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Abstract—This paper presents a comparative analysis of two
formal methods, HSI method and Transition Tour method,
for deriving test suites for software checking. The main idea,
is in evaluating fault-detection capabilities of the test suites
derived by these methods, by using mutant testing on software
implementations of five EFSMs. The results based on these
experiments data were analyzed and made it possible to identify
some classes of mutations which are detected equally by HSI
and Transition Tour test suites and one class of mutations that
is detected better by HSI method.
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I. INTRODUCTION

Formal methods offer a structured framework for validating soft-
ware systems through mathematical modeling, analysis, and verifi-
cation techniques. These methods help identify errors, defects, and
vulnerabilities in the software development process. By employing
formal methods, software developers and testers can detect potential
issues and ensure compliance with specified requirements [1], [2].
Finite State Machines (FSMs) serve as foundational models for
representing sequential logic systems in various software applications
[3]–[6]. When testing FSMs, ensuring the comprehensive coverage
of states, transitions and behaviors is essential to validate system
correctness and reliability. Three popular testing techniques are based
on various derivatives of the W-method, such as Wp-method, H-
method, and HSI-method [6]. These methods focus on identifying
various test scenarios and generating test cases that cover different
paths through the software application.

When deriving test suites, the above methods include a tour
for covering all transitions checking a final transition state by a
set of distinguishing sequences. The HSI method involves the use
of distinguishing sequences when checking the final state of each
transition but differently from the W-method, these sequences are
related only to the final transition state. On the other hand, the
Transition Tour method focuses on designing test sequences that
traverse all possible transitions in the FSM, aiming to detect errors
that may arise from transition dependencies and boundary conditions.

In this paper, we present a comprehensive comparative study of the
HSI method and Transition Tour method for deriving FSM based test
suites for software implementations, focusing on their effectiveness
in achieving coverage and fault detection. We incorporate mutant
testing using two programming languages, C++ and Python, to
assess the resilience and fault-detection capabilities of the testing
techniques across different programming languages. By combining
the analysis of the HSI method and Transition Tour method with
mutant testing in multiple programming languages, our research aims
to offer an examination of testing strategies for FSMs. Through this
investigation, we seek to provide valuable insights into the strength
and weakness of these methods in ensuring the reliability of a system
under test that passes an FSM based test suite.

The rest of the paper is structured as follows. In Section II, the
necessary definitions are briefly given. In Section III, the process of
research is described and experimental data is provided. In Section
IV, research questions are stated while in Section V, the obtained
experimental results are presented, Section VI concludes the paper.

II. BACKGROUND

A. Extended Finite State Machine
An Extended Finite State Machine (EFSM) is a formalism used

in software and system engineering to model complex systems with
multiple states and transitions. In essence, an EFSM extends the
traditional concept of a FSM by incorporating additional features like
data variables, actions, and guards to represent more intricate system
behaviors. In an EFSM, each state represents a specific condition or
mode of the system, while transitions signify the movement between
states triggered by certain events or conditions.

B. FSM abstraction
An FSM abstraction for an EFSM is an FSM that has the similar

behavior to the EFSM but without conditional transitions and data
variables. For that purpose every FSM state represents one EFSM
state with specified values for data variables of EFSM. The reason
for deriving an FSM abstraction is the knowledge that test suites with
guaranteed fault coverage can be derived for the FSM model, while
for EFSMs algorithms are mostly based on some properties’ covering
are proposed.

C. HSI method
The HSI method is a sophisticated testing technique that utilizes

search algorithms to generate diverse and effective test inputs for
software systems. It is a derivative of the well-known W-method, but
allows to generate shorter test sequences. To generate test cases, it
uses inputs sequences that reach all transitions and the distinguishing
sets. The original W method concatenates each input sequence with
the whole W set. The HSI method selects a HSI set for each input
sequence, resulting in less test cases. [7]

D. Transition tour method
The Transition Tour Method is a technique used to systematically

explore the possible transitions between states in a system model.
It involves the generation and examination of all possible transitions
that can occur within a state machine. All W-base methods contain a
transition tour of the specification FSM, i.e., such a test suite traverses
every transition of the specification FSM. In paper [8], the authors
study the fault coverage of a transition tour for microcontrollers and
conclude that for such devices the fault coverage is rather high.
However, we are not aware of the publications where the fault
coverage of a transition tour of the FSM abstraction of an extended
FSM specification is studied for software applications.



III. EXPERIMENTAL EVALUATION

A. Experimental setup
In this series of experiments, five EFSM were utilized to evaluate

two test derivation techniques. These EFSMs, serving as the core en-
tities for the experiments, were designed to represent various complex
states and transitions within a system. Each EFSM was meticulously
crafted to capture different aspects of state-based behavior and logic.

To utilize the testing process, all five EFSMs were presented in the
forms of FSM diagrams, offering visual representations of the state
transitions and behaviors encoded within the models. FSM forms
were constructed manually due to the lack of automatic instruments
for this purpose. That FSM descriptions can be found at the project’s
git repository [9] in tests folders. Used EFSMs will be considered in
”Experimental data” in details.

To generate tests for the extended FSMs, the web platform
fsmtestonline.ru [10] was used, which provided valuable tools and
resources for generating tests based on the HSI and Transition Tour
methods.

In addition to designing and testing the FSM models, the programs
for the EFSMs were developed in two programming languages, C++
and Python. These programs were crafted to implement the behavior
defined by the EFSM models, enabling the execution of mutant tests
and evaluation of the testing coverage in a programming context.

To explore the testing process of the experiments, mutants were
created for the developed programs in both C++ and Python. These
mutants are derived by inserting various faults and errors into the
program code, simulating potential defects that could arise in real-
world software systems.

Finally, both the original programs and their corresponding mu-
tants were subjected to rigorous testing using the tests generated by
the HSI and Transition Tour methods. By executing these tests on the
programs and mutants, the researchers could evaluate the effective-
ness of the testing techniques in detecting faults, uncovering issues,
and ensuring the reliability and robustness of the EFSMs implemented
in C++ and Python. It is also interesting to evaluate both approaches
with respect to classes of mutations to see which mutations can be
detected with high fault coverage. Through meticulous testing and
analysis, the experiments aimed to provide valuable insights into the
strengths and limitations of different testing methodologies in the
context of EFSMs.

B. Experimental data
The experimental data for this study consist of five EFSMs.

Among these EFSMs, four were specifically designed to represent
distinct protocols [2], each with its own set of states, transitions, and
behaviors. The fifth EFSM describes the behavior of a calculator.

The first EFSM describes the behavior of the so-called ”Simple
Connection” protocol [11], that EFSM has three states, five inputs,
five outputs and two context variables, it also has seven transitions.

The EFSM was transformed into an FSM with nine states, each
corresponding to state and context variables’ values. Also certain
ranges of values were assigned to input and output parameters which
results in nine inputs and nine outputs in the derived FSM. In the
derived FSM 81 transitions were defined, 31 of them correspond to
the original EFSM, other 50 describe undefined transitions in the
original EFSM. Additional transitions were done by next algorithm:
a transition is defined to the same state with a new output that is
the same for all undefined transitions. The table that represents FSM
transitions is available as Table 6 in Appendix.

The second EFSM describes the ”Time” protocol. That EFSM has
two states, two inputs, two outputs and no context variables, EFSM
has two transitions. The EFSM was transformed into a FSM with
the same number of states, inputs and outputs. In the derived FSM
four transitions were defined, two of them correspond to the original
EFSM, other two correspond to undefined transitions in the EFSM.

Fig. 1. A transitions diagram of the EFSM for a calculator

The third EFSM describes the ”SMTP” protocol. That EFSM has
two states, five inputs, seven outputs and one context variable, EFSM
has eight transitions. The EFSM was transformed into a FSM with
three states, corresponding to state and context variable value. Also
certain ranges of values were assigned to inputs and outputs which
results in seven inputs and seven outputs in the derived FSM. In the
derived FSM 21 transitions were defined, 13 of them correspond to
the original EFSM, other 8 correspond to undefined transitions in the
EFSM.

The fourth EFSM describes the ”POP3” protocol. That EFSM has
four states, nine inputs, ten outputs and two context variables, EFSM
has 16 transitions. The EFSM was transformed into an FSM with
seven states, corresponding to state and context variables values.
Also certain ranges of values were assigned to inputs and outputs
which results in 14 inputs and ten outputs in the derived FSM. In the
derived FSM 98 transitions were defined, 45 of them correspond to
the original EFSM, other 53 describe undefined transitions in EFSM.

The fifth EFSM describes a simple calculator. That EFSM has
seven states, seven inputs, six outputs and two context variables,
EFSM has 11 transitions. The EFSM was transformed into a FSM
with six states, seven inputs and seven outputs. In the derived FSM
42 transitions were defined, 20 of them correspond to the original
EFSM, other 22 describe undefined transitions in the EFSM.

In our work, the following code mutations were considered.
• Changing IF conditions to constantly positive or negative ex-

pressions. (Group 1)
• Changing relationship signs: equal to not equal, less or greater

and vice versa. (Group 2)
• Changing between each other: addition, subtraction, multiplica-

tion, division. (Group 3)
• Changing OR and AND operators between each other. (Group

4)
• Changing true to false and false to true. (Group 5)
A detailed analysis of various types of mutations is carried out in

the following paper [12].

IV. RESEARCH QUESTIONS

In the paper, three key research questions were identified to analyse
the FSM based test derivation techniques applied to the corresponding
software implementations.

1. Can a test suite built by HSI detect more errors than a transition
tour? This fundamental question compares effectiveness of the HSI



method versus the Transition Tour method in terms of error detection
within the FSMs. For hardware, the transition tour seems to be
practical [8], [13], [14]. By analyzing the results of tests generated
through these two techniques, our aim is to determine whether
one method outperforms the other in detecting mutants’ errors in
associated programs.

2. Does the first property hold true for programs written in
different languages? By examining whether the first property holds
for programs written in different languages (C++ and Python), we can
generalize and validity of this property across diverse programming
languages. Programming languages are divided into different groups
depending on typing: static or dynamic; and execution method:
compiled or interpreted.

3. Does the first property hold true across mutations of different
FSMs and different mutation classes? This research question focuses
on the stability of the first property under various mutations applied
to different FSMs.

By addressing these research questions, the experimental study
aims to offer insights into the efficacy, reliability, and generalizability
of test derivation techniques based on Finite State Machines, and
study their applicability in real-world software testing scenarios.

V. EXPERIMENTAL RESULTS

For every EFSM, two programs were created: one in C++
language, another in Python language. C++ is a statically typed,
compiled language, while Python is a dynamically typed, interpreted
language. Next, for programs were generated a group of mutants; in
C++ it was done via handmade framework, that substitutes terminal
symbols in program for other terminal symbols, while in Python the
mutatest [15] framework was used. Testing was performed for C++
in the handmade testing mode, for Python PyTest [16] was used.

TABLE I
LENGTH OF GENERATED TEST SUITES

Transition tour
test suite length

HSI
test suite length

Program 1 129 666
Program 2 4 8
Program 3 25 77
Program 4 126 1614
Program 5 60 278

TABLE II
TEST RESULTS FOR C++ PROGRAMS

Total mutants Detected mutants Detection rate
Transition tour
program 1

25 20 80%

HSI program 1 25 20 80%
Transition tour
program 2

28 9 29%

HSI program 2 28 26 93%
Transition tour
program 3

30 15 50%

HSI program 3 30 27 90%
Transition tour
program 4

30 23 77%

HSI program 4 30 26 87%
Transition tour
program 5

30 22 73%

HSI program 5 30 30 100%

TABLE III
TEST RESULTS FOR PYTHON PROGRAMS

Total mutants Detected mutants Detection rate
Transition tour
program 1

24 21 88%

HSI program 1 24 21 88%
Transition tour
program 2

53 39 74%

HSI program 2 53 39 74%
Transition tour
program 3

52 34 65%

HSI program 3 52 37 71%
Transition tour
program 4

73 68 93%

HSI program 4 73 68 93%
Transition tour
program 5

61 29 48%

HSI program 5 61 45 74%

For every program developed in both C++ and Python, the HSI
method and Transition Tour were applied to generate test sequences
for detecting programs’ mutants. Generated test suites are represented
as a sequences of pairs. Every pair consists of an input symbol
and expected output symbol from the FSM’s transition. The length
of the test suite is the total number of pairs of all sequences.
Information about length of the generated test suites is provided in
the Table I. The program number in Tables I, II, III corresponds to the
number of the EFSM in Experimental data. It has been noted that
test sequences generated using Transition tour method are usually
significantly shorter — typically ranging from 2 to 12 times —
than those generated by the HSI method. As mentioned above, the
efficiency of Transition tour method is in producing high-quality test
suites for hardware implementations [8], [13], [14].

Generated tests revealed that test suites generated by the HSI
method consistently detected an equal or a higher number of mutants
compared to those detected by the Transition Tour method. Moreover,
every mutant that was detected by Transition Tour method was also
detected by HSI method.

It has been noted that the weakest part of Transition tour method
is the detecting of mutants where equal sign was changed to not
equal, greater or less sign, these mutants refer to Group 1 mutants.
At the same time, Transition tour is not worse than HSI in detecting
other types of mutants. This can be explained by the fact that the HSI
method creates more different states in the program, by having longer
test suites, where a changed condition can lead to an unexpected result
in the program. This result is the same for both languages C++ and
Python.

Statistics for mutant detection for programs written in C++ lan-
guage is available in Table 2, for Python programs is available in
Table 3

TABLE IV
LANGUAGE RESULTS COMPARISON

Total mutants Detected mutants Detection rate
Transition tour
C++

143 89 62%

HSI C++ 143 129 90%
Transition tour
Python

263 191 73%

HSI Python 263 210 80%



TABLE V
TOTAL TEST RESULTS

Total mutants Detected mutants Detection rate
Transition tour 406 280 69%
HSI 406 339 83%

Due to the final results, the HSI generated sequences which
detect 83% of mutants for provided programs, when Transition Tour
generated sequences detect only 69%. Statistics for final results is
available in Table 5. These results are comparable with those in
[17] where Java implementations were verified using test sequences
generated by the W-method and its derivatives.

VI. CONCLUSION

The research of this study successfully answers all research
questions, providing information about HSI method compared to the
Transition Tour method in mutant detection.

1. The HSI method outperforms Transition tour method: The
analysis conducted in this study demonstrates that the HSI method
consistently identifies a higher number of errors compared to the
Transition Tour method. In general, this was expected but for most
mutant classes the Transition Tour did not lose.

2. Universal applicability across programming languages: Further-
more, the research findings reveal that the first property, holds true
across all programs written in both languages. Despite their differing
syntax and features, C++ and Python both yield similar results for the
mutation testing. So the result seems to be applicable to both static
languages like Java and Go, and dynamic languages like JavaScript.

3. Consistency across all kinds of FSM Mutations: Moreover, the
first property holds true for all mutations across different EFSMs
programs. The results indicate a consistent pattern, showing that the
HSI method’s efficiency in error detection remains reliable across the
mutations of various FSMs compared to transition tour method. We
also mention that for all mutations except of modifying the equal
sign, the Transition Tour still provides the good fault coverage. We
also mention that test suites derived by the Transition Tour method
are shorter than those derived by the HSI method and the difference
becomes more and more when the size of an EFSM increases.

In the future, that research can be explored across a wider array of
programming languages to consider procedure, OOP and functional
paradigms of programming. By increasing the number of tested
EFSMs, research results can be refined. So, considering more systems
can lead to confirmation or modification of the obtained results.

This study shows the consistent superiority of the HSI method over
the Transition Tour method in error mutant detection. Irrespective of
programming language or FSM mutations that shows powerful testing
approach for software systems. Although it is worth considering that
the length of the HSI test suites is many times greater, which can
affect the performance of test frameworks and thus, for some mutation
types the Transition Tour test suites possibly somehow augmented
with distinguishing sequences can have the high-quality [8], [13],
[14].

I would like to thank my supervisor Dr. Nina Yevtushenko for
all her help and advice with this paper. Her immense knowledge
and plentiful experience have encouraged me in all the time of my
academic research.
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APPENDIX

TABLE VI
FSM TRANSITIONS’ FOR SIMPLE CONNECTION PROTOCOL EFSM

state/
input

S1(0,0,0) S2(0,0,0) S2(1,0,0) S2(2,0,0) S2(0,1,0) S2(1,1,0) S2(2,1,0) S3( , ,0) S3( , ,1)

ConReq
qos = 0

S2(0,0,0)/
connect(0)

ConReq
qos = 1

S2(0,1,0)/
connect(1)

ConReq
qos = 2

S1(0,0,0)/
NonSupport(2)

refuse S2(1,0,0)/
connect(0)

S2(2,0,0)/
connect(0)

S1(0,0,0)/
CONcnf-

S2(1,1,0)/
connect(1)

S2(2,1,0)/
connect(1)

S1(0,0,0)/
CONcnf-

accept
qos = 0

S3( , ,0)/
CONcnf(0)

S3( , ,0)/
CONcnf(0)

S3( , ,0)/
CONcnf(0)

S3( , ,0)/
CONcnf(0)

S3( , ,0)/
CONcnf(0)

S3( , ,0)/
CONcnf(0)

accept
qos = 1

S3( , ,0)/
CONcnf(0)

S3( , ,0)/
CONcnf(0)

S3( , ,0)/
CONcnf(0)

S3( , ,1)/
CONcnf(1)

S3( , ,1)/
CONcnf(1)

S3( , ,1)/
CONcnf(1)

accept
qos = 2

S3( , ,0)/
CONcnf(0)

S3( , ,0)/
CONcnf(0)

S3( , ,0)/
CONcnf(0)

S3( , ,1)/
CONcnf(1)

S3( , ,1)/
CONcnf(1)

S3( , ,1)/
CONcnf(1)

Data S3( , ,0)/
data(0)

S3( , ,1)/
data(1)

Reset S1(0,0,0)/
abort”

S1(0,0,0)/
abort
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