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Abstract—This paper considers program analysis based on
symbolic memory graphs (SMG) and Block-Abstraction Mem-
oization (BAM) technique which enables procedure summariza-
tion. Both SMG and BAM are implemented in static software
verification framework CPAchecker.

SMG analysis models program memory as a graph with
edges between objects in memory and symbolic values. Using it,
violations of memory safety can be found in real-world programs
such as Linux drivers.

With BAM, any given analysis can make a summary of a
block (a function or a loop) and reuse the block summary when
it enters a block with similar enough context.

This paper enables SMG to work with BAM. Several ways to
distinguish context are introduced and compared against each
other and baseline SMG analysis without BAM. We hope to
improve efficiency of the analysis using BAM in future work.

Index Terms—formal software verification, software model
checking, CPAchecker, symbolic memory graph, block abstrac-
tion, procedure summarization

I. INTRODUCTION

Bug finding is a crucial stage in the development of widely
adopted software, and it often cannot be performed manually
due to the ever-growing scale and complexity of software.
Testing may be the most popular approach to discovering
problems in software due to its efficiency, but critical settings
(such as operating systems) require a more thorough approach.

Software verification methods aim to either find a violation
of a given formal specification or prove the correctness of
the analyzed source or binary code against the specification.
Although thorough, these methods can be memory and time-
intensive or even undecidable. Other static methods, such as
data flow analysis, make program analysis more efficient at
the cost of precision, which can result in a high number of
false positives and require additional manual effort to inspect
the results.

CPAchecker1 is a static software verification framework
built on the concept of configurable program analysis
(CPA) [1] which combines the efficiency of data flow analysis
with the effectiveness of model checking and allows configur-
ing the trade-off between the two [2]. Analyses with various
abstract domains, including explicit values and predicates, can
be easily introduced and discover the program’s state space
simultaneously. The tool has consistently won medals at the

1https://cpachecker.sosy-lab.org;
https://gitlab.ispras.ru/verification/cpachecker

annual Competition on Software Verification (SV-COMP)2,
including a silver medal in the summary category Overall last
year [3], [4].

CPAchecker includes a shape analysis with a symbolic
memory graph (SMG) domain [5], [6]. Using it, CPAchecker
has won medals in the MemSafety category at SV-COMP and
has detected several hundred memory safety violations in the
source code of the Linux operating system device drivers3 [7],
[8].

One popular technique for improving program analysis
scalability is function summarization. CPAchecker incorpo-
rates Block-Abstraction Memoization (BAM), an example of
this approach. BAM has been shown to be competitive with
other software verification approaches while being applicable
to different domains [9], [10]. We have implemented BAM
operators for the SMG domain, allowing them to be used in
conjunction.

The outline of this paper is as follows. Section II provides a
motivating example. Section III offers an overview of several
tools for memory safety static verification. Section IV details
both the SMG analysis and the BAM technique. Section V
presents several variants of the reduce (capture block context)
and expand (apply block summary) operators needed to make
the SMG domain compatible with BAM. In section VI, the
variants and the baseline SMG-LDV analysis are evaluated on
SMG integration tests and 845 Linux driver modules. While
up to 30 verdicts were lost, the analysis with BAM was able to
obtain over 100 new verdicts. Finally, the results are discussed.

II. MOTIVATION

We want the verification tool to avoid reanalyzing a proce-
dure call if it leads to the same result as a previously analyzed
call. Although many calls depend on context, we can still
use this approach if the contexts are similar enough to yield
identical analysis results.

Consider the following example in Fig. 1. The program
allocates the double array matrix in two steps: 1) an array
of pointers to rows is allocated in the function main; 2)
the call to the function bad_row_of_integers allocates
an array of integers for each row in the loop in main.
However, bad_row_of_integers also calls the function

2https://sv-comp.sosy-lab.org/
3http://linuxtesting.org/ldv
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http://linuxtesting.org/ldv


1 #define N 9
2
3 void waste_analysis_time() {
4 char ***p3 = malloc(N * sizeof(char**));
5 for (int i = 0; i < N; i++) {
6 char **p2 = malloc(N * sizeof(char*));
7 p3[i] = p2;
8 for (int j = 0; j < N; j++) {
9 char *p1 = malloc(N * sizeof(char));

10 p3[i][j] = p1;
11 for (int k = 0; k < N; k++) {
12 char p0 = i + j + k;
13 p3[i][j][k] = p0;
14 }
15 free(p1);
16 }
17 free(p2);
18 }
19 free(p3);
20 }
21
22 int *bad_row_of_integers() {
23 waste_analysis_time();
24 return malloc(N * sizeof(int));
25 }
26
27 int main() {
28 int **matrix = malloc(N * sizeof(int *));
29 for (int i = 0; i < N; i++)
30 matrix[i] = bad_row_of_integers();
31 return 0;
32 }

Fig. 1. An example of a program wasting the time of the analysis

waste_analysis_time which allocates, writes to, and
deallocates a triple array char ***p3. The function is
correct but useless code, and the SMG analysis reanalyzes
it every time bad_row_of_integers is called. As the
analysis unrolls loops, it exceeds the 15-minute CPU time
limit.

With BAM, the SMG analysis is able to traverse
the functions waste_analysis_time and
bad_row_of_integers once, and then use the latter
summary for the remaining eight calls. In total, CPAchecker
takes less than 20 s to detect the memory leak and produce
the verdict unsafe. The use of BAM for loop bodies instead
of unrolling is left for future work.

III. RELATED WORK

This section discusses four automatic software verifiers,
including CPAchecker, and their techniques for efficiently
verifying program memory safety. These tools have won
various categories in recent years at SV-COMP, including
overall, memory safety, and software systems.

One of the common problems in program analysis is pointer
behavior. A pointer analysis aims to statically determine the
possible runtime values of a pointer [11]. A shape analysis
is a more specialized and typically more expensive form of a

pointer analysis that attempts to determine the behavior of a
program that manipulates complex dynamic data structures.

A shape analysis based on symbolic memory graphs was
introduced in the Predator4 tool in 2013 to automatically
verify C programs that use lists and low-level memory opera-
tions [5]. PredatorHP [12] and the SMG CPA in CPAchecker
both abstract sequences of singly or doubly linked memory
regions into appropriate kinds of list segments. SMG was also
extended in CPAchecker to track explicit values and simple
relations (e.g. sym1 < sym2) in the form of predicates [6].
Predator, on the other hand, uses bounded intervals for values,
including offsets and memory region sizes.

Predator verifier aims to verify the program using expensive
SMG analysis; to improve efficiency, Predator hunters5 run in
parallel, searching for violations both in depth and in breadth
without using more expensive features of the SMG analysis.

Contrary to the sophisticated shape analysis, the Symbiotic
tool6 uses lightweight pointer analysis, instrumentation and
static slicing to find reduced traces of possible violations
and then uses symbolic execution to confirm them [13]. To
find memory safety violations, it employs instrumentation,
but optimizes the placement of checks using pointer analysis.
The tool uses a data flow analysis with the values unknown,
null, and invalidated, the latter of which is used to
track when a pointer becomes invalid, as opposed to a typical
pointer analysis.

One of the well-known model checking approaches is
counterexample guided abstraction refinement (CEGAR) [14].
A tool constructs a coarse abstract model of the program and
then increases its precision – refines it – each time a spurious
error path – a counterexample – is found. The precision of
the model can be represented by tracked variables for a value
analysis, or tracked predicates for a predicate analysis. The
resulting abstract model is a proof of program correctness if
it has no error states, or provides a violation witness if it has
a feasible path to an error state.

Summarization is a commonly used approach in static anal-
ysis. It can be used for efficiency and scalability of analysis
or to allow analysis of a program with recursive calls. Block-
Abstraction Memoization can be viewed as a generalization
of several block-based summarization approaches, including
context inference and function summarization [10]. It was
first introduced in CPAchecker in conjunction with predicate
analysis in 2012 [9].

In principle, the technique is not limited to any specific
analysis domain, and later it was implemented to work with
any compatible CPA, e.g. explicit value analysis and its
combination with predicate analysis. The technique itself has
also been improved to analyze programs with recursive calls
and to enable analysis of blocks in parallel.

The different combinations of the technique with value and
predicate analyses (e.g. using region-based memory model to

4https://www.fit.vutbr.cz/research/groups/verifit/tools/predatorhp/
5hence the name PredatorHP: Predator Hunter Party
6https://github.com/staticafi/symbiotic
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simplify predicates [15]) were successfully used for reacha-
bility and memory safety tasks.

Since Symbiotic does not create an abstract model, it does
not use CEGAR. While Predator does use abstractions, it does
not use CEGAR. Symbiotic uses imprecise pointer analysis,
which gives already summarized information, and Predator
uses function summaries.

CPAchecker employs CEGAR for several CPAs, with CE-
GAR and BAM capable to work together [16]. However, SMG
CPA has not been used in conjunction with BAM. The SMG
CPA has never been adapted to work with CEGAR, reinforcing
the need for other methods to improve the analysis scalability.

IV. OVERVIEW

This section gives an overview of two key topics: (a) the
SMG CPA, specifically the configuration -smg-ldv which
serves as the baseline, and (b) the BAM technique ready for
use with compatible CPAs.

A. Symbolic Memory Graphs

A symbolic memory graph is a bipartite graph with edges
between objects in memory and symbolic values. A has-value
edge maps an object, offset, and size to a specific value in that
memory, while a points-to edge maps a value to an object at
that address. As memory objects can be abstract, a points-to
edge can have a tag specifier in addition to a regular offset.

The SMG for the example program in Fig. 1 after all
allocations in the main function is as follows. A stack
variable matrix has a has-value edge leading to a sym-
bolic value. This value has a points-to edge leading to a
heap object that represents the array of pointers allocated
on line 28. Nine edges leave from this object to different
symbolic values, each of which points to a different heap
object that represents a row allocated inside the loop by the
function bad_row_of_integers. Since the elements of
the matrix have not been initialized, there are no has-value
edges leaving from any of them.

One of the challenges in software verification is the com-
plexity of data structures, such as singly and doubly linked
lists. To address this issue, the considered analysis identifies
lists within heap objects and abstracts (collapses) their tail or
middle elements. This enables the states with longer lists to be
covered by an existing abstract state, which in turn facilitates
real-world software bug detection.

The analysis also collects information on the symbolic
values present in the graph, including their explicit values and
some relations.

B. Block-Abstraction Memoization

Block-abstraction memoization uses a given analysis to
create a summary of a procedure or loop block. When the
analysis enters a block, BAM reduces the entry state (the
abstract state before entering the block) to include only the
context important for analyzing that block. The underlying
analysis then explores the block starting from the reduced
entry state and producing the exit states, i.e. the states before

leaving the block. These exit states are the block summary,
and are stored in a cache using the reduced entry state as the
key. To continue the analysis, the exit states are applied to the
full entry state using the expand BAM operator.

When the underlying analysis re-enters the same block with
a sufficiently similar context, the reduced entry state is found
in the cache. The retrieved summary is applied to the new
entry state, i.e. the old exit states are each expanded using
the new full entry state. Obviously, the more effective the
reduce operator, the higher the cache hit rate is and the
more efficient the analysis using BAM is. However, a stronger
reduce operator may lead to a less precise analysis.

To use Block-Abstraction Memoization with the SMG anal-
ysis, one needs to define two operators.

• reduce(e,B, n, V ) returns the reduced block entry state,
i.e. for a given block B, its entry node n, and the variables
V referenced in it, the operator abstracts the entry state e
from information unnecessary to analyze the block. The
result is the context necessary for the analysis to create
a block summary. The entry node n is provided as BAM
supports block partitioning not limited to function blocks,
and e.g. loop blocks can have multiple entries.

• expand(e,B, r) returns the expanded block exit state. It
applies the exit state r to the given full entry state e
for the given block B. To obtain the block exit state r,
the underlying analysis is run as usual, starting from the
reduced entry state. This may produce multiple exit states
r, as there can be multiple abstract states at the block exit.
In this case, expand is applied to the entry state e for each
of the exit states.

BAM can enable analysis of recursive procedures, but this
is left for future work.

V. IMPLEMENTATION

This section presents the issues involved in making the SMG
analysis compatible with the BAM technique. It presents sev-
eral variants of the BAM operators, i.e. different approaches to
producing the block context and applying the block summary.
It then discusses the impact of these variants on the analysis.

A. SMG implementation details

The abstract state includes a symbolic memory graph itself
and the value information collected. The graph contains its
objects, values, has-value edges leading from objects to values
and points-to edges in the opposite direction. The value infor-
mation consists of a not-equals relation between the values, a
mapping from the symbolic values to their explicit values, a
path predicate, and an error predicate. As a full-scale predicate
analysis was found to be too expensive, the predicates consist
of inequality relations between the values (such as a < b and
a ⩾ 1) [6].

SMG contains global objects (including auxiliary objects
that are introduced by analysis itself), call stack and stack
objects (variables and return object where necessary) allocated
in respective frames, heap objects (that can be a number of



abstracted memory objects aside from a concrete region) and
separate collections for valid and externally allocated objects.

The objects in an SMG are divided into three categories:
global objects, stack objects, and heap objects. Global objects
include global variables from the program and auxiliary ob-
jects introduced by the analysis itself. Stack objects are stack
variables (and return objects) organized as a call stack. Heap
objects include dynamic memory, both concrete regions and
abstracted objects. In addition, SMG maintains a record of
which objects are valid and externally allocated.

The context sufficient for a sound and precise analysis of
the block comprises 1) subgraphs reachable from the memory
objects that correspond to the variables referenced in the block;
2) the value information for all symbolic values in these
subgraphs; and 3) information on the edges that point to these
subgraphs from the remaining graph.

The value information is necessary to keep the analysis
precise. The edges to the subgraphs are necessary for correct
expand and to prevent the heap objects from being considered
as leaked incorrectly. The described subgraphs may constitute
a context of a larger size than necessary, but we leave this
issue for future work.

B. Reduce

The reduction of a symbolic memory graph with respect
to the given variables is a relatively straightforward process.
Every global or top stack frame variable that is referenced
in the block is retained together with the respective symbolic
memory subgraph, including all edges, values, and objects that
can be reached transitively from the variable.

With regard to the edges entering the retained subgraphs,
any value pointing to a retained object is retained with the
respective points-to edge. An auxiliary global object is added
with a has-value edge to such a value. While some types of
auxiliary objects (such as string literals) have to be retained
for the analysis, these out-of-block reference objects should
not be propagated to inner blocks.

Each pointer dereference, array access, and field access is
represented in referenced variables by both the full expression
and the comprising variables. The elaborate evaluation of the
referenced objects using the full expressions to capture smaller
subgraphs is a topic that will be addressed in future work. Such
evaluation also appears to be necessary to use BAM instead
of loop unrolling.

a) Call stack reduction: As the SMG implementation
incorporates a call stack with stack objects allocated in the re-
spective frames, there may be frames that are either originally
empty or are emptied as a result of the reduction. Such frames
may cause a cache miss, i.e. the entry states with different
call stack prefixes will be considered different even if these
prefixes consist of empty frames. Thus, we want to retain only
those frames containing objects from the retained subgraphs.
However, section VI shows that the removal of superfluous
frames has a minimal impact on the analysis with BAM.

b) Value relation reduction: Another challenge is the
reduction of value information. In the seminal work, SMG

stores a not-equals relation to distinguish between non-zero
values and values that may be zero. In CPAchecker, this has
been extended with explicit values and simple predicates. An
abstract state has a mapping of symbolic values to their explicit
values and collects inequality relations (such as a < b and
a ⩾ 1) between symbolic values and between symbolic and
explicit values.

The most basic approach is to keep the value information
as is, exploiting the fact that most of the entry states do not
have such information. A less straightforward option would be
to eliminate trivial relations such as a ⩽ a or 1 < 10, but this
is to be implemented. Discarding predicates with values not
included in the context appears to have only a limited impact.

An opposing approach is to discard all value information,
which results in a significant increase in the number of false
positives. As SMG analysis is highly dependent on explicit
value extension, it may be sufficient to retain the symbolic-to-
explicit mapping while discarding predicates and not-equals.

The most interesting option is to produce canonized reduced
value information. For example, 0 < a < b < c < d is the
full path predicate but only 0 and b are present in the reduced
SMG. Therefore, b < c and c < d are not necessary, while
0 < a and a < b can be replaced with 0 ⩽2 b with weighted
(distance) operator ⩽d, where d stands for required difference.
This remains a topic for future work.

c) Metasymbolic values: A procedure can be entered
with an SMG that differs from an already analyzed one
only in symbolic values. This suggests the use of some kind
of metasymbolic values to match to the previous results of
analysis. As has-value edges are ordered by object and offset
and contain all symbolic values, the order in the edges can be
used in place of the value itself.

This entails according replacements in the value informa-
tion. We expect metasymbolic values to work better with
canonizing predicate reduction described above. Currently,
the path predicate and not-equals contain symbolic values.
Consequently, if this information is not discarded, the hash
is distinct for states with different symbolic values.

d) Sophisticated SMG reduction: While the reductions
described above are relatively straightforward and have been
implemented and evaluated (except canonizing value infor-
mation reduction), there is potential for a more sophisticated
approach. We can consider isomorphic memory graphs (with
additional conditions, e.g. matching object sizes) to be the
same, i.e. reduce a concrete memory region to its size. This
approach appears promising, but is left for future work.

C. Expand

Similarly to the reduction, objects are copied along with
the respective subgraphs from the exit state r into the entry
state e. Each valid object in the block summary is added
to the block entry state, with their has-value edges updated
where necessary. This way, the analysis does not miss a
memory leak. If an object valid before the block is invalidated
within the block, it is also invalidated in the resulting SMG.



Consequently, the analysis does not fail to identify an invalid
dereference or double free.

Updating the subgraphs of global objects and top stack
frame variables would be sufficient, but currently, stack vari-
ables can be marked as out-of-scope (and thus removed
from the frame) before the call to expand. Because of this,
subgraphs of stack variables from all frames are updated.

However, for procedures allocating new memory, it is not
sufficient to simply copy the new memory objects each time
the summary is applied to an entry state. To simulate the
allocation, the new memory objects are copied and new
symbolic values are introduced to point to the copies. Every
time the block summary is applied to an entry state, new values
and copies are used rather than the original ones.

D. Soundness and Precision

The idealistic goal of a software verification tool is to be
sound, that is, to never produce false negatives. However, in
practice, the complexity of the C language and programs in
general leads to unsound shortcuts [17]. Given sound reduce
and expand, BAM itself is sound, but can make analysis less
precise than the underlying analysis alone [10]. Among the
variants presented above, neither full stack nor reduced stack
affects the soundness or precision of the analysis. In contrast,
dropping value information makes analysis imprecise for a
higher BAM cache hit rate.

VI. EVALUATION

We evaluated the baseline SMG analysis alone and in
conjunction with several BAM operator variants described
above. The evaluation was conducted on two sets of programs:
a subset of CPAchecker integration tests for a memory safety
analysis and a subset of Linux 5.10.120 driver modules. We
aim to improve the efficiency of the analysis, i.e. to reduce
the verification time, while maintaining the number of verdicts
produced.

The evaluated BAM operator variants include 6 variations,
defined by the reduction of the call stack and value informa-
tion: the reduce operator either keeps the call stack as is or
removes the empty frames; the operator either keeps the value
information as is, keeps only the explicit values, or discards
all the value information. The baseline analysis configuration
was used as the underlying analysis for BAM.

The integration test subset (536 programs) consists of pro-
grams from the Competition on Software Verification bench-
marks7, which are used for general SMG regression testing.
Additionally, 41 simple programs have been specifically cre-
ated to test the implementation of the reduce and expand
operators. For each program, an expected verdict is provided.
The set comprises smaller programs, with 108 programs (20%)
having only 1 function, 277 programs (52%) having 2–6
functions, 131 programs (24%) having 7–29 functions, and
other 16 programs (3%) having more than 60 functions.

The Linux driver set comprises USB and NET drivers (845
modules) for the 5.10.120 Linux operating system kernel,

7https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks

TABLE I
THE PRODUCED VERDICTS AND CUMULATIVE RESOURCES FOR

536 INTEGRATION TESTS

keep all keep expl. discard all
baseline full red. full red. full red.

correct safe 208 206 205 205 205 140 140
correct unsafe 191 188 188 186 186 156 156
incorrect safe 12 12 12 12 12 9 9

inc. unsafe 41 43 43 47 47 156 156
timeout 59 59 60 58 58 49 49

recursion 6 6 6 6 6 3 3
unrec. code 12 17 17 17 17 17 17

exception 7 5 5 5 5 6 6
CPU time, min 108 126 126 125 125 113 113

memory, GB 113 114 114 114 114 111 112
analysis, min – 44 44 43 43 31 31
reduce, min – 0.8 0.8 1.2 1.2 0.5 0.5
expand, min – 0.7 0.6 0.6 0.6 0.4 0.4

without known verdicts. Typical modules in this set consist of
50–300 functions. The Linux driver modules were prepared for
the verification using the Klever framework8 [18]. While not
definitive, the verdicts provided by Klever are used to divide
the driver set into three subsets: 374 “safe” modules (up to
700 functions), 134 “unsafe” modules (up to 1400 functions),
and 337 “unknown” modules (up to 1900 functions).

The evaluation was conducted using the BenchExec frame-
work9 [19] on a 64-bit machine with an 11th Gen Intel Core i7-
11700 @ 2.50GHz 16-core CPU, 32 GB RAM and the Linux
20.04.6 LTS operating system. CPAchecker was constrained to
one core and a CPU time limit of 1 minute for the integration
subset and 2 minute for the drivers.

The implementation in the CPAchecker framework is avail-
able at the ISP RAS fork of the tool10. The driver modules,
tables with detailed results, and instructions for replication are
available in the reproduction package [20].

Table I shows the verdicts obtained and resources used
during the integration tests verification. The columns labeled
“full” correspond to the BAM operator variants that do not
reduce the stack. The columns labeled “red.” (i.e. “reduced”)
correspond to the variants that remove empty stack frames.
The columns labeled “keep all”, “keep expl.”, and “discard
all” correspond to the operator variants that keep all the value
information, keep only the explicit values (i.e. remove the path
predicates and not-equals relation), and remove all the value
information, respectively.

As the verdicts are known for this set, the obtained verdicts
are marked as correct or incorrect. For 3–6 programs in the
row “recursion”, the SMG analysis encountered a recursive
function call. For 12–17 programs in the row “unrecognized
code”, the SMG analysis does not recognize a source code
feature, e.g. a variable-length array (VLA). For 5–7 programs
in the row “exception”, a bug in CPAchecker occurred. The

8https://forge.ispras.ru/projects/klever
9https://gitlab.com/sosy-lab/software/benchexec
10https://gitlab.ispras.ru/verification/cpachecker/-/commit/

6bf750a3066c57206f55e1edbe8b27bd7a7a98c7
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TABLE II
THE PRODUCED VERDICTS AND CUMULATIVE RESOURCES FOR

374 DRIVERS WITH BASELINE VERDICT safe

keep all keep expl.
baseline full red. full red.

safe 357 365 366 356 358
unsafe 0 3 3 3 3

timeout 16 6 5 14 12
recursion 0 0 0 0 0

unrec. code 0 0 0 0 0
exception 0 0 0 1 1

CPU time, min 142 130 130 142 142
memory, GB 111 116 115 117 117
analysis, min – 60 59 72 73
reduce, min – 4.6 4.8 9.5 9.8
expand, min – 4.7 4.5 4.7 4.6

TABLE III
THE PRODUCED VERDICTS AND CUMULATIVE RESOURCES FOR

134 DRIVERS WITH BASELINE VERDICT unsafe

keep all keep expl.
baseline full red. full red.

safe 0 2 2 2 2
unsafe 127 102 102 102 100

timeout 7 22 22 22 24
recursion 0 5 5 5 5

unrec. code 0 0 0 0 0
exception 0 3 3 3 3

CPU time, min 84 95 95 100 99
memory, GB 45 49 48 53 52
analysis, min – 64 64 63 66
reduce, min – 4.3 4.6 8.0 9.9
expand, min – 4.9 4.8 3.7 3.8

rows “analysis”, “reduce”, and “expand” show the time spent
for the analysis of blocks and the reduce and expand operators,
respectively.

The analyses with reduce variants which retain the explicit
values show results similar to the baseline, but a decreased
number of verdicts unsafe. The results appear to be largely
unaffected by the stack reduction and path predicate elimi-
nation, with nearly all verdicts and verifier errors matching.
Conversely, the elimination of explicit values has an impact
on precision. The analysis was completed for 10 additional
programs, but half of all verdicts unsafe are erroneous. This
renders discarding explicit values ineffective, and thus it was
not evaluated on the driver modules.

Tables II, III, and IV present the results and resources for the
driver set divided according to the Klever verdict (safe, unsafe,
and no verdict, respectively). As the resources required for a
verification of a program can vary somewhat from run to run,
the baseline has lost or obtained verdicts for some modules in
comparison to the Klever verdicts.

Table II (374 “safe” modules) shows that the use of BAM
led to a slight decrease in the number of timeouts and a
few changes in verdicts from safe to unsafe. The latter can
be attributed to the inconsistencies in the used environment
models, underlying analysis, or BAM operators. The variant

TABLE IV
THE PRODUCED VERDICTS AND CUMULATIVE RESOURCES FOR

337 DRIVERS WITH BASELINE VERDICT unknown

keep all keep expl.
baseline full red. full red.

safe 0 14 14 11 8
unsafe 1 41 43 42 42

timeout 319 259 257 259 262
recursion 15 18 18 17 17

unrec. code 2 2 2 2 2
exception 0 3 3 6 6

CPU time, min 657 583 585 585 587
memory, GB 149 181 175 180 174
analysis, min – 515 517 513 515
reduce, min – 29 30 50 52
expand, min – 38 38 33 33

without the value information reduction was able to obtain up
to 9 additional verdicts safe while spending 8% less time than
the baseline.

Table III (134 “unsafe” modules) shows that the use of BAM
led to a noticeable increase in the number of timeouts (up to 17
additional timeouts), which can be attributed to an unfortunate
search order in the program state space. The analyses with
BAM required 13–19% more time, which can be attributed to
a substantial number of the timeouts.

Table IV (337 “unknown” modules) demonstrates that BAM
facilitated the analysis of over 50 modules. The analyses with
BAM required 11% less time, which can be attributed to the
decreased number of timeouts.

The variants that kept the value information as is demon-
strated greater efficiency than the variants that retained only
explicit values. The variants that reduced the call stack showed
efficiency similar to the variants that retained the full call
stack. The only new timeouts were introduced in the “unsafe”
subset. Only for 5 of those, BAM operators used a substantial
amount of time (approximately 25 seconds out of given 120
seconds).

While BAM increased CPU time up to 17% for integration
set, it also showed an 11% decrease in time for more complex
“unknown” driver subset. Most of the new timeouts can be
attributed to an unfortunate program space exploration order.
Up to 5 changes in driver verdicts and 2 changes in integration
set verdicts require more thorough investigation. While 25
driver verdicts unsafe were lost, 57 additional driver verdicts
were obtained.

VII. CONCLUSION

The paper has considered the SMG analysis and block
abstraction memoization technique which are both imple-
mented in the CPAchecker software verification framework.
Several variants of the reduce and expand operators have been
presented to enable summarization in the SMG analysis using
BAM. These operator variants have been implemented within
the CPAchecker framework. The analysis with BAM has been
evaluated on two sets of programs: a set of smaller programs
from SV-COMP and a set of Linux driver modules.



BAM allowed the analysis to obtain up to 57 new verdicts
and spend less computational time on complex driver modules,
while up to 25 verdicts were lost due to timeout or error.
The less precise operator variants did not demonstrate an
improvement in efficiency compared to the more precise
variants.

Future work includes: 1) advanced value information re-
duction to improve reduce and cache hit rate, 2) sophisticated
graph reduction, 3) elaborate evaluation of referenced objects
to isolate smaller subgraphs, and 4) enabling analysis of
programs with recursive procedures. The change in verdicts
7 programs across both sets requires further investigation.
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