
Towards Methods to Automatically Identify the
Most Common Errors in Linux

by Analyzing Git Commit Messages

Nikita Starovoytov
Applied mathematics department

Polzunov Altai State Technical University
Barnaul, Russia

0009-0007-0242-0198

Nikolay Golovnev
Applied mathematics department

Polzunov Altai State Technical University
Barnaul, Russia

0009-0008-0258-4560

Sergey Staroletov
Applied mathematics department

Polzunov Altai State Technical University
Barnaul, Russia

0000-0001-5183-9736

Abstract—A lot of information circulates in system software
environments, so it is advisable to use it to improve the
operation of such systems. The Linux kernel not only comes
with completely open source, but also the history of this code
is completely available thanks to the git repository. We are
primarily interested in error correction messages, whose text
analysis can help in isolating the classes of the most typical
errors. This paper expands on the previous work of one of the
authors and suggests the use of data analysis methods. We look
at methods for working with repository messages and ways to
automatically find the most common errors in it. We calculate
distances between the messages and cluster them. The results
are done for the Thunderbolt repository inside the Linux kernel.

Index Terms—Linux, git, bugs, fuzzy phrase matching

I. INTRODUCTION

Today, closed software systems can no longer compete in
quality with open ones, mainly due to the involvement of
more qualified users who can not only test the software in the
form of a black box, but also understand the code and suggest
changes. The git version control system [1] and services
based on it are based on a fork and pull request approach
[2], with the help of which users easily propose changes,
and administrators responsible for the repository have the
opportunity to accept these changes after reviewing diffs. The
git system is designed for distributed work and encourages
many local changes (commits) so that developers can easily
move between revisions. Each commit is accompanied by a
comment about what was done. The system was originally
created by Linus Torvalds to coordinate the development of
the Linux kernel and it is Linus’ second super successful
project.

An operating system belongs to a class of system software
that provides abstractions for accessing hardware from client
code and the ability for such code to work cooperatively.
With the increase in the number of developers in the world,
an ever smaller percentage of them are capable of developing
system program code, and therefore the development of

system code is not popular. However, there is a large amount
of data circulating in system software environments that
can be analyzed by today’s popular data analysis methods.
This paper follows this approach and proposes to analyze
commit messages in the development of the Linux kernel by
automated methods. A large number of commit messages
indicate the presence of a big data in natural language;
accordingly, some common patterns can be automatically
identified from these data. We are primarily interested in the
most typical errors in system software from among those
identified and corrected.

Linux OS, based on an open modular kernel concept by
Linus Torvalds, is being improved by a large number of
developers, both individual and representatives of leading
companies in the industry. The kernel is constantly evolving,
all changes in it are carried out by committing changes to the
developers’ gits and some of them finally become available in
the mainstream kernel at Torvalds GitHub [3]. Such a commit
is usually verified by higher developers in the hierarchy using
the pull-request mechanism.

The purpose of our work is to automatically analyze
commits in the Linux kernel repository to identify the most
representative bugs. In this paper, we mainly discuss and try
data analysis methods for Linux commit messages.

The rest of the paper has the following structure. In Section
II, we discus known works on Linux bugs revealing and
classification. Section III is about the internals of methods
we use. Section IV is devoted to the implementation and
evaluation. In Conclusion, we sum up and give a link to our
software.

II. RELATED WORK

In the pioneering work [4] and then in [5], static analyzers
were used to automatically check for potential errors in
the Linux kernel code based on a given configuration over
different kernels, classes of errors were defined as predefined
messages of a static analyzer, and graphs of the evolution of

https://orcid.org/0009-0007-0242-0198
https://orcid.org/0009-0008-0258-4560
https://orcid.org/0000-0001-5183-9736

errors over time and for different subsystems were presented.
Specifically, drivers have been found to be 3-7 times more
error prone than other components.

In [6], an analysis of typical errors is made in the drivers
of the Linux operating system. Here the concept of a typical
error is introduced. It is specific to a large number of
drivers (for example, resource leaks, incorrect use of locks),
while a non-typical error is domain-specific for a particular
driver. The authors manually analyzed the changes during the
transition from one kernel version to another and compiled
tables of the distribution of errors by classes. It was also
found that drivers make 85% of all errors in the kernel. The
paper [7] continues this work, summarizes various statistics
on changes in the kernel and concludes that about 40% of
changes between stable versions of the kernel are fixes of
typical errors. Since more versions were analyzed and the
code evolved, the author had to supplement the previous
created classes. Such manual analysis is more difficult, but
the authors note that it is more careful.

In [8], 5079 patches related to file systems made over 8
years were manually analyzed. Classes of bugs, the so-called
bug patterns, are identified and graphs of their evolution are
given, as a result, a dataset of 1800 bugs is compiled.

Empirical work [9] is devoted to a broad study of bugs
in open-source software, including the Linux kernel. As for
Linux, bugs are simply assigned to one of the subsystems
(core, driver, network, FS, arch, other), while several
open-source components are analyzed using message text
from BugZilla with its vectorization and further automatic
classification.

The work [10] is devoted to the study of 5741 Linux
kernel bug reports, which were analyzed according to the
description, comments and attached files from the Linux
kernel bug tracker [11]. Bugs are classified into fast-
reproducible (Bohrbug), difficult-to-reproduce (Mandelbug)
or context-dependent, and are also defined categories from
which the bug context depends, that is, errors with memory,
not freed resources, etc. At the same time, the authors built
a network based on the Linux call graph, with the help of
which they track the impact of the functions affected in bug
reports by counting various metrics.

Researchers in [12] present the results of compiling 42,060
kernels with all warnings enabled. As a result of the analysis
of 400,000 warnings, they classified by type and distribution
by kernel subsystems and identified drivers as the most
vulnerable portion of the kernel.

The work [13] presents the PatchNet network, created as
a result of automatic analysis of patches for the kernel, in
order to predict whether a given patch will be accepted in the
mainline kernel or not. For evaluation, the texts of the commit
messages and the vector representation of the changes from
the diff of the commit are used, which are then used to build
a convolution neural network.

The research [14] is separately devoted to determining
whether a patch to the kernel is a bug fix or not. The authors
note that simple analysis based on commit messages does
not always lead to results and propose a model that uses
two classification algorithms: Learning from Positive and
Unlabeled Examples and Support Vector Machine. It also
uses features extracted from the commit diff.

In the study [15], the authors provide infrastructure,

classify and analyze Linux kernel-specific errors associated
with errors in configuration files, as a rule, these are
errors with dependencies. 95,854 Linux kernel builds were
produced on random configurations, and of these, about 6%
ended with errors, and which are discussed in the work. It is
noted that the number of errors has decreased with previous
findings, apparently due to testing processes with randomized
configurations.

Summarizing the above on Linux bug analysis, it can
be seen that (1) bugs in drivers are the most common;
(2) different methods are used for classification, this is
static analysis, build logs and patch analysis; (3) a lot of
huge manual work has been done but the results may now
be considered no longer relevant (the code is constantly
changing). However, automatic classification by analyzing
commits in git repositories has not been applied yet.

III. PRELIMINARIES

As for working with git repositories at the program level,
what we are interested in, some is discussed in [16]. Probably,
the most famous C-library for this is libgit2. For JVM
programs, the JGit library [17] is popular. One can use EGit
[18] to work with remote repositories, including pull requests,
but this is not necessary for the current project because we
are working with the mainline kernel with changes already
accepted.

To compare commit messages, it is necessary to work
out fuzzy string matching algorithms. Note that fuzzy string
comparison is popular in bioinformatics and can also be
modeled on non-deterministic automata for low-dimensional
problems, although this is purely theoretically interesting
[19]. Of practical interest are efficiently calculated string
similarity measures, such as the Levenshtein distance.

Formally, the Levenshtein distance L(s1, s2) [20] between
strings s1 and s2 can be calculated according to the following
formulas:

L(s1, s2) := ∀i ∈ (0..|s1|) : di,0 := i+ 1;

∀j ∈ (0..|s2|) : d0,j := j + 1;

∀i ∈ (1..|s1|) :
(∀j ∈ (1..|s2|) : cost := (s1[i− 1] = s2[j − 1])?0 : 1

di,j := min(min(di−1,j + 1, di,j−1), di−1,j−1 + cost);

d|s1|,|s2|) (1)

With it, to find the closest string to the existing ones, in the
simplest implementation, one needs to calculate the distances
between them using formula (1) and choose the minimum
one. This method does not require preliminary preparation
of strings and is susceptible to slight changes in them.

The preliminary our papers [21], [22] demonstrate the use
of the Levenshtein distance, but now we would like to apply
another method known from its use in search engines (“bag
of words” to convert a phrase into a vector + cosine similarity
between vectors to further determine the minimal distance).
To calculate the distance between commits using the cosine
similarity approach, it is required to represent the commit
message string as a vector (from the features as the words of
the message). Here we denote wi,j as the sign of the presence
of the word j in the string i, while n specifies the number

Fig. 1. Solution diagram for handling a repository with bug fix messages

of words in the dictionary of unique words. Then we can
calculate the cosine similarity between the vectors:

D(s1, s2) := D((w1,1, w1,2, .., w1,n),

(w2,1, w2,2, .., w2,n)) =∑n
i=1 w1,i · w2,i√∑n

i=1 w
2
1,i ·

∑n
i=1 w

2
2,i

(2)

In this case, permutations of words in a string will not change
anything.

If we use dictionaries that give the stem word form for
each word (without cases, endings, etc.), we can get rid of the
problems of counting the same words in different components
of vectors. The process is called lemmatization [23] or lemma
normalization. In the simplest case, the Catvar dictionary can
be used [24]. Here, for each word from the commit message
(column 1), its normalized form can be obtained (column
2), for example, here is a dictionary fragment for the words
“fix”:

fix fix N
fix fix $V+0$
fixed fix $V+ed$
fixed fix $V+en$
fixes fix $N+s$
fixes fix $N+s$
fixes fix $V+s$
fixing fix $V+ing$

In more advanced cases, the StanfordCoreNLP API [25], [26]
as a Java library can be used. Since not only the stem, but also
the part of speech is known for each word, when converting

phrases into vectors, it is advisable to filter them, cutting off
articles and frequently used words.

For the purposes of searching for strings with ”strong
components” or relevant words/tokens (i.e., to reduce the
weights of frequently occurring words in a string), the tf-idf
approach [27] can be applied. It does frequency counting,
and with this, the vector components (features) instead of
word appearance (1 or 0) will contain tf-idf weights. If we
denote nw as the number of occurrences of the word w into
a commit message m ∈ M , and nw as the total number
of words in the document, and |M | as the total number of
messages, then:

tf-idf(w,m,M) := tf(w,m)× idf(w,M) =

nw∑
k nk

× log
|M |

|{mi ∈ M | w ∈ di }|
(3)

If we are able to vectorize commit messages, then it makes
sense to try to cluster them automatically. Clustering or
cluster analysis involves the vectorization of given objects,
calculating the distances between them according to a certain
metric and dividing objects into clusters or groups of nearby
objects. Vectorization involves the selection of key entities
of objects and their presentation as a set of vectors of
the same dimension. The clustering algorithm is a function
X → Y that assigns a cluster identifier y ∈ Y to any
object x ∈ X . Some popular clustering algorithms are K-
means, DBSCAN, and hierarchical clustering. The K-means
algorithm iteratively minimizes the total square deviation of
cluster points from the centers of these clusters [28]. The
density-based spatial clustering of applications with noise
(DBSCAN) algorithm groups points in a high-density area
into one cluster, while marking lonely points as noise [29].
With hierarchical clustering, a tree (dendrogram) is built,

from leaves to root. Initially, each object is contained in its
own cluster. Next, an iterative process of merging the two
nearest clusters takes place until all clusters are combined
into one, or the required number of clusters is found [30].

IV. ON THE IMPLEMENTATION OF OUR APPROACH

A. General approach
To work with git repositories, we use the JGit library.

With it, we can iterate over commits and insert conditions
for them. Therefore, it is suggested to use all available
information for analysis: commit messages can be used to
evaluate the most common error messages, and information
about changed files will help to find, for example, drivers
with a large number of bug fixes. The solution scheme is
shown in Fig. 1. Preliminary experiments were described in
[21], [22], in the present paper, we, first of all, generalize
the methods for finding the nearest messages and perform
clustering.

In this solution, we get all the commits of a given
repository, filter them according to the dates of interest, and
extract from them only those that explicitly indicate that this
is a bug fix. In the current implementation, a list of key
words in the message is just checked, but we keep in mind
the discussion in [14]. We counted the number of commits
and fixes over the past 5 years in Fig. 2, it is interesting
that it almost does not change, apparently this is due to the
workload of people who check them.

Fig. 2. The number of commits and fixes in torvalds/linux for the last five
years

Next, we obtain the commit message and look for
the one closest to it (closestMessage), delegating the
responsibility for getting it to one of the implementations
of the IMsgMatcher interface (see again Fig. 1). For the
found message, we increase the weight. We also save
information about files (processFiles) and lines with changes
(processLines). After the loop over all commits is completed,
we display a generalized result for the found messages by
searching for a given number of messages with maximum
weights, as well as information about the most modified files.

B. Method selection. Experimenting with the Thunderbolt
Driver Repository

In order to compare the discussed methods, we ran a
series of experiments using a relatively small Thunderbolt
repository [31] with 650 fix commits. We used the discussed
methods for L() and D() calculation; the last one is done
with using preliminary lemmatization.

Fig. 3. A thunderbolt 2 network adapter

Thunderbolt (see Fig. 3) is a relatively new interface
developed by Intel and Apple. However, this is nothing more
than an output of the PCIe bus lanes to the outside. In the
modern version, the standard is merged with USB4 [32],
respectively, patches in the kernel address this topic.

The running time of all solutions is approximately equal
(about 250 seconds). We used the kernel up to the commit
3ecc37918c80. The top 10 error messages obtained and their
weights are given below:

1. Using the Levenshtein distance L(s1,s2):

Few fixes and cleanups. / 16
thunderbolt: Fix typo in comment / 14
thunderbolt: Fix -Wrestrict warning / 13
test from previous fixes. / 12
Fixes the following W=1 kernel build

warning(s): / 11
"thunderbolt: Fix for v6.0 final / 10
Fixes: dacb12877d92 ("thunderbolt: Add

support for on-board retimers") / 9
Fix this by saving pointer to the parent

device before calling / 9
usb: mtu3: fix failed runtime suspend in

host only mode / 9
Fixes: 046bee1f9ab8 ("thunderbolt: Add

MSI-X support") / 8

2. Using the distance between the vectors D(s1,s2):

thunderbolt: fix -wrestrict warning / 212
thunderbolt minor updates and fixes / 152
thunderbolt: fix typo in comment / 148
fixes for thunderbolt device dma

protection / 132
thunderbolt: fix a leak in tb_retimer_add

() / 128
fixes: 54e418106c76 ("thunderbolt: add

debugfs interface") / 120
thunderbolt: fix typos in clx enabling /

118
thunderbolt: fix for v5.9-rc6 / 118
thunderbolt: fixes for v5.9-rc4 / 118
fixes and features: / 116
thunderbolt: fix to check for kmemdup

failure / 116

3. Using distance between vectors D(s1,s2) + TF-IDF:

minor driver fixes and improvements over
the usb tree / 608

so add a quirk that fixes it. we also
need to expand the quirk table to /
608

lots of tiny dwc3 fixes and updates for
the ip block that is / 606

usb gadget fixes and additions all over
the place / 606

force enum tb_drom_entry_type to unsigned
to fix the following error: / 606

other tiny janitorial and cleanups fixes
for lots of different usb / 604

fix a few typos and wording mistakes in
the acpi device enumeration / 604

thunderbolt: fix spelling mistake "
simultaneusly" -> "simultaneously" /
604

4. Using distance between vectors D(s1,s2) + TF-IDF
inverse:

thunderbolt: fix typo in comment / 20
thunderbolt: switch: fix kernel-doc

descriptions of non-static functions
/ 18

thunderbolt: nhi: fix kernel-doc
descriptions of non-static functions
/ 16

thunderbolt: path: fix kernel-doc
descriptions of non-static functions
/ 16

thunderbolt: eeprom: fix kernel-doc
descriptions of non-static functions
/ 16

thunderbolt: ctl: fix kernel-doc
descriptions of non-static functions
/ 16

few minor cleanups and fixes / 16
thunderbolt: fix to check the return

value of kmemdup / 16
few fixes and cleanups. / 14
thunderbolt: fix some kernel-doc comments

/ 14

As a result, it can be seen that the conclusions of the
analysis depend on the method used. In the first case, we see
that a large number of messages were not very informative,
and there were important fixes related to pointers, sleep mode,
and interrupts. The found messages generally confirm our
knowledge of the subject area – in the top there are fixes
about USB and PCIe (MSI-X is used to deliver interrupts).
In the second case, we also see fixes related to typos, as
well as the well-known DMA vulnerability (see for example
an analysis of this known issue in [33]) and memory leaks.
The conclusion of the third case is very different and here,
apparently, the messages turned out to be almost all unique
and specific to the given area. The last output is generally
similar to the first two, but there are almost all repeated

phrases with minor changes that need to be manually cleaned
up.

C. Clustering results for Thunderbolt

We selected the cosine simularity method with tf-idf. We
used the clusterization with some pre-defined cluster centers
from which we selected 8 more or less relevant. The resulting
centroids are presented below:

1. 5.47% [support, xdomain, lane, tunnel]
2. 4.50% [warning, gadget, usb, over]
3. 3.86% [return, check, value, kmemdup]
4. 3.54% [cleanup, minor, kunit,

documentation]
5. 3.22% [spelling, mistake, usb,

seq_puts]
6. 2.57% [typo, comment, enabling, clx]
7. 2.57% [doc, kernel, static,

description]
8. 2.25% [leak, memory, sw, failure]

The percentage here is calculated from the number of
messages containing information about corrections. There
can be several such fixes in one commit. Let us try to discuss
the nature of these fixes:

• 1st cluster: xdomain-related bug fixes and fixes for
DMA vulnerabilities, aimed at ensuring the security
and protection of the system from possible attacks,
associated with the use of incorrect memory access.

• 2nd cluster: fixes for build-time warnings related to
use the gcc compiler for the Linux kernel, aimed
at eliminating warning messages that occur when
compiling the driver code. These fixes do not change
the functionality of the code, but rather are intended to
provide a cleaner and safer build of the project.

• 3rd cluster: fixes for problems that occur when a
null pointer is returned from the kmemdup function
in case of memory allocation failure. Fixes include
checking the return values of functions and handling
cases when the memory allocation failed, in order to take
appropriate measures to restore or gracefully terminate
the execution.

• 4th, 7th clusters: corrections to documentation in the
Linux kernel: fixing inaccuracies, errors, and out-of-
date information, as well as supplementing incomplete
or insufficient informative comments. The purpose of
such corrections is to ensure that the documentation is
accurate, actual, and complete. Fixes may also include
improvements to readability, style, and conformance of
comments to code.

• 5th, 6th clusters: classes of fixes related to minor
changes and code cleanup in the Linux kernel, includes
fixes for formatting errors and other minor issues. These
changes do not affect the functionality of the code. Such
fixes usually include indentation, alignment, removal
of extra spaces, correct use of indentation and other
similar changes, which help to preserve code formatting
conventions.

• 8th cluster: fixes for memory leak bugs related to
improper release of resources. This includes situations
where memory release does not occur or occurs at the
wrong time or place.

Analyzing the clusters found, it seems that the most
representative errors are related to the quality of the code.
This coincides on the whole with our previous studies on the
whole kernel [21], [22]. Such errors, however, can shadow
the so-called domain-specific errors (related precisely to the
nature of the code in a particular repository).

At the same time, the relatively low number of fixing
commits prevents us from determining a large number of
them. There is also the problem of how to isolate the most
interesting specific cases that are representative. For example,
for the generalized message [typo, comment, enabling, clx],
the most interesting (domain-specific) word is clx (possible
related to CLx low-power link states), however, the
words here are ordered in descending order of the word
weight metric and clx is less interesting according to the
aglorhythmic point of view. Nevertheless, if we search for all
such words with inverse tf-idf in front, we get poor grouping
results. We will try to solve this in future works.

V. CONCLUSION

Using the presented methods of data analysis, we are
relatively quickly able to obtain both the most representative
error messages of error fixes. At the moment, we have
developed an infrastructure for bypassing commits and
analyzing them with two methods of analyzing similar strings
and clustering the results to obtain generalized error classes.
The results we obtained can be used in teaching both system
programming and data analysis.

This way we can quickly get into the problems of a
particular Linux driver or component and take a retrospective
of changes, since we can easily select the paths in the git
for analysis and set the time from and to which we need to
analyze the commits.

The current software is written in Kotlin and Python,
presented in [34] and will be further improved.

In the future, we are going to analyze the main components
of the Linux operating system kernel and discuss the
identified bugs in the form of a separate article. It would
also be interesting to obtain a retrospective of error classes
by years.

REFERENCES

[1] git. [Online]. Available: https://git-scm.com
[2] GitHub, Proposing changes to your work with pull requests. [Online].

Available: https://docs.github.com/en/pull-requests/collaborating-wit
h-pull-requests/proposing-changes-to-your-work-with-pull-requests

[3] L. Torvalds, Linux kernel. [Online]. Available: https://github.com/tor
valds/linux/

[4] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical
study of operating systems errors,” in Proceedings of the eighteenth
ACM symposium on Operating systems principles, 2001, pp. 73–88.

[5] N. Palix, G. Thomas, S. Saha, C. Calvès, J. Lawall, and G. Muller,
“Faults in Linux: Ten years later,” in Proceedings of the sixteenth
international conference on Architectural support for programming
languages and operating systems, 2011, pp. 305–318.

[6] V. Mutilin, E. Novikov, and A. Khoroshilov, “Analysis of typical
errors in Linux OS drivers (in Russian),” Proceedings of the
Institute for System Programming of the Russian Academy
of Sciences, vol. 22, pp. 349–374, 2012. [Online]. Available:
https://www.elibrary.ru/item.asp?id=20278337

[7] E. M. Novikov, “Evolution of the Linux OS kernel (in Russian),”
Proceedings of the Institute for System Programming of the Russian
Academy of Sciences, vol. 29, no. 2, pp. 77–96, 2017. [Online].
Available: https://www.elibrary.ru/item.asp?id=29118078

[8] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and S. Lu, “A
study of Linux file system evolution,” ACM Transactions on Storage
(TOS), vol. 10, no. 1, pp. 1–32, 2014.

[9] L. Tan, C. Liu, Z. Li, X. Wang, Y. Zhou, and C. Zhai,
“Bug characteristics in open source software,” Empirical software
engineering, vol. 19, pp. 1665–1705, 2014.

[10] G. Xiao, Z. Zheng, B. Yin, K. S. Trivedi, X. Du, and K.-Y. Cai, “An
empirical study of fault triggers in the Linux operating system: An
evolutionary perspective,” IEEE Transactions on Reliability, vol. 68,
no. 4, pp. 1356–1383, 2019.

[11] Kernel.org Bugzilla. [Online]. Available: https://bugzilla.kernel.org
[12] J. Melo, E. Flesborg, C. Brabrand, and A. Wasowski, “A quantitative

analysis of variability warnings in Linux,” in Proceedings of the Tenth
International Workshop on Variability Modelling of Software-intensive
Systems, 2016, pp. 3–8.

[13] T. Hoang, J. Lawall, Y. Tian, R. J. Oentaryo, and D. Lo, “PatchNet:
Hierarchical deep learning-based stable patch identification for the
Linux kernel,” IEEE Transactions on Software Engineering, vol. 47,
no. 11, pp. 2471–2486, 2019.

[14] Y. Tian, J. Lawall, and D. Lo, “Identifying Linux bug fixing patches,”
in 2012 34th international conference on software engineering (ICSE).
IEEE, 2012, pp. 386–396.

[15] M. Acher, H. Martin, J. A. Pereira, A. Blouin, D. E. Khelladi, and
J.-M. Jézéquel, “Learning from thousands of build failures of Linux
kernel configurations,” Ph.D. dissertation, Inria; IRISA, 2019.

[16] S. Chacon and B. Straub, Pro git. Springer Nature, 2014.
[17] JGit – Eclipse. [Online]. Available: https://eclipse.org/jgit/
[18] EGit. [Online]. Available: https://www.eclipse.org/egit/
[19] S. Staroletov, “Model checking games and a genome sequence search,”

in Journal of Physics: Conference Series, vol. 1679, no. 3, 2020, p.
032020.

[20] V. I. Levenshtein, “Binary codes with correction of dropouts, insertions
and character substitutions (in Russian),” in Reports of the Academy
of Sciences, vol. 163, no. 4. Russian Academy of Sciences, 1965, pp.
845–848.

[21] S. M. Staroletov, “Researching the most common bugs in
the Linux kernel by analysing commits in the git repository
(in Russian),” System Administrator, vol. 4(197), pp. 73–77,
2019 http://samag.ru/archive/article/3859. [Online]. Available:
https://www.elibrary.ru/item.asp?id=37252881

[22] S. Staroletov, “A survey of most common errors in Linux kernel,”
SYRCoSE Poster sesstion, 2017.

[23] M. Hann, “Towards an algorithmic methodology of lemmatization,”
Bulletin Association for Literary and Linguistic Computing, vol. 3,
no. 2, pp. 140–150, 1975.

[24] Categorial Variation Database (version 2.1). [Online]. Available:
https://github.com/nizarhabash1/catvar

[25] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and
D. McClosky, “The Stanford CoreNLP natural language processing
toolkit,” in Proceedings of 52nd annual meeting of the association for
computational linguistics: system demonstrations, 2014, pp. 55–60.

[26] Class StanfordCoreNLP. [Online]. Available: https://nlp.stanford.edu
/nlp/javadoc/javanlp/edu/stanford/nlp/pipeline/StanfordCoreNLP.html

[27] G. Salton, E. A. Fox, and H. Wu, “Extended boolean information
retrieval,” Communications of the ACM, vol. 26, no. 11, pp. 1022–
1036, 1983.

[28] H. Steinhaus et al., “Sur la division des corps matériels en parties,”
Bull. Acad. Polon. Sci, vol. 1, no. 804, p. 801, 1956.

[29] M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based
algorithm for discovering clusters in large spatial databases with noise.”
in kdd, vol. 96, no. 34, 1996, pp. 226–231.

[30] J. H. Ward Jr, “Hierarchical grouping to optimize an objective
function,” Journal of the American statistical association, vol. 58, no.
301, pp. 236–244, 1963.

[31] Drivers – Thunderbolt. [Online]. Available: https://github.com/torvald
s/linux/tree/master/drivers/thunderbolt

[32] USB Type-C System Overview. [Online]. Available: https:
//www.usb.org/sites/default/files/D1T1-2%20-%20USB%20Type
-C%20System%20Overview.pdf

[33] R. Sevinsky, Funderbolt Adventures in Thunderbolt DMA, 2013.
[Online]. Available: https://media.blackhat.com/us-13/US-13-Sevinsk
y-Funderbolt-Adventures-in-Thunderbolt-DMA-Attacks-Slides.pdf

[34] Linux Kernel Analysis, 2023. [Online]. Available: https:
//github.com/NicolayGolovnev/LinuxKernelAnalysis

https://git-scm.com
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/proposing-changes-to-your-work-with-pull-requests
https://github.com/torvalds/linux/
https://github.com/torvalds/linux/
https://www.elibrary.ru/item.asp?id=20278337
https://www.elibrary.ru/item.asp?id=29118078
https://bugzilla.kernel.org
https://eclipse.org/jgit/
https://www.eclipse.org/egit/
http://samag.ru/archive/article/3859
https://www.elibrary.ru/item.asp?id=37252881
https://github.com/nizarhabash1/catvar
https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/pipeline/StanfordCoreNLP.html
https://nlp.stanford.edu/nlp/javadoc/javanlp/edu/stanford/nlp/pipeline/StanfordCoreNLP.html
https://github.com/torvalds/linux/tree/master/drivers /thunderbolt
https://github.com/torvalds/linux/tree/master/drivers /thunderbolt
https://www.usb.org/sites/default/files/D1T1-2%20-%20USB%20Type-C%20System%20Overview.pdf
https://www.usb.org/sites/default/files/D1T1-2%20-%20USB%20Type-C%20System%20Overview.pdf
https://www.usb.org/sites/default/files/D1T1-2%20-%20USB%20Type-C%20System%20Overview.pdf
https://media.blackhat.com/us-13/US-13-Sevinsky-Funderbolt-Adventures-in-Thunderbolt-DMA-Attacks-Slides.pdf
https://media.blackhat.com/us-13/US-13-Sevinsky-Funderbolt-Adventures-in-Thunderbolt-DMA-Attacks-Slides.pdf
https://github.com/NicolayGolovnev/LinuxKernelAnalysis
https://github.com/NicolayGolovnev/LinuxKernelAnalysis

	Introduction
	Related work
	Preliminaries
	On the implementation of our approach
	General approach
	Method selection. Experimenting with the Thunderbolt Driver Repository
	Clustering results for Thunderbolt

	Conclusion
	References

