set of input elements
holds some property fail (i.e., test run produces a failure;
here, a model checker can not verify a given program in a
given time). Let empty set of input elements (baseline) holds
some property pass (i.e., test run succeeds; here, a model
checker provides a safe or unsafe verdict, which is the case
for an “empty” C program of int main() { return 0; }).
These two properties must be mutually exclusive (test can
not succeed and fail simultaneously). The case when neither
is held is considered unresolved (here, an error occured in
the verification tool). Seminal work proposes three algorithms
based off the same approach:

• ddmin: minimization of fail-inducing subset;
• ddmax: maximization of passing subset;
• dd: isolation of a fail-inducing difference (“cause”).
As these algorithms do not enumerate all of the subsets, the

minimum (maximum) found by ddmin (ddmax) is local. The
authors call it 1-minimal (1-maximal), as no element in the
found subset can be removed so that fail holds (no element
can be added so that pass holds). When dd finds a “cause”,
that means that there is some “safe” subset for which pass
holds, but for the “safe” subset together with the “cause” the
fail holds.

Delta Debugging improvements: The dd algorithm can
work with an unstructured set of elements, whether they
are commits, user actions, files, lines, HTML tags, tokens,
characters. Ignoring the internal structure of the input allows

the algorithm to be used in a wide range of situations, but also
allows a large number of unnecessary runs due to ignoring
information about internal dependencies.
A Hierarchical Delta Debugging (HDD) algorithm has been

proposed that is capable of minimizing tree-structured data
faster and effective than ddmin [25]. This algorithm uses
ddmin to minimize each level of the input tree, starting
from the root, and removing nodes with their entire subtrees.
Authors applied HDD to minimize C programs in form of an
abstract syntax tree.
Other improvements and applications of the DD algorithms

include subtree hoisting [26] and binary reduction of depen-
dency graphs (e.g. applicable for Java classes) [27].

III. General design

We simplify the verified program (by removing its parts)
in order to find an unsafe that is also feasible in the original
program. This means that it is necessary to 1) propose and
implement an algorithm for enumerating simplified versions
of the program; 2) implement a check of a counterexample
found in a simplified version against the original version of
the program.
Accounting for both of these problems, we need to mutate

original program until am unsafe
When an unsafe was found on some program control flow

automaton modified in this way, the resulting counterexample
is checked against the restored control flow automaton. If
the unsafe has been confirmed, the algorithm terminates,
otherwise the enumeration process continues.
As a result, the following cycle was implemented inside the

CPAchecker tool.
1) CPAchecker parses the program and builds its control

flow automaton (CFA).
2) CPAchecker starts verification of the program with the

time limit specified for one verification round.
3) If a verdict is produced, CPAchecker returns it; oth-

erwise timeout has occured (fail outcome in terms of
DD).3

4) If there is no way to mutate the CFA of the program or
the time allotted for the whole process has run out, exit
with the unknown result.

5) Otherwise, change the program CFA. DD chooses what
to do based on the results of previous verification round.

6) CPAchecker starts verification with the time limit spec-
ified for one verification round.

7) If an unsafe verdict is produced, check the counterex-
ample.

8) If the counterexample is confirmed against the original
program, CPAchecker returns the unsafe verdict.

9) Otherwise, go to step 4. For DD, unsafe and safe mean
pass outcome, and timeout means fail.3

3In practice, other problems can occur (such as exceptions thrown by the
verification tool), but here we consider only safe, unsafe, and timeout possible
for simplicity.

A. Simplification problem
The main question is how to arrange a sufficiently fast

enumeration of simplified versions of the program. In the
following, we are considering only removing function bodies,
as it makes sense to remove coarse elements of the input
program before removing more fine-grained elements like
blocks and statements, and this case has been implemented
and evaluated.
On the one hand, the more complex the function, the more

likely it (or the code that uses it) has a bug. On the other hand,
the analysis of complex functions is also resource intensive.
Thus, to increase efficiency, it is necessary to separate the
possibility of finding an error when calling a function from the
complexity of its analysis. In addition, it is worth considering
that a large number of simple functions can be worse than a
few complex ones.
The complexity of a function can be estimated through the

characteristics of its control flow automaton as a graph: the
number of vertices, edges, cycles, its cyclomatic complexity,
whether there are sink vertices in the function (the possibility
of early termination of the entire program); the semantic
characteristics of a function as a program: the number of
variables, pointers, function calls in it and whether it calls
itself, is it a pure function or does it have side effects; finally,
how many times the analysis entered certain locations of the
function.
The presented problem can be reformulated as a knapsack

problem: it is necessary to choose as many interesting (here
value is probability of an unsafe) functions as possible so that
the analysis does not exceed resource constraints (i.e. weight
is an estimate of the is complexity of a function for analysis).
In such setting, it is enough to enumerate the largest sets

of functions, for which the verification completes before the
allotted time limit, since smaller subsets of such a set can only
miss an unsafe. Such a maximum set can be found using Delta
Debugging, with timeout being the fail outcome, and verdicts
safe and unsafe being the pass outcome.
Сontrarily, it may be interesting to find a minimum set

of functions that can be called a core of complexity, as
the verification of this set ends in a timeout. As the ddmin
algorithm approaches minimum, it tries some of its subsets
too, including removing each function from minimum set
individually.
Thus, the proposed algorithm for enumerating simplified

versions is based on the previously implemented dd algorithm,
which localizes the cause. Based on it, algorithms dd*min*
and dd*max* were developed for searching for a suitable
configuration by enumeration of minima and, accordingly,
maxima.

B. Iterative algorithms DD**
The ddmin algorithm can be used to find the minimum

set of functions each of which is required to reproduce the
timeout. Below a dd*min algorithm is proposed for finding
the minimum set of causes, since we may be interested in the
structure of the minimum set of functions, i.e., which functions

together form “causes”. dd*min showed speed comparable to
ddmin.
To search for functions without which a timeout does not

occur, the dd algorithm can be used. The first run of dd will
split the set of functions into three sets: the set of removed
functions, the set of “safe” functions (which the verification
tool manages to analyze in the allotted time), and the isolated
“cause”, i.e., the set of functions, after adding which to the
set of “safe” functions a timeout reappears.
By repeating dd on the set of safe functions, we can isolate a

new cause among them (and remove some of these functions,
adding them to the set of removed functions). dd is repeated
until the set of safe functions is empty; now we have a set of
removed functions and a set of isolated causes, which makes
up the minimum program that the verification tool can not
verify in the allotted time.
Similarly, you can find the maximum program not with

the ddmax algorithm, but by iteratively removing causes with
dd*max. To do this, the cause is deleted after each run, and all
the functions that were removed on this run are returned. This
way a new cause can be isolated among all other functions.
The process continues as long as the timeout continues to
occur after the return of the removed functions. Thus, we get
a set of causes that have been removed from the program, and
a set of safe functions.
It is possible to construct an algorithm that enumerates the

optimums based on algorithms that find a local optimum. In
the following, two such algorithms, dd*min* and dd*max*,
are described.
To iterate over minima, it is enough to return all removed

functions and remove one of the isolated causes. If the timeout
does not occur without this cause, then we return it and try
to remove another one. If the timeout reoccurs, then we can
find another minimum, since it will not have the cause that we
removed. This way all the causes found can be removed one
by one. In like fashion, it is enough to add one of the causes
to the found maximum to find another maximum by isolating
another cause.
Taking into account that DD’s complexity with respect

to the number of analysis runs performed is linear in the
number of considered elements, we obtain, in the worst case,
a quadratic dependence on the number of elements. Assuming
that the number of causes in the found minimum is bounded
from above by some constant, we obtain a linear complexity
estimate (with the indicated constant as a factor).

C. Counterexample check
CPAchecker has three implementations for checking coun-

terexamples: using CBMC (Bounded Model Checker for C and
C++ programs4), concrete execution, and using CPAchecker
itself. In the first two cases, the found counterexample is
exported as a C program. In the latter case, it is exported
as a violation witness in the form of a special automaton
that directs the analysis along the already found trace [28].

4http://www.cprover.org/cbmc/

Since translated programs or a violation witness significantly
limit the number of possible execution paths of the program,
their analysis is much easier than the analysis of the complete
original program. Because of that, more complex analyses can
be used to confirm unsafes found with simple analyses.
When checking a counterexample, it is necessary to correct

the representation of the error trace in order to compensate
for the fact that it was found on a modified program. For
representation as a program, definitions of removed functions
have to be added.
To check a counterexample found for a simplified version

of the program, the following was implemented. The coun-
terexample is translated into C in much the same way as
for CBMC, but the definitions of the removed functions are
added to the resulting text. Then re-verification is started from
within CPAchecker (by default with the same configuration).
Although there is now a potentially complex function, the rest
of the program has been simplified to a single trace, so this
check requires much less resources compared to the entire
program.

IV. Evaluation

Two experiment were conducted to evaluate implemented
algorithms, both compare dd*min* and dd*max* against the
baseline CPAchecker analysis with the same CPU time limit.
Effectiveness is evaluated as amount of found unsafes, effi-
ciency is evaluated as time spent for the tasks.

A. A few programs from SV-COMP/ReachSafety
29 programs were chosen arbitrarily for the first experiment

from ReachSafety category of the SV-COMP benchmark5.
These programs are checked for reachability of specified
function call (reachable call is considered a bug). 21 of the
chosen programs have a bug (the call is reachable) and 8 of the
programs do not have a bug (the call is not reachable). Most
of the programs consist of a few functions, some have a lot
of branching. For each of the chosen programs, CPAchecker
did not provide a verdict due to timeout (15 minutes of CPU
time).
2.5 hours of CPU time (9000 seconds) were allocated for

verification of one program. The run was performed using
BenchExec6 on a machine with a 16-core 11th generation
Intel Core i7-11700 processor at 2.50 GHz, with 32 GB of
RAM (of which CPAchecker had allocated 10 MB on the heap
and default 1 MB on the stack), and 64-bit operating system
Ubuntu 20.04.6 LTS.
Baseline configuration is -svcomp22 -benchmark (with-

out forced timelimit). DD** configuration run same analysis
with time limit of 200 s for each verification round.
As seen in 1, baseline analysis found 6 unsafes (out of 21

programs with an error) and 0 safes (out of 8 programs without
an error), while both dd*min* and dd*max* found only two
unsafes, and one unsafe was found by all three.

5https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks
6https://github.com/sosy-lab/benchexec

Table II
Results of Linux device drivers verification

Baseline analysis dd*max* dd*min*

Total CPU time, h 493 142 240

Total wall time, h 427 131 218

Safe 90 74 75

Unsafe 62 49 77

Enumeration completed — 130 50

Timeout 100 0 1

Out of memory 6 3 12

Outside problems 21 21 21

Recursion in module 5 15 13

Other exceptions 0 7 46

In total, baseline analysis took 161 hours of CPU time (44.8
hours of wall time), dd*min* took 23.4 h (13.3 h), dd*max*
took 19.0 h (7.5 h), i.e. DD** in sum took 26% of CPU time
of the baseline (46% of wall time).

B. USB drivers of Linux kernel
In the second experiment, 284 modules of Linux operating

system kernel USB device drivers, version 5.10.27, were
checked for memory safety (no leaking memory, no incorrect
dereference, no double free). It was carried out using Klever
system [29] on an 8-core Intel Xeon E3-12xx v2 (Ivy Bridge,
IBRS) machine with 32 GB of RAM, and a 64-bit Debian
4.9.246-2 OS.
Baseline analysis configuration was (-smg-ldv). DD**

configuration run same analysis with time limit of 350 s for
each verification round.
Fig. 2 shows a quantile graph of the spent CPU time;

baseline analysis found 62 unsafes (13 of them reqired more
than 5 minutes of CPU time), and found 90 safes (16 of them
required more than 5 minutes of CPU time). Verdict was not
produced (result is unknown) for other 132 modules:

• for 5 modules, due to encountered recursive functions in
module;

• for 100 modules, because of timeout;
• for 6 modules, because more memory was needed;
• for 21 modules, verification was not conducted at all due
to a problem outside of verification tool (these are not
shown on the figure).

It can be seen that for modules whose verification takes 15–
35 s, the time for the proposed algorithms will most likely
also be 15–35 s; the time for modules, the usual verification
of which requires more than 35 s, averages 40–50 minutes for
dd*max* and 40–90 minutes for dd*min*. Difference under
first 350 s is explained by the fact that DD** algorithms do
not stop after first error found, while baseline analysis does.
The results for the Linux drivers are presented in the tables

II and III. dd*max* and dd*min* obtained 74 and 75 safe
verdicts, respectively, in cases where verification took less
than 350 seconds of CPU time. There was not enough time to

Figure 1. CPU time for analysis of a few benchmark programs (sorted by baseline time)

Figure 2. CPU time for analysis of Linux device driver modules (quantile graph)

Table III
Changed verdicts for Linux device drivers

Baseline analysis dd*max* dd*min*
safe unsafe unk. safe unsafe unk.

safe, 90 in total 74 3 13 75 9 6

unsafe, 62 in total 0 20 42 0 30 32

unknown, 132 in total 0 26 106 0 38 94

verify 100 modules by baseline analysis; there was not enough

time for 1 module to analyze using dd*min*. For dd*max* and
dd*min*, the analysis of 130 and 50 modules, respectively,
ended after dd** enumeration ended without a verdict.
The dd*max* algorithm consumed just 29% of the total

CPU time (31% of the total wall time) of the baseline. 26
unsafes (42% as percentage of unsafes obtained by baseline
analysis) were found in programs for which baseline analysis
can not obtain a verdict.
The dd*min* algorithm spent 49% of the total CPU time

(51% of the total wall time) of the baseline analysis and
found 38 unsafes (61% as percentage of unsafes by baseline

analysis) in modules for which baseline analysis can not obtain
a verdict.
In total, DD** algoritms obtained 42 new unsafes (23

unsafes obtained by both algorithms) for 132 modules with
unknown baseline verdict.
Change of safe to unsafe and raise of exceptions can be

explained by incorrect counterexample translation: baseline
analysis does not stop after target state encoded as specified
function call is reached, and C enum types are translated
incorrectly.
From the results of the experiments, we can conclude that it

may be more effective to use the proposed technique together
with a trivial increase of the time limit. For example, simply
running the proposed algorithms after the baseline analysis, it
is possible to get a linear increase in the number of unsafes
found (according to the results of the second experiment, 32%
of new unsafes for additional 29% of total CPU time).

V. Conclusion
In this paper, the problem of software model checking from

the point of view of resource constraints is considered. Modern
methods and approaches for verification of program models
were considered. The problem of finding unsafes in programs
by simplifying the verified program is stated.
Two algorithms for enumerating simplified versions of

programs based on the Delta Debugging algorithms were
proposed, implemented in the static verification framework
CPAchecker, and evaluated on a small set of programs from
SV-COMP benchmark and whole set of 5.10 Linux kernel
USB device driver modules.
Experiments have shown that the proposed method, on the

one hand, takes less than half the time of baseline analysis
and is able to find unsafes in programs that are too difficult
for baseline analysis, although the total number of verdicts
obtained may be less than that of baseline analysis.
As a further work, it is proposed to a) implement the

manipulation of program blocks or statements, b) work with
error evidence, c) reuse the accuracy obtained in the analysis
of the original program, d) study the optimal time for one
round of verification and the optimal order of causes.

Acknowledgment
The author thanks Anton Vasilyev and Vadim Mutilin for

advice on the article.

References
[1] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Tech-

niques, and Tools. Addison-Wesley, 1986.
[2] D. Beyer and M. E. Keremoglu, “CPAchecker: A tool for configurable

software verification,” in International Conference on Computer Aided
Verification, 2009.

[3] D. Beyer, S. Gulwani, and D. A. Schmidt, Combining Model Checking
and Data-Flow Analysis. Springer, 2018, pp. 493–540.

[4] V. V. Kuliamin, A. K. Petrenko, and A. V. Khoroshilov, “Component-
based verification of operating systems,” Proceedings of the Institute
for System Programming of the RAS (Proceedings of ISP RAS), vol. 30,
no. 6, pp. 367–382, 2018, (in Russian).

[5] D. Beyer, “Software verification: 10th comparative evaluation (SV-
COMP 2021),” Tools and Algorithms for the Construction and Analysis
of Systems, vol. 12652, pp. 401 – 422, 2021.

[6] ——, “Progress on software verification: SV-COMP 2022,” in Inter-
national Conference on Tools and Algorithms for Construction and
Analysis of Systems, 2022.

[7] ——, “Competition on software verification and witness validation: SV-
COMP 2023,” in International Conference on Tools and Algorithms for
Construction and Analysis of Systems, 2023.

[8] N. Piterman and A. Pnueli, “Temporal logic and fair discrete systems,”
in Handbook of Model Checking, 2018.

[9] A. V. Khoroshilov, M. U. Mandrykin, and V. S. Mutilin, “Introduction to
CEGAR — counter-example guided abstraction refinement,” Proceed-
ings of the Institute for System Programming of the RAS (Proceedings
of ISP RAS), vol. 24, 2013, (in Russian).

[10] D. A. Peled, “Partial-order reduction,” in Handbook of Model Checking,
2018.

[11] E. M. Clarke, E. A. Emerson, S. Jha, and A. P. Sistla, “Symmetry re-
ductions in model checking,” in International Conference on Computer
Aided Verification, 1998.

[12] S. Chaki and A. Gurfinkel, “BDD-based symbolic model checking,” in
Handbook of Model Checking, 2018.

[13] A. Biere and D. Kröning, SAT-based model checking. Springer, 2018,
pp. 277–303.

[14] M. Weiser, “Program slicing,” IEEE Transactions on Software Engi-
neering, vol. SE-10, no. 4, pp. 352–357, 1984.

[15] M. Chalupa and J. Strejček, “Evaluation of program slicing in software
verification,” in International Conference on Integrated Formal Meth-
ods, 2019.

[16] P. Andrianov, V. S. Mutilin, M. U. Mandrykin, and A. A. Vasilyev,
“CPA-BAM-Slicing: Block-abstraction memoization and slicing with
region-based dependency analysis (competition contribution),” in In-
ternational Conference on Tools and Algorithms for Construction and
Analysis of Systems, 2018.

[17] M. Spiessl, “Configurable software verification based on slicing ab-
stractions,” Master’s thesis, Ludwig-Maximilians-Universität München
(LMU Munich), München, Germany, Jun. 2018.

[18] F. Nejati, A. A. A. Ghani, N. K. Yap, and A. B. Jafaar, “Handling state
space explosion in component-based software verification: A review,”
IEEE Access, vol. 9, pp. 77 526–77 544, 2021.

[19] S. Apel, D. Beyer, V. O. Mordan, V. S. Mutilin, and A. Stahlbauer, “On-
the-fly decomposition of specifications in software model checking,”
Proceedings of the 2016 24th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2016.

[20] T. A. Henzinger, R. Jhala, R. Majumdar, and M. A. A. Sanvido,
“Extreme model checking,” in Theory and Practice, 2003.

[21] D. Beyer, S. Löwe, E. Novikov, A. Stahlbauer, and P. Wendler,
“Precision reuse for efficient regression verification,” in ESEC/FSE
2013, 2013.

[22] D. Beyer, T. A. Henzinger, M. E. Keremoglu, and P. Wendler, “Con-
ditional model checking: a technique to pass information between
verifiers,” in SIGSOFT FSE, 2012.

[23] D. Beyer and S. Kanav, “CoVeriTeam: On-demand composition of
cooperative verification systems,” in International Conference on Tools
and Algorithms for Construction and Analysis of Systems, 2022.

[24] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing
input,” IEEE Trans. Software Eng., vol. 28, pp. 183–200, 2002.

[25] G. Misherghi and Z. Su, “HDD: hierarchical delta debugging,” Pro-
ceedings of the 28th international conference on Software engineering,
2006.

[26] D. Vince, R. Hodován, D. Bársony, and Á. Kiss, “The effect of hoisting
on variants of Hierarchical Delta Debugging,” Journal of Software:
Evolution and Process, vol. 34, 2022.

[27] C. G. Kalhauge and J. Palsberg, “Binary reduction of dependency
graphs,” Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2019.

[28] D. Beyer, M. Dangl, D. Dietsch, M. Heizmann, D. Beyer, M. Dangl,
D. Dietsch, M. Heizmann, and T. Lemberger, “Verification wit-
nesses,” ACM Transactions on Software Engineering and Methodology
(TOSEM), vol. 31, pp. 1 – 69, 2022.

[29] E. Novikov and I. S. Zakharov, “Towards automated static verification
of GNU C programs,” in Ershov Informatics Conference, 2017.

