
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Writable PSI Generator for a

Multi-Language IDE Platform

Alexander Bozhnyuk

Saint-Petersburg State University

Mathematics & Mechanics Faculty

Saint Petersburg, Russia

bozhnyuks@mail.ru

Alexander Zakharov

Tula State University

The Faculty of Cybernetics

Tula, Russia

lynxsm@gmail.com

Mikhail Volkov

Saint-Petersburg State University

The Faculty of Physics

Saint Petersburg, Russia

mvvolkov@mail.ru

Nikolai Tropin

Saint-Petersburg State University

Mathematics & Mechanics Faculty

Saint Petersburg, Russia

niktrop@yandex.ru

Abstract— The Program Structure Interface (PSI) is a

special data structure and corresponding API used in IDEs to

support code navigation and transformation features. In this

paper, an approach for generation of a writable PSI basing on

language syntax construct types is proposed (Writable PSI

Generation). The approach is developed for a multi-language

platform of a large telecommunications company. Refactoring

and Quick Fix features are implemented using on the proposed

generator for two IDEs: a Python IDE and a Java IDE.

Keywords—Integrated Development Environment (IDE),

Development Services, Program Structure Interface (PSI),

Application Program Interface (API), Refactoring, Quick Fix

I. INTRODUCTION

An Integrated Development Environment (IDE) is an
essential tool for any programmer. Some of the most well-
known and widely used IDEs are JetBrains IntelliJ IDEA and
Microsoft Visual Studio, which offer a large number of
features to develop high-quality software.

 One of the most important tasks of the IDE is to provide
developers the ability to quickly and correctly modify the
source code. To achieve this, IDEs offer such features as
refactoring and quick fixes. Refactoring makes it possible to
restructure code while preserving its semantics, for example,
to rename a class, method, and attribute, extract selected code
into a method, and so on. Quick fixes, at the request of the
developer, eliminate a drawback of a code fragment. An
example of a quick fix is if statement simplification.

These features work with the structure of the program by
analyzing and reorganizing it. The conventional way of
representing a program internally is an Abstract Syntax Tree
(AST) that is generated via parsing [1]. However, IDEs often
need to work with additional semantic information (for
example, to determine the declaration of a method or attribute
by its occurrence), which would also be convenient to store in
the tree. Therefore, the IDE builds another tree on top of the
AST, which gives external clients (IDE features) access to
such information about the program. In IntelliJ IDEA, such a
tree is called Program Structure Interface (PSI) [2], and this
name is used in this paper. Thus, PSI stores additional
information and provides clients with a rich API, and AST is
an implementation detail.

For convenience, in PSI each of its nodes has its own type
according to the syntax structure of the language that this node

represents, within the syntax construct type system of the
programming language in which this tree is created. For
example, in the context of the Java language, each node is
defined by its own class (PsiFunction, PsiClass, etc.). At the
same time, different IDEs implement various approaches to
building such a data structure and methods of interacting with
it [3, 4].

IDE features, after manipulating PSI, transfer the changes
to the source code so that they become visible to the
developer. To do this, text changes are generated based on the
changes in the tree, which are then applied to the code.

As mentioned above, PSI is typed. This is convenient, but
the types in such a tree must be accessed somehow in the
source code. If the IDE, for example, is developed in Java,
then one will need to create a large number of interfaces and
classes for that purpose. This process is very time-consuming
due to the large number of types, and therefore highly error-
prone. For this reason, it is desirable to use generation, which
is based on a pre-created specification of syntax construct
types of the programming language.

A large telecommunications company is developing a
multi-language platform for effectively creating IDEs for
different programming languages. Two IDEs (for Java and
Python) are being created at the moment.

The platform requires a unified system for managing the
source code structure. Each specific IDE requires its own PSI
tree and tools for manipulating it, as well as a system for
displaying changes in the code. However, the principles of
generating PSI access interfaces based on programming
language construct types are universal and can be
implemented within the platform and used in various IDEs.

The main contributions of the paper are as follows.

• Design of the Writable PSI Generator architecture: a
mechanism for generating classes and interfaces for
accessing the PSI tree, as well as a single mechanism
for distributing text changes.

• Implementation of the Writable PSI Generator:

− A component for generation of the
necessary Java interfaces and classes for the
PSI tree modification system based on
JSON specification.

mailto:bozhnyuks@mail.ru

− A component for modifying the tree
consisting of a persistent tree and a
Rewriter, and a mechanism for obtaining
text changes (the GumTree algorithm) [5].

• The Writable PSI Generator was successfully tested
in the Java and Python IDEs in the implementation of
a number of refactoring services and quick fixes.

 The remainder of this paper is organized as follows:
in Section II, we present functional requirements and the
architecture of the Writable PSI Generator. Section III
presents system implementation details. Further, we
discuss the convenience of the Writable PSI Generator and
show the success of reuse in Section IV. Finally, Section
V presents related work.

II. ARCHITECTURE

The functional requirements of the Writable PSI Generator
are the following.

• The system should allow for generating Java
interfaces and classes for working with PSI (the main
language within the multi-language platform used for
developing various IDEs is Java).

• The system should allow for modifying the tree for
the needs of refactorings and quick fixes.

• It should be possible to get text changes for the source
code document.

• It is necessary to ensure that the system can be reused
for various IDEs developed within a multi-language
platform.

The Writable PSI Generator consists of two subsystems:
the subsystem for transforming the PSI and obtaining text
changes, and the subsystem for generating interfaces and
classes access to the PSI tree.

Fig. 1 shows an UML component diagram describing the
subsystem for transforming the PSI and obtaining text changes
in the Writable PSI Generator.

Fig. 1. Subsystem for transforming the PSI and obtaining

text changes

The PSI Modification component provides external clients
with different ways to modify and build new PSI nodes:

• Node Factory is a factory that provides methods for
both constructing PSI nodes from other nodes and
creating them from a string. This factory is generated,
but at the same time it is possible for it to "manually"
add additional methods.

• Modification Methods are generated methods that
each interface and class contain for modifying the
attributes of the syntax construct. These methods

allow the client to create a new version of the node,
replacing existing children.

• Tree Rewriter is an entity that allows the client to
create a new copy of PSI by replacing or removing
some nodes. Implements the Builder design pattern.

 The Program Text Modification component provides
external services with the ability to receive text changes to
a document after PSI transformations. The client is
provided with a Tree Differ, which, after receiving two
trees, finds differences between them and creates the
sequence of text changes that the client can apply to the
source code document.

 Fig. 2 shows a UML sequence diagram which

describes the main scenario of using the subsystem for

transforming the PSI and obtaining text changes.

Fig. 2. The main scenario of using the subsystem for

transforming the PSI and obtaining text changes

It includes the following steps:

• Modification of tree nodes (1) or construction of new
nodes using the factory (2). As a result, new tree
nodes are available for the external service.

• Modification of the entire PSI is performed using the
Tree Rewriter interface, as a result of which a new,
modified copy of the PSI is created. Firstly, the
feature initializes this interface with the root of the
new PSI (3). Secondly, then through the
replace/remove methods it indicates which
transformations need to be performed (4). Finally,
using the Rewrite method (5), the modification
process is activated, and as a result, the feature
receives a new PSI.

• Obtaining a sequence of text changes using the Tree
Differ interface, which takes the roots of the old and
new PSI as input, compares them and creates a
specification of text changes (6).

Fig. 3. describes the subsystem for generating interfaces
and classes for PSI tree access. It consists of the following
components:

• Specification Processor is responsible for processing
and validating the pre-written developer specification
of the syntax construct types of the programming
language for which the PSI is being built.

• Scheme Manager stores knowledge about the
schemes for generating Java interfaces and classes
created based on type information from Specification
Processor: which interfaces are implemented, the
order of children during generation, and so on.
Scheme Manager implements the Singleton design
pattern.

• Types Manager stores knowledge about the semantic
of syntax construct types: types of children,
properties, etc. Similarly to Scheme Manager, it
implements the Singleton design pattern.

• Generation is the main component that contains
everything related to PSI generation. It provides the
Generator interface, which is responsible for
generating a specific file.

Fig. 3 The subsystem for generating interfaces and classes

for PSI tree access

As a result of using the Writable PSI Generator, a user who
wants to generate PSI for their IDE only needs to write a
specification of types of syntax constructs for the
corresponding programming language and run the generator.
If necessary, Writable PSI Generator can be extended to take
into account the specifics of a particular language.

III. IMPLEMENTATION DETAILS

This section discusses the features and implementation

details of the components described in Section II.

A. PSI Modification Component

 As mentioned in Section II, the PSI Modification
component is responsible for modifying and creating new PSI
nodes. It also provides the functionality to completely rewrite
the entire file tree.

 PSI is a Lossless Syntax Tree (LST) [3], i.e., it has the
following features.

• It stores information about whitespaces and
comments in special nodes called Trivia.

• Every PSI node stores its source text position and
length.

Fig. 4 shows an example of a Lossless Syntax Tree for a
simple Java return statement.

Fig. 4. Lossless Syntax Tree example

 We chose Persistent Tree as the main approach for
building the PSI and its modification system. Here,
persistence means that when a data structure is modified,
a new version of this data structure is returned. In addition,
the unchanged parts of the data structure are reused. This
approach provides the following benefits.

• Thread-safety via PSI immutability, as it eliminates the
need for synchronization. In the IntelliJ Platform, for
example, it is necessary to use Read and Write Action
to interact with the PSI because of tree mutability [10].

• Fixed offsets and lengths of nodes in the tree.
Immutability makes it possible not to be concerned
about updating node offset in the text, as it will be
correct after recreating the node.

• Secure manipulation of semantic information via
separating the stages of tree modification. The user
clearly knows when the semantic information is
relevant.

 In constructing this data structure, we opted for the
Red-Green-Trees method from Microsoft Roslyn [4]. This
approach results in PSI constructed as a combination of
two trees.

• The Green tree is an immutable untyped tree built
during parsing. Its nodes (green) store information
about node length in text, type, etc. They also store
references to their children, but not to their parents.
This tree is an implementation detail, and it is kept
hidden from clients.

• The Red tree is an immutable typed tree, which is built
lazily on demand from top to bottom. This is the PSI
that the client works with. The nodes of this tree (red)
reference the corresponding green nodes. Each red
node stores an offset in the text document and a
reference to its parent.

 This approach to PSI construction resulted in a correctly
working persistent data structure. The two trees are needed to
provide the ability to iterate over the parents and children of
PSI nodes.

 Figure 5 shows a simple example of this approach.

Fig. 5. An example of the Red Nodes and Green Nodes

approach

In order to reduce the number of errors when working with
the developed subsystem, we proposed an identifier system
where each green node is assigned an identifier. This identifier
is transferred to the new version when modifying and creating
a new node. Modification methods and factory methods take
these identifiers into account, which made it possible to build
a more convenient API and support more PSI Modification
Component usage scenarios.

As mentioned earlier, PSI stores Trivia nodes with
whitespaces and comments. Microsoft Roslyn maintains the
invariant that a node is Trivia if and only if it is a child of a
token. This invariant is convenient for compiler system
development, because it eliminates the problem of space and
comment placement, leaving it as the responsibility of the
client.

This approach was not applicable in the context of our IDE
platform due to complicated API and difficulties in
developing external services, and therefore Trivia nodes were
placed in a more classical way — at the token level. The PSI
Modification Component is responsible for whitespace
normalization itself during node modification. Fig. 6 (left)
illustrates Trivia node placement in Microsoft Roslyn, while
Fig. 6 (right) shows the same for the Writable PSI Generator.

Fig. 6. Trivia nodes in Microsoft Roslyn and Writable PSI

Generator

Modification Methods and Node Factory, which were
mentioned in Section II, are based on a common system for
green node manipulation. Every Node Factory method makes
it possible to build a new green node from other existing green
nodes. A new red node is created based on the new green node.
Every modification method uses the Node Factory method to
build a new node based on the existing children. These

methods are uniform and easy to generate. Furthermore, they
are built based on the information about the syntax constructs
of the language described in the specification, and thus
produce only syntax-correct nodes.

The considered component also provides Tree Rewriter,
an object that allows to replace or delete nodes in the PSI of
the whole file. The replace and rewrite methods let Rewriter
accumulate information about what changes should be applied
to the tree. This is done by filling in the replace map and
remove list, which store the data about the accumulated
changes. The rewrite method activates PSI traversal, during
which Rewriter replaces or removes nodes. This traversal is a
Preorder Traversal, where the node itself is processed first,
followed by its children from left to right. Rewriter takes into
account the node offsets in source text, and therefore it does
not have to traverse the whole tree. Instead, it only traverses
the parts which have something to transform.

The result of the traversal is a new PSI. Rewriter takes into
account the syntax structure of language constructions
described in the specification, and does not produce a PSI with
syntax errors.

As a result, the PSI Modification component meets the
functional requirements described in Section II, and achieves
the following.

• Thread-safety.

• Syntax correctness after PSI transformation.

• Generatable API for modifying PSI nodes and
producing new ones.

• Possibility to safely transform the PSI of an entire
file.

B. Program Text Modification Component

As mentioned in Section II, the Program Text

Modification component is responsible for creating the

shortest sequence of text changes that can be applied to the

source document.
 Three types of text changes are implemented:

• text insertion;

• text deletion;

• text replacement.

Each text change has the following structure.

• Position in the document at which the change starts.

• Position in the document at which the change ends. In
the case of insertion, it is equal to the start position.

• The text to replace the fragment in the document. In
the case of deletion, this string is empty.

This structure of text changes is due to the specifics of the

IDE platform, for which the Writable PSI Generator was

implemented.

In implementing the component, we decided to follow the

GumTree approach [17], which produces text changes in two

stages.

• First, it establishes the mappings between the nodes
of the initial and final trees

• Then, it analyzes these mappings and constructs a
sequence of text changes based on the analysis.

GumTree made it possible to implement Program Text

Modification, which generates the text sequence accurately

and quickly. However, this approach required adaptation to

the specifics of the developed IDE.

• GumTree allows to generate changes to move

subtrees, which are not supported by the IDE.

Therefore, these changes have been replaced by

appropriate deletions and insertions.

• Text changes in the IDE platform are not applied

sequentially — they are applied simultaneously. The

approach has been adapted so that the created text

changes meet the requirements of the platform. For

example, multiple additions in a sequence in the

same area are merged into a single change.

Such corrections allowed not only to adapt the approach

to the requirements of the developed platform, but also to

make them more convenient and less confusing, which was

important when debugging the developed external services.

The implemented component is designed so that it can be

applied to PSIs of different languages. The component itself

has no knowledge of which programming language's trees it

is analyzing.

C. Generation Subsystem

As it was mentioned in Section II, the Generation

Subsystem provides the ability to generate interfaces and

classes to work with the PSI Modification component.

This subsystem is based on a given specification. The

JSON format was chosen since it is widespread and has

convenient processing and generation tools.

The specification contains the information necessary both

for the operation of the generator and for the correct

functioning of the entire modification subsystem.

• Definition of PSI node types according to

programming language syntax. It describes what

kind of children the PSI node can have according to

the grammar of the language. Modification methods

and factory methods are generated based on this

information.

• Additional information for the generator. For

example, it can specify if the class generated for a

given type should be abstract, or if a factory method

should be generated for a particular PSI node type,

among others.

The specification is processed in several steps.

• Parsing and validation of the specification file

• Initialization of the Types Manager component

based on the result of the first step

• Initialization of Scheme Manager component based

on the result of the first step

During these steps, the specification file is validated to

prevent unexpected system behavior. The following checks

are performed:

• Check the presence of all mandatory attributes

• Check all attribute types

• Check presence of unnecessary attributes in JSON

objects

• Check correctness of attribute values

The initialized Types Manager and Scheme Manager are

objects that implement the Singleton pattern. They are

available to both the generator and the PSI Modification

component.

The generator is based on a Java StringBuilder, which

builds a string that is the content of the generated file based on

information from Types Manager and Scheme Manager. This

string contains the package name, imports, fields,

constructors, methods, etc., and it is written to the desired file.

Such generation approach appeared to be the most suitable in

the context of the IDE platform due to its simplicity and

sufficient flexibility.

The described generation approach addressed another

problem as well. Typically, generators produce files that

prohibit manual code additions, because repeated generation

of additional text is overwritten. However, the generator that

we developed can create areas where code is not overwritten

and it is possible to add new logic. This is done as follows.

• The generator checks if the file exists on disk.

• If the file does not exist, it is generated. The code is

partitioned, leading to the division of the file into

areas. Within one group of these areas, the code

cannot be re-generated (e.g., the zone of generated

methods, the zone of generated fields, etc.). The user

can write code in these areas, and they are not re-

generated.

• If the file exists, the generator recognizes via special

area markers where the re-generation should be

performed. The re-generated areas are replaced by

new ones, the rest remain unchanged.

• The updated file is obtained by concatenating the

contents of the generated and non-generated areas.

Thus, developers are able to implement additional logic in

the generated interfaces and classes. Fig. 7 illustrates how a

Java interface is derived from the type specification of

syntactic constructs. This figure also showcases the division

of code into areas where generation does or does not take

place.

Fig. 7. Example of interface generation based on a JSON

specification

IV. USE CASES

This section shows how versatile and convenient the

Writable PSI Generator is. The Java IDE and Python IDE are

a software product line developed on the basis of a multi-

language platform and its reusable assets [6]. The Writable

PSI Generator presented in the paper is one of the reusable

assets of the platform.

During the usage of the system by different products of the
product line, it was improved: errors were corrected and new
features were added. In terms of paper [7], this process is
called improvement of reusable assets.

Specifications of syntax construct types for Python and
Java languages were created, and based on these
specifications, interfaces and classes for Python/Java PSI and
other auxiliary code were generated. As a result, 21/7
improvements and bug fixes were made to the Writable PSI
Generator in response to requests from the Python/Java teams.

It can be seen that the number of requests for such
improvements when using the Writable PSI Generator
decreased from product to product, indicating successful reuse
of the asset.

Using the system within the Python IDE. Based on
Writable PSI Generator for Python, the following features
were implemented for the Python IDE.

• Rearrange Code is a refactoring that rearranges
program constructs in source code. For example, this
feature enables the developer to quickly move
selected functions and classes through the source
code, and reorder function arguments. It can also
move functions out of classes into the external scope
if the function is either at the very top or the very
bottom of the class.

• Introduce Variable is a refactoring which lets the
developer define a new variable for a selected
expression, to which it will be assigned.

• MinMax If is a quick fix that allows the developer to
turn a construct of the form if a<b: return a else
return b into return min (a,b). There is no such feature
in PyCharm at the moment.

• Annotated Assignment is a quick fix that allows the
user to remove type annotation in case of chain
assignment. (For example, a: int = b = d = 3 turns into
a = b = d = 3). Python does not allow for type
annotations in case of chain assignment: this is a
syntax error. However, at the time of development of
the Writable PSI Generator, even though PyCharm
indicated an error in this case, it did not offer a quick
fix.

 Using the system within the Java IDE. Using the
Writable PSI Generator for Java, the following features were
implemented in the Java IDE.

• Rename Method is a refactoring that allows the
developer to rename a class method and all its uses
within the project.

• Remove Useless Statement is a quick fix that removes
a useless construct in the source code (for example, an
empty if statement).

• Simplify Trivial If is a quick fix that replaces an if
statement with a return of true or false depending on
a condition with a return with a check of this
condition.

V. RELATED WORK

PSI was first introduced in [2] for describing the syntax

and semantic information of the developed program in IDE.

However, the authors presented only general ideas regarding

operation with PSI, without considering major non-trivial

tasks associated with the PSI, such as tree modification and

program text changing.

A. PSI Modification

Study [9] outlines the problem of refactoring service

development and describes approaches to building a tree that

is more convenient for IDEs. It highlights that in the IDE

context the tree should store spaces and comments, and it

should also be able to store positions and lengths of nodes in

the text. Consequently, such a tree should be a Lossless Syntax

Tree (LST), i.e. a tree which can be fully mapped to the

original source code. However, this paper presents only a

general view of the problem.

Paper [3] reviews different approaches to PSI design

suitable for code refactoring services. It discusses two main

approaches: Mutable Tree and Immutable Tree.

Mutable Tree is an approach in which tree nodes can be

easily deleted, added or changed. It is quite appealing due to

its simple implementation and convenient API, and therefore

it is used in tools like IntelliJ Platform [10], Smalltalk

Refactoring Browser [11], and CRefactory [12]. However,

this approach has many disadvantages, such as problems with

updating node offsets and lengths, and the need for

synchronization in multi-threaded code.
Immutable Tree is an approach in which the tree cannot be

altered once it is created. Paper [3] highlighted two

approaches to designing a modification process on such a data

structure: Rewriter and Persistent Tree. Rewriter is an

approach in which all transformations over the tree are

delegated to a separate object called Rewriter. The tree itself

is not writable. This approach is employed in Eclipse Java

Development Tools (JDT) and C/C++ Development Tools

(CDT), addressing many of Mutable Tree problems, such as

the lack of thread-safety. However, it does not provide an

ability to interact with intermediate and final versions of trees

during the modification process. Persistent Tree is an

approach which allows clients to execute transformation

actions on the tree. However, with every such operation, they

receive an updated version of the tree, reflecting the applied

transformations. This approach is used in the Microsoft

Roslyn compiler written in C#. Its creators describe [4] its

implementation via Red-Green Trees, as described above.

This method of PSI construction offers an API through the red

tree and hides implementation details in the inner green tree.

This approach has all the benefits of an immutable tree, but

also provides a more convenient way of interacting with the

tree to transform it. A notable disadvantage of this approach is

the difficulty of creating a convenient API for clients, which

is due to the non-trivial organization of the data structure of

Persistent Tree.

B. Program Text Changing

After performing transformations on PSI, it is necessary

to transfer the changes to the source document (the program’s

source code) in order to make them visible to the IDE user

(developer). In this case, a large number of fine-grained

program changes can lead to performance issues. This

problem is known as the problem of obtaining the shortest

sequence of text changes that can be applied to the source

document. It reduces to the Tree Differencing problem, which

has proven itself to be a long-term research topic.
A set of approaches for Tree Differencing with retrieving

text changes for adding, deleting and updating nodes in PSI is
described in [13]. The RTED algorithm [14] stands out from
this set, but its asymptotic performance is insufficient to meet
the requirements of our IDE.

Further work tries not only to improve the asymptotic
performance, but also determine the moves of subtrees. This
is important because many refactoring services are often
reduced to this type of tree operations (e.g., the Rearrange
Code refactoring). Paper [15] proposes an algorithm for tree
differencing of LaTeX trees. It is better compared to previous
approaches, and has good asymptotic behavior, but it also has
a significant limitation: the algorithm operates on trees that
have a large amount of text in the leaves, which is not true for
IDEs.

ChangeDistiller [16] improves on the ideas proposed
earlier and makes the approach from [15] more suitable for
Abstract Syntax Trees (ASTs). While it improves the
asymptotic behavior, it still does not address the
aforementioned limitation.

However, this limitation is solved by the GumTree
algorithm described in [17]. It has suitable asymptotic
performance for the needs of our IDE and is the most suitable
for PSI differencing. Moreover, it generates a reasonably
accurate sequence of textual changes, which also includes
operations for moving subtrees. The disadvantage of this
approach is that it can generate confusing textual changes, as
discussed in [18]. This can be important when debugging an
external service.

Paper [19] attempts to fix this problem by providing
improvements for GumTree, which increases the accuracy of
textual changes. However, this approach shows the best
results only with Java code, and, consequently, is not well
suited for a multilanguage platform.

CONCLUSION

The use of the Writable PSI Generator in IDE
development projects for Python and Java has significantly
improved the efficiency of PSI development by generating a
significant amount of code and reducing the number of errors.
Positive feedback has been received from the developers.

It should also be noted that the first product that used the
Writable PSI Generator was the Python IDE, and the number
of change requests within this implementation is larger than
that for the next one. This suggests that improvement of
reusable assets took place, which corresponds to the
statements made in [7].

As a further direction of our work, we can specify the
replacement of JSON for describing the types of programming
language syntax constructs with a grammar-like language, for
example, EBNF [8].

REFERENCES

[1] Alfred V. Aho, Ravi. Sethi, Jeffrey D. Ullman. "Compilers: Principles,
Techniques, and Tools" 1986, pp. 69-70

[2] Z. Kurbatova, Y. Golubev, V. Kovalenko and T. Bryksin, "The IntelliJ
Platform: A Framework for Building Plugins and Mining Software
Data," 2021 36th IEEE/ACM International Conference on Automated
Software Engineering Workshops (ASEW), Melbourne, Australia,
2021, pp. 14-17, doi: 10.1109/ASEW52652.2021.00016.

[3] Jeffrey L. Overbey. 2013. Immutable source-mapped abstract syntax
tree: a design pattern for refactoring engine APIs. In Proceedings of the
20th Conference on Pattern Languages of Programs (PLoP '13). The
Hillside Group, USA, Article 7, 1–8.

[4] Lippert E. Fabulous adventures in coding. Blog.
https://ericlippert.com/2012/06/08/red-green-trees/

[5] Jean-Rémy Falleri, Floréal Morandat, Xavier Blanc, Matias Martinez,
and Martin Monperrus. 2014. Fine-grained and accurate source code
differencing. In Proceedings of the 29th ACM/IEEE International
Conference on Automated Software Engineering (ASE '14).
Association for Computing Machinery, New York, NY, USA, 313–
324. https://doi.org/10.1145/2642937.2642982

[6] A Framework for Software Product Line Practice, version 5.0,
Software Engineering Institute, 2012, https://resources.sei.cmu.edu/

[7] Popova T.N., Koznov D.V., Tinova A.A., Romanovskij K.YU.
Evolyuciya obshchih aktivov v semejstve sredstv reinzhiniringa
programmnogo obespecheniya // Sistemnoe programmirovanie, 1
(2005), 184-198 (in Russian).

[8] Pattis, Richard E. EBNF: A Notation to Describe Syntax. ICS.UCI.edu.
University of California, Irvine.

[9] Retaining comments when refactoring code / Peter Sommerlad, Guido
Zgraggen, Thomas Corbat, Lukas Felber. –– 2008. –– 01. –– P. 653–
662.

[10] IntelliJ Platform SDK — Modifying the PSI. –– URL:
https://plugins.jetbrains.com/docs/intellij/modifying-psi.html.

[11] Roberts Don, Brant John, Johnson Ralph. A Refactoring Tool for
Smalltalk. // TAPOS. –– 1997. –– 01. –– Vol. 3. –– P. 253–263.

[12] Garrido Alejandra. Program Refactoring in the Presence of
Preprocessor Directives : Ph. D. thesis / Alejandra Garrido. –– USA :
University of Illinois at Urbana-Champaign, 2005. –– AAI3199001.

[13] Bille Philip. A survey on tree edit distance and related problems //
Theoretical Computer Science. –– 2005. –– Vol. 337, no. 1. –– P. 217–
239. –– URL: https://www.sciencedirect.com/science/article/
pii/S0304397505000174.

[14] Pawlik Mateusz, Augsten Nikolaus. RTED: A Robust Algorithm for
the Tree Edit Distance. –– 2011. –– 1201.0230.

[15] Change Detection in Hierarchically Structured Information / Sudarshan
S. Chawathe, Anand Rajaraman, Hector Garcia-Molina, Jennifer
Widom // Proceedings of the 1996 ACM SIGMOD International
Conference on Management of Data. –– SIGMOD ’96. –– New York,
NY, USA : Association for Computing Machinery, 1996. –– P. 493–
504. ––URL: https://doi.org/10.1145/233269.233366.

[16] Change Distilling:Tree Differencing for Fine-Grained Source Code
Change Extraction / Beat Fluri, Michael Wursch, Martin PInzger,
Harald Gall // IEEE Transactions on Software Engineering. –– 2007. –
– Vol. 33, no. 11. –– P. 725–743.

[17] Fine-Grained and Accurate Source Code Differencing / Jean-Rémy
Falleri, Floréal Morandat, Xavier Blanc et al. // Proceedings of the 29th
66 ACM/IEEE International Conference on Automated Software Engi-
neering. –– ASE ’14. –– New York, NY, USA : Association for
Computing Machinery, 2014. –– P. 313–324. –– URL:
https://doi.org/10.1145/2642937.2642982.

[18] Guillermo de la Torre, Romain Robbes, and Alexandre Bergel. 2018.
Imprecisions diagnostic in source code deltas. In Proceedings of the
15th International Conference on Mining Software Repositories (MSR
'18). Association for Computing Machinery, New York, NY, USA,
492–502. https://doi.org/10.1145/3196398.3196404

[19] J. Matsumoto, Y. Higo and S. Kusumoto, "Beyond GumTree: A Hybrid
Approach to Generate Edit Scripts," 2019 IEEE/ACM 16th
International Conference on Mining Software Repositories (MSR),
Montreal, QC, Canada, 2019, pp. 550-554, doi:
10.1109/MSR.2019.00082.

https://ericlippert.com/2012/06/08/red-green-trees/
https://doi.org/10.1145/2642937.2642982
https://doi.org/10.1145/233269.233366
https://doi.org/10.1145/2642937.2642982

