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Abstract—This work-in-progress research aims at studying the
bisimulation relation for memory finite automata, which are
used as the automata model for extended regular expressions
in the series of works [1], [2], and encapsulate the expressiveness
of the named capture groups. We propose an experimental
algorithm for checking bisimulation of one-memory MFAs, and
an algorithm sketch for checking MFA bisimulation with non-
cyclic memories. For the latter, we show that, in some borderline
cases, the bisimulation problem is closely related to a question
of whether a parameterized word is always a solution of a given
word equation of an arbitrary form.

Index Terms—Memory finite automata, bisimulation, word
equations, backreference

I. INTRODUCTION

Extended regular expressions have been known at least
since the early 90s, when they were implemented in the text
editor ed [3]. Many practical extensions of the regexes are
made inside the class of regular languages, e.g. lookaheads
and lookbehinds. The main exception is a back-reference
support: if a capture group contains an iterated expression
fragment, then back-referencing to the group may represent
non-regular properties of the recognised language. For exam-
ple, the expression pa�qpb�qz1bz2 recognises the language 
𝑎𝑛𝑏𝑚𝑎𝑛𝑏𝑚

(
, which is a typical example of a non-context

free language.
The main concern about the extended regex models is the

high computational complexity of their analysis. The language
inclusion problem for extended regexes even with a single
memory cell is proved to be undecidable [2], the similar
statement holds for language inclusion for patterns that are
modelled with extended regular expressions with no restriction
on memoized values and no loops and alternations in the
core regex [4]. Thus, extended regex simplification tends to
be a hard problem, requiring the development of approximate
solutions.

It is known that some practical tools such as RE2 [5] process
even academic regular expressions via non-deterministic finite
automata optimisations, because they can be much faster than
the exact minimization algorithm, and can preserve the struc-
ture of the regular expressions. One of such NFA optimisation
algorithms is merging the bisimilar state classes [6], [7], which
is also a well-known technique in program optimisation. If

some of the states in an NFA are indistinguishable from the
point of view of a user of the NFA, these states can be
considered as a single state, thus reducing the state space
with no impact on computation traces. Equivalence of NFA,
which is known to be in EXPTIME, can be tested via
bisimulation as well [8]: although the bisimulation relation
is finer than the language equivalence, it can be computed
in polynomial time, thus giving a fast under-approximation
of the equivalence test. In the case of pushdown automata,
language equivalence is undecidable, while bisimulation is
decidable (but non-elementary) [9], [10]. Bisimulation was
also applied to symbolic finite automata, i.e. finite automata
with guarded transitions, in order to improve performance of
extended regexes with no memory operations [11].

It seems very natural to consider bisimulation-based opti-
misations in the presence of capture groups, both because the
bisimilarity is typically easier to compute than the language
equivalence, and because the bisimulation-merging optimi-
sations are structure-preserving, which is practical in cases
when the captured data is used outside the extended regex.
However, as far as we know, none of state machine formalisms
supporting backreferences were considered in the papers
studying the bisimulation-based optimisations and analysis.
The main reason for this gap is maybe a confusion of different
backreference-based formalisms for extended regular expres-
sions, none of which is chosen as a standard nowadays, despite
the fact that sometimes distinctions are minor, and some
formalisms can be treated as special cases of the others [12].

It is also worth noting that the language of backref-regexes
cannot be treated as a special case of a formal language with
well-known bisimulation properties. It can be easily shown
that

 
𝑎𝑛𝑏𝑛

(
, which is both context-free and Petri net language,

cannot be recognized by any backref-regex1. On the other
hand, the language

 
𝜔𝜔 | 𝜔 P t𝑎, 𝑏u�

(
is trivially captured

by the regex ppa | bq�qz1, while this language is known to
be neither context-free nor Petri-net [13]. Thus, the backref-
regexes formalism is independent from the classification of
process algebras given in the paper [14].

1While this language can be recognized by a capture group of a (recursive)
backref-regex.

https://orcid.org/0000-0003-3949-2164
https://orcid.org/0009-0009-6885-8429
https://orcid.org/0009-0006-8547-3959


This work-in-progress research aims at studying the bisim-
ulation relation for the memory finite automata (MFA), which
are used as the automata model of the extended regular
expressions in the series of works [1], [2], and encapsulate
the expressiveness of the named capture groups with re-
initializations. We propose an experimental algorithm for
checking bisimulation of one-memory MFAs, and an algo-
rithm sketch for checking MFA bisimulation for MFA with
non-cyclic memories. For the latter, we show that, in some
borderline cases, the bisimulation problem is closely related to
a question whether a parameterized word is always a solution
to a given word equation of an arbitrary form.

II. PRELIMINARIES

A. Bisimulation

Every state machine can be defined by its transition graph,
which contains a complete description of its possible traces. If
the state machine is not finite, the transition graph is infinite,
taking into account the infinite set of inner states of the
machine. We assume that the transition graphs are represented
as labelled transition systems, in which edges are labelled by
the actions possible in the state machines.

Definition II.1. Given labelled transition systems 𝒯1, 𝒯2 and
the action alphabet 𝒜, bisimulation is a coarsest relation �
between states of the systems satisfying the following property.


 if 𝑞1 is a state in 𝒯1, and 𝑞2 is a state in 𝒯2, and 𝛾 P 𝒜,
and 𝑞1 � 𝑞2, then for every transition 𝑞1

𝛾
ÝÑ 𝑞11 in 𝒯1

there is a transition 𝑞2
𝛾
ÝÑ 𝑞12 in 𝒯2 s.t. 𝑞11 � 𝑞12, and vice

versa.
The systems 𝒯1 and 𝒯2 are bisimilar iff their starting states

are in bisimulation, and, in the case of the existence of final
states, any final state in 𝒯1 is bisimilar to a final state in 𝒯2,
and vice versa.

State machines A1 and A2 are bisimilar iff their transition
graphs are bisimilar.

For most known state machine models, the bisimulation
relation is strictly finer than the language equivalence rela-
tion. E.g. non-bisimilar finite automata recognising the same
language

 
𝑎𝑛�1 | 𝑛 P N

(
are given in Fig. 1.
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a

a

a

(a) Glushkov NFA A1 for aa�.

01 11 21
a a

a

a

(b) Glushkov NFA A2 for a�a.

Fig. 1: Non-bisimilar equivalent NFA.

A simple and natural technique for checking the bisimilarity
of the transition graphs 𝒯1 and 𝒯2 can be formulated as a
bisimilarity game with two players:


 The initial player configuration is the pair x𝑞𝑆 , 𝑞1𝑆y, where
𝑞𝑆 , 𝑞1𝑆 are the starting states of 𝒯1 and 𝒯2 respectively.


 Given the pair x𝑞𝑘𝑖
, 𝑞𝑘𝑗

y Attacker chooses any element
of the pair and a transition 𝑞𝑟

𝛾
ÝÑ 𝑞𝑝 in the corresponding

LTS. Defender must respond with a transition 𝑞1𝑟
𝛾
ÝÑ 𝑞1𝑝

from the remaining state in the pair labelled with 𝛾 as
well, and respecting the state 𝑞𝑝 finality. Then the new
player configuration consists of 𝑞𝑝 and 𝑞1𝑝. Attacker can
play again, if there are any transitions from 𝑞𝑝 or 𝑞1𝑝.


 If Defender cannot choose a transition at least for one
player configuration reachable from the initial configura-
tion, the LTS are not bisimilar. Otherwise, the LTS are
bisimilar.

E.g. given the processes in Fig. 1, Attacker can choose the
first one (namely, A1) and play 0

a
ÝÑ 1. Then, in order to

respect the state finality, Defender is forced to reply with 01
a
ÝÑ

21 in A2. Since 21 has no outgoing transitions, any action of
Attacker in the LTS makes Defender to lose.

B. Extended Regular Expressions

The theory of the extended regular expressions followed
much later than they became usual in practice. Several for-
malisms were proposed by different research groups, based
on the details of naming capture groups and possibility of
reinitialization of the groups [12]. In 2014, Markus Schmid
suggested to consider only the named capture groups in the
extended syntax, and proposed a convenient representation in
terms of state machines with restricted memory support (mem-
ory finite automata, MFA). Schmid-style regular expressions
are more expressive than PCRE2-style regular expressions
used in practice currently [12], but the trends of the PCRE2
development show that cyclic re-initializations are likely to
appear in near future [15].

In our work, we use the latest MFA model, which includes
reset memory actions [16]. Following the papers [1], [16], we
also call extended regular expressions ref-words.

Definition II.2. Given an input alphabet Σ and the memory
set cardinality 𝑘 P N, a regular expression with backreferences
(ref-word) is defined recursively:


 𝛾 P Σ, 𝜀, and &𝑖, where 𝑖 ¤ 𝑘, are ref-words (the latter
defines reading the 𝑖-th memory cell);


 if 𝜌1 and 𝜌2 are ref-words, then so are p𝜌1 | 𝜌2q, p𝜌1𝜌2q,
p𝜌𝑖q

�;

 if 𝑖 ¤ 𝑘 and 𝜌 is a ref-word containing neither &𝑖 nor
r𝑖𝜏 s𝑖, then r𝑖𝜌s𝑖 is also a ref-word.

The last operation defines capture groups. We require mem-
ory brackets r𝑖, s𝑖 to be balanced both wrt the regular paren-
theses, and wrt each other. That is the only distinction from
the formalism given in paper [1], which admits unbalanced
capture groups.



0 1 2 3 4
a, 𝑜 : 1

a

a, 𝑐 : 1

b, 𝑐 : 1

a

b &1

Fig. 2: MFA example for r1aa�s1a�b&1.

The ref-word definition above does not specify semantics of
uninitialized backreferences, e.g. in &1ar1b

�s1a&1. Follow-
ing the terminology of the paper [12], we say that we assume
𝜀-semantics: all uninitialized references are valued 𝜀. Thus,
the ref-word given above recognises the language

 
𝑎𝑏𝑛𝑎𝑏𝑛

(
.

C. Memory Finite Automata

A memory finite automaton (MFA) [1] is a tuple
x𝒬,Σ, 𝛿, 𝑞0, 𝐹 y, where 𝒬 is a finite set of states, Σ is the input
alphabet, 𝑞0 P 𝒬 is a starting state, 𝐹 � 𝒬 are final states, and
𝛿 : 𝒬�

�
ΣY t𝜀u Y t1, 2, ..., 𝑘u

�
Ñ 𝒫

�
𝒬� t𝑜, 𝑐, 𝑟, �u𝑘

�
is a

transition table. The symbols 𝑜, 𝑐, 𝑟, � are memory instructions
(𝑜 — opening, 𝑐 — closing, 𝑟 — reset, � — preserving
instruction).

An MFA configuration is a tuple�
𝑞, 𝑤, p𝑢1, 𝑟1q, ..., p𝑢𝑘, 𝑟𝑘q

�
, where 𝑞 is a current state,

𝑤 is an input to read, and for all 𝑖, 1 ¤ 𝑖 ¤ 𝑘, p𝑢𝑖, 𝑟𝑖q is an
i-th memory state (𝑢𝑖 is a stored string; 𝑟𝑖 P t𝑂,𝐶u is a
memory status, which is either 𝑂 or 𝐶). The initial memory
state is

�
𝑞0, 𝑤, p𝜀, 𝐶q, ..., p𝜀, 𝐶q

�
.

A transition from configuration�
𝑞, 𝑣𝑤, p𝑢1, 𝑟1q, ..., p𝑢𝑘, 𝑟𝑘q

�
to

�
𝑝, 𝑤, p𝑢

1

1, 𝑟
1

1q, ..., p𝑢
1

𝑘, 𝑟
1

𝑘q
�

is
possible if there is a transition rule p𝑝, 𝑠1, ..., 𝑠𝑘q P 𝛿p𝑞, 𝑏q,
where either:


 𝑏 P ΣY t𝜀u and 𝑣 � 𝑏,

 or 𝑏 P t1, 2, ..., 𝑘u, and 𝑠𝑏 � 𝑐 _ 𝑟𝑏 � 𝐶 & 𝑠𝑏 � � and
𝑣 � 𝑢𝑏,

and for all 𝑖 memory states change as follows:


 p𝑠𝑖 � �q & p𝑟𝑖 � 𝑂q ñ p𝑢
1

𝑖, 𝑟
1

𝑖q � p𝑢𝑖𝑣, 𝑟𝑖q,

 p𝑠𝑖 � �q & p𝑟𝑖 � 𝐶q ñ p𝑢

1

𝑖, 𝑟
1

𝑖q � p𝑢𝑖, 𝑟𝑖q,

 𝑠𝑖 � 𝑜ñ p𝑢

1

𝑖, 𝑟
1

𝑖q � p𝑣,𝑂q,

 𝑠𝑖 � 𝑐ñ p𝑢

1

𝑖, 𝑟
1

𝑖q � p𝑢𝑖, 𝐶q,

 𝑠𝑖 � 𝑟 ñ p𝑢

1

𝑖, 𝑟
1

𝑖q � p𝜀, 𝐶q.

An example of a memory finite automaton for a non-
regular language

 
𝑎𝑛�𝑘𝑏𝑎𝑛 | 𝑛 ¡ 0

(
is given in Figure 2.

For convenience, the memory actions on the edges are given
in the brief form: a label only lists cells that are closed,
reset and opened along the edge, not mentioning the pre-
serving instruction. The MFA that are used in the examples
are uniformly generated from the corresponding ref-words,
using an MFA construction algorithm based on the Glushkov
construction [17], and utilising the reset memory action in
order to avoid 𝜀-transitions.

III. BISIMULATION IN MEMORY FINITE AUTOMATA

Definition III.1. Let A � x𝒬,Σ, 𝛿, 𝑞0, 𝐹 y be a memory finite
automaton over 𝑘 memory cells. Its transition graph G pA q is
defined as follows.



�
𝑞0, xp𝜀, 𝐶q, . . . , p𝜀, 𝐶ql jh n

𝑘

y
�

is the starting node of the tran-

sition graph;

 given a configuration 𝑁𝑖 �

�
𝑞, xp𝑢1, 𝑟1q, ..., p𝑢𝑘, 𝑟𝑘qy

�
,

children of node labelled with 𝑁𝑖 are the nodes labelled
with configurations reachable by all possible one-step
transitions from 𝑁𝑖.

In most practical cases, the memory statuses in all states
of A are determined by the states (i.e., given a state 𝑞, the
values of 𝑟1,. . . , 𝑟𝑘 can be restored independently of the
previous trace). We assume that the condition holds for all
MFA considered, and omit 𝑟𝑖 values in the node configurations
of transition graphs. While the notion “capture groups” is
usually used in the context of ref-words, given an MFA A ,
we also say that the subgraphs between the open and close
operations wrt the cell 𝑘 are “capture groups” for the reference
𝑘 in A . Moreover, we assume that every capture group of an
MFA is useful, i.e. there exists at least one path in the transition
graph where the value accumulated in the group is used by
a reference. In order to distinguish the actions in distinct A1

and A2 with the same label, we sometimes mark the references
read in the transition graphs with the corresponding subscripts,
i.e. &𝑘A1

and &1A2
.

Given the MFA formalism, we make the following general
assumption about the input commands controlled by the user.

Assumption III.1. Given the transition graphs G pA1q and
G pA2q, the transitions from nodes 𝑁𝑗1 and 𝑁𝑗2 both labelled
with &𝑖 are equal iff 𝑢𝑖 value in the configuration of 𝑁𝑗1

coincides with 𝑢𝑖 value in the configuration of 𝑁𝑗2 .

Now we are ready to give the definition of the bisimulation
relation in the terms of MFA.

Definition III.2. Given MFA A1 and A2, the MFA are
bisimilar (denoted A1 � A2), iff their transition graphs
G pA1q and G pA2q are bisimilar.

When considering the problem of MFA bisimulation, it is
natural to assume that users have no direct access to memory
operations (open, close, reset). On the other hand, a reference
to a memory is an explicit control action, which is distinct
from any other user action. Thus, we introduce the notion of



𝑆 1 2 3

&1, 𝑟 : 1

a, 𝑟 : 1

&1, 𝑐 : 1
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. . .

a

a

a
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Fig. 3: Non-bisimilar MFA for r1a�s1a�&1 and a�r1a
�s1&1 and their transition graphs.

an action automaton, which describes possible sequences of
control actions in the process graph of a MFA.

Definition III.3. Given 𝑘-cell MFA A , its action NFA 𝜋ℳpA q
results from A by erasing memory operations from edge labels
of A . The symbols &𝑖 (1 ¤ 𝑖 ¤ 𝑘) become elements of the
input action alphabet 𝒜 for 𝜋ℳpA q.

If MFA A1 and A2 are in the bisimulation relation, then
the control traces of them must coincide, thus, 𝜋ℳpA1q �
𝜋ℳpA2q. In the latter case, we say that A1 and A2 are action-
bisimilar. This relation induces a relation on the states of
the MFA themselves, however, the action-bisimilarity is not
enough to provide real MFA bisimilarity: in order to imitate
the action &𝑘A1

played by Attacker, not only Defender must
respond with the action &𝑘A2

, but also they must guarantee
that the reference reads exactly the same value. Otherwise, the
two actions &𝑘 cannot be considered as equal.

For example, let us consider the MFA given in Fig. 3.
Their action NFA are trivially bisimilar (and even equal), but
Attacker has the following winning strategy.


 Play 𝑆1 a
ÝÑ 11.


 If Defender responds with 𝑆
a
ÝÑ 1, then play 11

&1
ÝÝÑ 31 and

make Defender to lose, since they cannot reset memory
value to 𝜀.


 If Defender responds with 𝑆
a
ÝÑ 2, then play 11

a
ÝÑ 21.

Now Defender cannot accumulate anything in the capture
group.

IV. BISIMULATION FOR ONE-MEMORY-CELL AUTOMATA

We start with the simplest class of memory finite automata,
namely, automata using a single memory cell. In order to
obtain a winning strategy, Defender must be able to repeat
the Attacker’s decisions made inside the capture groups. The
two possible sorts of decisions are:


 given a loop inside a capture group, decide whether to
continue iterations or to exit;


 given an alternation by different 𝛾1, 𝛾2 P Σ (maybe,
preceded with a common prefix action 𝜔) inside a capture
group, decide which branch to choose.

Henceforth we call the two sorts of actions the decisive
actions, by default assuming that the actions occur inside the
capture group. If the actions are considered outside the capture
groups, we mention this fact explicitly.



𝑞0 𝑞𝑀 𝑞𝑇 𝑞𝑅

1-th cell is closed
|&1A1

| ¡ 𝑆

𝑞10 𝑞1𝑀 𝑞1𝑇 𝑞1𝑅

1-th cell is closed

𝜔 &1

&1𝜔

no memory reset

less than 𝑆 steps

Fig. 4: Strategy for Attacker in case of a decisive loop action.

Proposition IV.1. Let 𝜋ℳpA1q � 𝜋ℳpA2q. If there exists a
state 𝑞1 in A1 s.t. it has an outgoing decisive action (inside a
capture group) and none of the states 𝑞𝑖 in A2 that are action-
bisimilar to 𝑞1 has such a decisive action inside the capture
group, then  pA1 � A2q.

Proof. Let us show a winning strategy for Attacker under the
proposition conditions in the case of the decisive alternation.
Let &1 in G pA2q be initialized with a value with no 𝛾1 in
𝑘-th position, and &1 in G pA1q be initialized with 𝜉. Choose
the path along 𝛾1, thus, accumulating the value 𝜉𝜔𝛾1 in &1.
If there is at least one path in A1 leading to action &1 s.t. it is
not action-bisimilar to a path with a re-initialization of &1 in
A2, move along the path and make Defender to lose, not being
able to reset the memory cell. Otherwise, due to the usefulness
of the capture groups, there is at least one path that has no
reset of &1 in A1, and has a state, that is action-bisimilar to a
state with a memoized outgoing decisive alternation between
𝛾1 and 𝛾2 in A2, which occurs on the trace with the previously
accumulated memory value 𝜉. Given the alternation, Attacker
chooses the path containing 𝛾2, thus, forcing of memoization
of the prefix 𝜉𝜔𝛾2 in the memory cell along the trace A2.

Now let us show Attacker’s winning strategy in the case of
the decisive loop action in A1 which is not action-bisimilar to
any decisive action in A2. First, Attacker decides to play the
looping back action at least 𝑆 times, where 𝑆 is the number
of states in A1, and additionally chooses such a number of
iterations that the value of |&1|A1

is not equal to &1A2
.

Second, Attacker chooses the shortest possible path in A1 to
the action &1. In order to imitate the action &1A1

, Defender
is forced to reset the value of &1A2

, but the value of &1A1
is

longer than any possible value read along at most 𝑆 transitions.
Due to MFA semantics, no transition captured in the memory

cell 1 can refer to the memory cell, thus, no more than 𝑆
letters can be captured. See Fig. 4.

Proposition IV.1 states that Defender has a chance to find
a winning strategy, only if all decisive actions in action-
bisimilar states of A1 and A2 occur synchronously. Moreover,
in Figure 3, while the states 1 and 21 containing decisive
actions are action-bisimilar, the process graphs are not. The
reason is that Proposition IV.1 induces a narrowing on action-
bisimilarity relation, taking into account the synchronisation
that must occur in the capture groups previously visited.
Namely, if the state 1 is visited by a player, then 21 is visited
as well, and all the actions reachable after closure of the
memory cell containing state 1 in its capture group must be
also reachable after closure of the memory cell containing
state 21. The given condition fails due to existence of state 2
in A1, allowing Attacker to read additional letters a after the
memory is closed, while in A2 the only reachable state after
the memory closure is the state 31, and Defender is unable to
read any a in this state.

It is tempting to conclude that the whole capture groups
of the MFA are required to be action-bisimilar in order to
guarantee that A1 � A2. Nevertheless, non-decisive actions
can occur asynchronously without losing the bisimulation.

An example of such a bisimulation is given in Fig. 5. The
capture groups are non-bisimilar, while the states 2 and 21 with
action-decisive outgoing transitions are both captured.

The reason for this non-trivial bisimulation is rooted in the
theory of word equations. Namely, for every 𝜔 � a𝑘, a𝜔 �
𝜔a, and that is why the values of the references &1A1

and
&1A2

always coincide in the states 3 and 31. In order to process
such bisimulation cases, we propose to use memory revision
algorithm.


 All the decisive alternation fragments in capture groups
are replaced with fresh string parameters.


 All the loops with no decisive alternations inside them
(i.e. iterating along the constant path 𝜉) are replaced with
the parameterized word 𝜉𝑘𝑖 , where 𝑘𝑖 is a fresh integer
parameter or, in case of nested loops along the same
subwords, parameter expression.


 The resulting values are unified, i.e. the parameterized
and constant values are substituted instead of the path
fragments. If the result of the substitution is a trivial
equality, then the bisimulation can hold, otherwise, there
is at least one path along action-bisimilar states that
results in different values of &1A1 and &1A2 , and
 pA1 � A2q.

Regarding nested loops, the procedure depends on their
semantics. If given a loop reading 𝜉1𝜉2, the loop contains an
inner loop starting in |𝜉1|-th position, the inner loop contains
a decisive alternation unless it iterates along the constant path
𝜉2𝜉1 or a power of its primitive root; in the latter case, both
loops (the inner and the outer one) can be mapped to a
single parameterized word 𝜉𝑓p𝑘𝑖1 ,𝑘𝑖2 q, where 𝑘𝑖1 is a parameter
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Fig. 5: Bisimilar MFA for r1aa�s1a&1 and ar1a
�as1&1 with non-bisimilar capture group 1.

denoting the outer iterations count, and 𝑘𝑖2 denotes the inner
iterations count.

If and only if all the decisive actions are synchronised wrt
the order induced by the synchronisation, and all the memories
are revised to be equal before referencing to them, then we
can state that A1 � A2.

A prototype of the described algorithm, as well as the
ref-word — MFA conversion and a fuzz equivalence testing
module for MFA, is developed in the Chipollino formal
language converter https://github.com/OnionGrief/Chipollino
— the application that allows you to generate, transform
and analyze various representations of formal languages (e.g.
regular expressions, automata: FA, MFA, PDA). The MFA can
be input by hand via a simple DSL language, or constructed
from ref-words using Schmid algorithm [1], and an analogue
of the Glushkov construction, merging 𝜀-closures; random
MFA and ref-words generators are supported in the project
as well.

V. MULTIPLE MEMORY CELLS

In the case of multiple memory cells, the bisimulation
problem meets new challenges, since references inside capture
groups, as well as iterations over references, become possible.
In the case of a single memory cell, at least we can assume
that the capture groups used by bisimilar reference actions
are action-equivalent (i.e. the languages of the corresponding
action NFAs coincide). When the reference actions occur

inside the capture groups, that statement is not true. The
capture groups in the bisimilar MFA must memoize equal
sequences of decisions, but the decisions can be combined
in multiple ways, still resulting in the same reference values.
Moreover, memory values of capture groups with no decisive
actions can behave the same way as the constant strings. In
Fig. 6, an example of bisimilar MFA with non-equivalent
traces inside the capture groups is given, because the value
of &1 is fixed, and its impact on the memory value &2 is
indistinguishable from the impact when reading a constant
letter.

If the memory cells are acyclic (i.e. do not depend on
each other values recursively2), then a prototype algorithm for
checking MFA bisimilarity can still be suggested.


 Construct state bisimulation of 𝜋ℳpA1q and 𝜋ℳpA2q.

 Introduce the decision dependency relation: a memory

cell &𝑘𝑖 preserves a decision done in &𝑘𝑗 , if the decisive
action in the capture group &𝑘𝑗 is also captured by 𝑘𝑖-th
memory, and the decisive actions are equally reachable
from the decisive actions previously occurring in the
automata.


 Colour the decisive actions in A1 and A2 and compute
the decision dependencies relation closure wrt each de-
cision. If the closures for the capture groups &𝑘A1 and

2The notion of the acyclic memory dependency is discussed in the pa-
per [18] and is also implemented in the converter.

https://github.com/OnionGrief/Chipollino


&𝑘A2
coincide, then perform the memory revisions on

the capture groups. Now the parameterized words can be
finitely iterated.


 Bisimulation holds iff all the memories are revised to be
equal before referencing.

However, if the memory cells have a cyclic dependency,
then the algorithm above cannot be applied, because some
resulting memory values could not be represented with pa-
rameterized words [19], [20].

For example, given the following ref-words,

r1b
�s1pr2p&1baq

�&1bs2r1p&2abq
�&2as1q

�

r3&2ab&1s3&1ba&2&3

r1b
�s1pr2p&1baq

�&1bs2r1p&2abq
�&2as1q

�

&2ab&1r3&1ba&2s3&3

their Glushkov MFA are bisimilar, because any two words 𝜔1

valuing &1 and 𝜔2 valuing &2 satisfy the equation 𝜔1ab𝜔2 �
𝜔2ba𝜔1. Since any word equation can be modelled with the
bisimulation problem in the same sense, it is not clear how
hard is the MFA bisimulation problem in the general case.

VI. CONCLUSION

The bisimulation problem of memory finite automata ap-
pears to be tractable at least in many practical cases, namely,
if the memory statuses of the nodes are determined, and
the memory dependencies are acyclic. If a bisimulation is
constructed on the states of A itself, then the bisimilar nodes
in A can be merged with no change of the captured values,
or the MFA traces. While the minimization problem for MFA
is undecidable, the optimisation by bisimulation can be a
decent approximation of the minimization, especially in the
case when the MFA is deterministic. Efficiency estimation of
this optimisation is a future work of our MFA project.

Another interesting question is the decidability and com-
plexity issue of MFA bisimulation in the general case. The
existential theory of strings is known to be decidable [20],
[21], however, the bisimulation problem requires an algorithm
not to decide a sole question whether a word equation has at
least one solution, but to check if the language generated by
the previous traces of MFA always satisfies this equation.
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(a) MFA and its transition graph for ar1as1ar2&1as2&2.
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(b) MFA and its transition graph for r1as1ar2a&1s2a&2.

Fig. 6: Bisimulation of MFA with non-equivalent traces in capture groups.
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