
Uncertainty problem in high-level model based
trace analysis as part of runtime verification

Aleksei Karnov
Software Engineering Department

Ivannikov Institute for System Programming of the RAS
Moscow, Russia
karnov@ispras.ru

Abstract—The article discusses the problem of applying run-
time verification to large and complex systems such as general-
purpose operating systems. When verifying the security mech-
anisms of operating systems, modern practices and standards
require a formal security policy model (SPM). The SPM must
be verified using formal model methods, and it must also be
used to verify the completeness and consistency of the operating
system’s security mechanisms by confirming compliance with the
formal requirements of the SPM. In this case, it is convenient
to have a single model suitable for both formal verification and
implementation testing. For practical application, it is necessary,
on the one hand, to select a subset of model language constructs
suitable for both acts, and on the other hand, to develop special
techniques for analyzing execution traces that allow to effectively
perform thousands of test cases. The article addresses both of
these issues. We present an analysis of language constructs that
allow us to use the model for both verification and execution trace
analysis. We also offer techniques that have been developed to
optimize the runtime verification of Linux-based systems.

Index Terms—runtime verification, trace analysis, Event-B

I. INTRODUCTION

Runtime verification [1] is a computing system analysis and
execution approach based on information extracting from a
running system and using it to detect observed behaviors satis-
fying or violating certain properties. By observed behavior we
mean a sequence of events in order of their occurrence in the
system. Each event is supplied with data which may contain
the parameters of the event and its result. This sequence of
events with data is called an execution trace [2].

Runtime verification can be also defined as a collection
of formal methods for studying the dynamic evaluation of
execution traces against formal specifications. We consider a
special case when a formal model of the system under tests
acts as a formal specification. The complexity of the model in
terms of size and number of internal details is usually less than
the complexity of the system. This makes the model a more
convenient object to apply formal verification techniques. This
approach can significantly improve the reliability of runtime
verification results.

Leaving aside the process of collecting the execution trace,
we are dealing with the analysis of the execution trace and the
formal model. From this point of view, the implementation of
the system does not matter and is only a source of execution
traces. In this paper we use the term runtime verification only
in the meaning of trace analysis and do not consider testing

and system instrumentation techniques, skipping the stages of
tests derivation and test runs on the system.

Our research aims to effectively carry out this analysis
and to overcome the problems that we inevitably encounter.
Section II explains our motivation for tools and approaches
we are using and enumerates goals of the research. Section III
contains a brief description of the problem with the example.
Section IV provides a brief overview of existing approaches
to trace analysis and model execution. The current results of
the study are presented in Section V. Section VI lists future
directions of work.

II. MOTIVATION

When it comes to mission-critical systems such as infor-
mation security, modern standards and practices require [3]
a formal security policy model (SPM). The SPM must be
verified [4] using formal methods. One of the most important
advantages of runtime verification in our areas of applications
is the ability to use the same formal model for both formal
specification and testing. With this approach, we can create a
closed-loop verification system, where the correctness of the
observable behavior of the system under test will be compared
with the verified SPM.

This is the reason we need to present a formal model of
the target system in a form that is both convenient for formal
verification methods and runtime verification. It turns out that
in practice such a representation is difficult to offer. One of
the possible solutions is proposed in this paper.

The main practical application of the proposed approach
is verification of information security measures of operating
systems. There is a lot of work in this area [5], [6], [7]. The
Event-B language and tools for working with it were chosen
as the main means of describing formal access control models.
Event-B has the advantages of simple and understandable
language constructs and Rodin [8] – a convenient IDE for
model development including deductive verification tools and
many other useful plugins. These plugins also include tools for
model animation, which demonstrates the fundamental ability
to use the language for trace analysis.

So there are no serious reasons to abandon Event-B but there
are some non-trivial problems that complicate and sometimes
prevent the use of these models for runtime verification. The
goals of this research are:



1) To conduct an analysis and classification of language
constructs and techniques for writing specifications in
Event-B, which complicate runtime verification;

2) To select a subset of the language and templates for
writing fragments of specifications that either eliminate
the problems of trace analysis or allow one to transform
models and bring them into a form convenient for
runtime verification;

3) To develop a set of model transformation techniques;
4) To develop analysis methods for models reduced to a

form convenient for runtime verification.

III. UNCERTAINTY PROBLEM

Let us consider a simple traffic light model. The model state
contains two boolean variables:

cars go ∈ BOOL (1)
peds go ∈ BOOL (2)

To ensure traffic safety, the model contains an invariant that
prohibits cars and pedestrians from moving at the same time:

¬(cars go = TRUE ∧ peds go = TRUE) (3)

As the initial state we can take any state that does not violate
invariant 3. The events cars and peds have a parameter go and
can change state variables to the value of the parameter. To
ensure that invariant 3 is not violated, events have enabling
conditions which are called guards. Guard 4 refers to cars
and guard 5 refers to peds.

go = TRUE ⇒ peds go = FALSE (4)
go = TRUE ⇒ cars go = FALSE (5)

The state space of the model is shown in Fig. 1.

FFTF FT

peds(TRUE)cars(TRUE)

cars(FALSE) peds(FALSE)

Fig. 1. Traffic light state space.

But we can’t track traffic directly, so we need to add a
context to the model that contains the colors of the traffic
lights:

red ∈ COLORS (6)
green ∈ COLORS (7)
red 6= green (8)

The observed events will have a parameter colors that
corresponds to the set of traffic signals, and the parameter
go will not be present in the collected trace. For the new
parameter, we must add guards 9–11 to both events.

colors ⊆ COLORS (9)
green ∈ COLORS ⇒ go = TRUE (10)
green /∈ COLORS ⇒ go = FALSE (11)

This model is complete and consistent if we assume that the
presence of a green light at a traffic light allows movement
regardless of the combination of other colors. But when
trying to execute the model, we are faced with numerous
uncertainties.

Let us consider the trace {cars({green}), cars({red}),
peds({green})}. The trace satisfies the model only if the
initial state of the variable peds go is FALSE: FF and
TF from Fig. 1. But we also allowed the initial state to be
FT . We may encounter this situation in Event-B when we
use uncertain assignment actions. There are three types of
assignment actions: simple assignment, arbitrary choice from
set of values and a choice from a predicate. We can’t fully
ignore them because a choice from a predicate is the only way
to model if-then-else construction but to be certain it needs to
be written in the specific way.

If we analyze the trace from a real traffic light, we can
encounter events like cars({yellow}), cars({red, yellow})
and cars(∅). Value of the set COLORS follows from a set
of first order logic predicates 6–8. The predicates allow for
the presence of other colors in the traffic light so the value
is uncertain. The issue is important because predicates are the
only way to define constants in Event-B and there are some
other cases when it is necessary. Sometimes there is only one
solution that satisfies the predicates, but in the example we
face an infinite set of many possible solutions.

From the point of view of the model we are also not sure
that yellow does not mean green or red. Since it is impossible
to specify absolutely all objects as constants, we need a way
to specify objects in the trace that are different from existing
constants.

As already mentioned, the parameter go is missing in
the trace. This problem arises from the expressive ability
of the Event-B language. The only way to compute some
intermediate value is to add an additional parameter to the
event and restrict its value with a new guard. The obvious
solution is to omit computable parameters but it significantly
impairs the readability of the model. The other side of the
problem is that this case is syntactically indistinguishable from
missing a parameter due to an error in the trace collection
process.

The main advantage of the modeling approach is the ability
to abstract from specific values in case we want to check only
part of the properties. For example, in this model we abstracted
from the presence of additional colors. During the analysis
we need to ensure that at least one possible value exists
and it satisfies specified properties. Like the previous case
it is also hard to distinguish from the situation of imprecise
specification.

IV. RELATED WORKS

ProB [9] toolset includes an animator tool which can
execute Event-B model events with predicates which restrict
or determine values of event parameters. ProB core is written
in SICStus Prolog language, so ProB toolset uses the possi-
bilities of logical programming to find suitable values for any



identifier and avoids any predicate restrictions. In case if value
is uncertain the ProB animator can give a nondeterministic
choice. Traces are non-linear and can contain branches to
all possible transitions to different states by given event and
predicates over its parameters. Unfortunately it is problematic
to use the animator for big test cases while it struggles with
big sets of values, big traces and big model states. This clearly
follows from the priorities of ProB developers and chosen
approach: full language support is more important than time
efficiency.

There are some works to combine SMT-solvers [10], [11]
with Event-B models to execute them. SMT-solvers can be
partially used in a deductive verification process, but they have
significant constraints when it comes to execution of the whole
model. Only part of SMT-solvers supports set theory and still
SMT-solvers cannot support any predicates over power sets,
since they go beyond first-order logic [12]. Thus, SMT-solvers
can only be used on certain parts of Event-B models and, like
logic programs, have problems with time efficiency.

The most time-efficient approach is code generation [13].
Event-B models are translated [14], [15], [16] to programs
which can be executed over some input data. Making it
possible to use collected traces as input is a quite simple
task. But existing tools with a code generation approach are
not considering the uncertainty problem at all and all values
including constants must be given in configuration files.

So there is no effective solution which covers all needs of
testing based on formal Event-B models.

V. CURRENT RESULTS

A. User-given types

Event-B objects can have boolean type (as element of basic
boolean set), integer type (as element of basic integer set),
user-given type (as element of a user-defined set called the
carrier set in Event-B), ordered pair type (as element of a
Cartesian product) or set type (as element of a power set). The
Event-B notation of all types is given in Tab. I. The example
of a user-given type is COLORS in Section III. Objects of a
given type do not contain any value and can be related to other
objects with the same type only with equality and inequality
predicates such as predicate 8. These objects are uncertain by
construction.

We solve the problem of uncertain value by creating a
relation between an object and a pair of its carrier sets and an
integer. Tab. II shows the interpretation example of a simple
set of Event-B predicates. The method for selecting integer
values is considered in the next subsection.

TABLE I
EVENT-B OBJECT TYPES

Type Event-B notation
boolean x ∈ BOOL
integer x ∈ Z
user-given type x ∈ A
ordered pair x ∈ A×B
set x ∈ P(A)

TABLE II
INTERPRETATION OF USER-GIVEN TYPE

Event-B Our interpetation Solution
x ∈ A GIV EN(A, i) ∈ A i = 1
y ∈ A GIV EN(A, j) ∈ A j = 2
z ∈ A GIV EN(A, k) ∈ A k = 1
x 6= y GIV EN(A, i) 6= GIV EN(A, j)
x = z GIV EN(A, i) = GIV EN(A, k)

x = GIV EN(A, i)
y = GIV EN(A, j)
z = GIV EN(A, k)

This approach is quite similar to that used in ProB. Sets
(including carrier sets) in ProB are represented as lists without
repetition and the value of a given object is a concatenation of
set’s name and index of element in this corresponding list. In
the example from Tab. II symbolic values for x and y are A1
and A2. We also use this notation in formulas to have trace
compatibility with ProB.

Proposed solution A.1. For all objects of user-given type
that differ from the existing constants, the trace uses identifiers
consisting of the type name and an integer number.

In SMT-solvers values are some generated strings. This
method is more general than ours. By creating additional
generation rules we can both get the same A1 and A2
strings as values and get string representation of real data
to ease the testing process without additional name mapping.
For example, we have a carrier set that corresponds to user
abstractions, and all its elements have value of user name in
the system.

An alternative approach is used in code generation, where
the carrier set is not a set but a data type. In this case, the
carrier sets representation must be different from the repre-
sentation of usual sets and may be more convenient for large
and infinite sets, but also may complicate the interpretation of
predicates.

B. Computation from predicate

In Event-B we have objects designated by identifiers. In
case of Event-B variables we have assignments to compute
their values but in other cases we need to compute values
directly from predicates. This is the only way to find values
of Event-B constants and computable parameters of events.

Objects implied by identifiers can have certain values if they
are described by a simple equality predicate. From predicates
12–14 we can easily extract certain values.

NUMBER = 20 (12)
2 7→ TRUE = PAIR (13)
SET = {A,B} (14)

But in some cases predicates can lead to uncertain values.
In predicate 15 NUMBER is any number less than or equal
to 20. In predicate 16 PAIR is any ordered pair from set
REL, which represents some relation. In predicates 17–18



SET contains the elements A, B and can contain every other
element of the same type as A and B.

NUMBER ≤ 20 (15)
PAIR ∈ REL (16)
A ∈ SET (17)
B ∈ SET (18)

We are referring to such predicates as the defining predi-
cates. If a defining predicate is an equality predicate and one
of its operands is an identifier and the other is a computable
expression, we are referring to the expression as a defining
expression. For system specifications suitable for testing we
must restrict types of defining predicates to avoid the uncer-
tainty.

Proposed solution B.1. For all boolean, integer and ordered
pair type objects whose value follows from predicates, there
must be a defining predicate in the form of an equality
between the identifier and the defining expression. So for
NUMBER and PAIR we allow defining predicates 12–13 and
restrict defining predicates 15–16. Defining expressions can
contains other identifiers as long as all identifiers have defining
predicates and there are no loops in definitions:

NUMBER 7→ TRUE = PAIR (19)
NUMBER = 2 (20)

Proposed solution B.2. An equality or inequality relation-
ship must be defined between all objects of the same user-
given type. As long as given objects do not have any value
in the model, we require predicates that determine equality
or inequality relation between all objects of the same carrier
set like in the example from Tab. II. If a set of relations
between objects is specified, we can number the objects in
a way that the relation between numbers corresponds to the
relation between objects. In this way, a solution is constructed,
which is also reflected in Tab. II.

In addition to equality and inequality, there is a partition
predicate that also allows a more compact definition of in-
equality relationship:

partition(S, S1, S2)⇔ (S1 ∪ S2 = S) ∧ (S1 ∩ S2 = ∅)
(21)

If the carrier set S contains four constants A, B, C and
D it is more comfortable to use one partition predicate than
write six inequalities between A, B, C and D:

partition(S, {A}, {B}, {C}, {D}) (22)

Sets can also be defined by equality predicates but there are
some problems. Size of sets can be large and it doesn’t make
sense to define all objects as constants. As long as enumeration
of big sets is either inconvenient or just impossible, an
alternative way to define sets is needed.

Proposed solution B.3. Defining predicates for sets must
be equality predicates from Solution B.1 or predicates from
Tab. III. Defining predicates can be considered as a set theory

TABLE III
DEFINING PREDICATES FOR SETS

Predicate Solution
x ∈ SET {x} ⊆ SET ⊆ Ωa

s ⊆ SET s ⊆ SET ⊆ Ω
partition(SET, s1, s2) SET = s1 ∪ s2
partition(s1, SET, s2) SET = s1 \ s2
a Ω denotes the universe set for elements of SET.

problem. There is a general solution to the problem, but the
value is uncertain. We can initially assume that SET is an
empty set and build a minimal particular solution. We can use
all other predicates over SET to ensure that the particular
solution is correct. This logic can be also applied to all kinds
of relations that can be considered as sets of ordered pairs.

The particular solution may be incorrect due to the pred-
icates that are not among the defining ones. This case is
illustrated by predicates 23–24. We need to complete sets S
and REM with new elements for predicate 24 to be satisfied.

partition(S, {A}, {B}, REM) (23)
REM 6= ∅ (24)

We also need to complete the sets that appear in the as-
signments, since the absence of elements leads to an incorrect
state of the model. To complete a set, we need to know that
it is finite and its exact cardinality.

Proposed solution B.4. All sets that appear in assignments
or require completion to satisfy the axioms must be finite and
their cardinality must be specified. The example of required
definition is predicate 25.

finite(SET ) ∧ card(SET ) = 20 (25)

In all other cases, it is possible to have a minimal solution,
dynamically expanding it with new elements as they appear
in the trace.

Currently we divide the cases by the finite property of
sets, but we do not consider the common case where a set is
finite but large and can be expanded dynamically for effective
performance. One of the future goals of this research is to
implement an algorithm which can identify such sets for
optimization.

C. Uncertain assignments

There are three types of variable assignment actions in
Event-B: simple assignment which can be also expressed in its
multiple form, arbitrary choice from a set of possible values
and assignment from predicate. Only simple assignments lead
to certain results. Assignment actions 26–31 are complete
analogues of defining predicates 12–18.



NUMBER := 20 (26)
PAIR := 2 7→ TRUE (27)
SET := {A,B} (28)
NUMBER : | NUMBER′ ≤ 20 (29)
PAIR :∈ REL (30)
SET : | A ∈ SET ′ ∧B ∈ SET ′ (31)

Arbitrary choice is certain only if the set of variants contains
one and only one element. Trace analysis in case of uncertain
arbitrary choice is simple but exhaustive: we must execute the
rest of the trace several times, each time choosing every value
possible. If there are many such actions in trace, time con-
sumption increases exponentially. So such type of assignment
action is not allowed in any form.

Proposed solution C.1. Arbitrary choice assignment action
is not allowed.

Assignment from predicate is uncertain in most cases but
the only possible way to express if-then-else construction
in Event-B is a predicate. So we allow assignment from
predicate in only possible form. If we have a predicate p which
represents a condition and alternative values A and B which
represents assignments results and are condition depended, the
assignment can be written as a disjunction of conjunctions of
conditional predicates and defining predicates:

var : | p ∧ var′ = A ∨ ¬p ∧ var′ = B (32)

This representation can be extended for any number of
condition branches but a disjunction of all the conditional
predicates must be a logical tautology. This is the completeness
condition. Also all possible conjunctions between two condi-
tional predicates must be unsatisfiable. This is the certainty
condition. In the example above the completeness condition is
p ∨ ¬p ⇔ > and the certainty condition is p ∧ ¬p ⇔ ⊥ and
both conditions are satisfied.

If the assignment is contained in event with a single guard g,
the guard can filter some condition branches. So we can also
extend the assignment representation by another case where
condition predicates are not covering all alternatives possible.
In this case the completeness condition takes form:

var : | p ∧ var′ = A ∨ q ∧ var′ = B (33)
(g ⇒ p ∨ q)⇔ > (34)

Continuing these arguments, we can formulate the general
case for n branches and k guards.

Proposed solution C.2. Assignment from predicate is al-
lowed to use only if it has form 35 and satisfies completeness

condition 36 and certainty condition 37. Any other forms are
prohibited.

var : |
n∨

i=1

(pi ∧ var′ = V ali) (35)

((

k∧
j=1

gj)⇒ (

n∨
i=1

pi))⇔ > (36)

∀i, j · 0 < i < j ≤ n : pi ∧ pj ⇔ ⊥ (37)

D. Missing parameters

As already mentioned, the values of some parameters are
not provided by system under test and can be computed from
the corresponding guards. From the point of view of trace
analysis, these parameters are simply missing. As in previous
cases, we require that the values be certain. But at the same
time we do not require formulas of a specific type.

Proposed solution D.1. If the value of a computable
parameter follows from the guards, it must be certain.

Currently we solve the problem by creating a mediator –
a component that translates a trace collected from a target
system to trace where data is represented as model entities.
This component is model-specific and is required to perform
trace analysis abstracted from the system. This component can
also compute and add missing parameters to the trace.

Proposed solution D.2. The values of all computable
parameters must be found before analyzing the correctness
of the trace.

Let’s return to the traffic light example from Section III. The
real execution trace is supplied to the input of the mediator.
The mediator must substitute the identifiers red and green if
the corresponding traffic light colors light up. If the yellow sig-
nal lights up, the identifier COLOR3 is substituted according
to Solution A.1. Also, if the green signal lights up, the value
TRUE is substituted for parameter go according guard 10,
otherwise the value FALSE is substituted according guard
11.

It must be taken into account that we supplement the trace
with properties that are not present in the observed behavior. If
implemented imprecisely, they may incorrectly influence the
test verdict. This approach complicates the development of
the mediator and can raise new errors in the testing process.
On the other hand, it improves time effectiveness and takes
into account the nature of computable parameters which helps
distinguish computable parameters from parameters missing
due to an error in the trace collection process.

Proposed solution D.3. When analyzing the correctness of
the trace, if a guard cannot be checked due to a missing
parameter, the test fails. The solution narrows the class of
valid traces, which may be controversial for some purposes.

The automated resolution of missing parameters is a future
goal of the research.

E. Optimizations

To test our approach we developed a trace analysis tool
prototype. We chose Java as a programming language for the



prototype because there is a set of libraries to work with
Event-B models, so we don’t need to implement an Event-
B environment and a parser. The implementation which uses
the proposed techniques and makes direct calculations of all
objects and predicates showed only a slight gain in execution
time compared to ProB tool. The good sign was that the
prototype with all its inefficiency still executed slightly faster.
But to achieve good performance of trace analysis it was
necessary to make some optimizations.

Proposed solution E.1. Power sets, Cartesian products, sets
of relations and functions must have representation other than
enumerated sets. To optimize memory, we do not store all
elements in memory and interpret some formulas differently.
For example, predicate 38 can be rewritten as predicate 39.
Rewriting and interpretation of formulas is done automatically.

SUBSET ∈ P(SET ) (38)
SUBSET ⊆ SET (39)

Proposed solution E.2. When processing quantifiers, it
is necessary to automatically analyze the formula to limit
the iteration over objects. Time measurements showed that
processing quantified predicates is the most time consuming
task. Analyzing a formula to reduce the range of possible
values greatly speeds up the execution of formulas.

Proposed solution E.3. Checking invariants should be
optional. Model invariants are a large set of predicates that
need to be checked after the execution of every event from
the trace. These predicates often contain quantifiers so even
with optimizations they are still time-consuming.

If we consider trace analysis in the context where the model
is already verified, the fact that a state of the system satisfies
the invariants follows from the fact that parameters of the event
satisfies the guards. So there is no need to check invariants at
all. There is no such option when using the ProB animator.

If model is not verified, the possible optimization is to check
only invariants that contain variables changed by action of the
last event.

VI. FUTURE WORK

At the moment, all model transformations are carried out au-
tomatically at the level of individual formulas. No techniques
have been proposed to transform the entire model manually
for a more efficient testing process. It is necessary to conduct
a more extensive analysis of existing practices for constructing
formal models. At the moment, the main reference point was
the access and information flow control model of OS Linux
[5], [17].

The restrictions proposed in subsection V-B are strong but
reasonable for models which are used for testing. In case it is
not possible to comply with the restrictions, usage of SMT-
solvers on the specific part of the model may help to select
constant values as long as resolution of constants is performed
only once and does not affect the efficiency of following trace
analysis. It is necessary to conduct experiments and evaluate
the effectiveness of this approach.

The current version of the tool does not provide deferred
computation for objects other than sets that can be expanded
dynamically. In the example from Section III, it is possible
to determine the uncertain initial state of the model from the
first events. This approach can be used to support some level
of abstraction in the model.

The desired result of the research is to bring test execution
times closer to those using code generation. Testing the trace
analysis tool prototype on a Linux OS security system model
and 39000 test traces gives us acceleration from more than 10
hours analysis using ProB down to 8 minutes analysis using
the prototype. Manually converting the model into Python code
allows us to run the same set of tests in 1 minute.

VII. CONCLUSION

This paper is devoted to the research of problems that arise
during testing of formal systems such as security systems
of general purpose operating systems such as Linux. It is
necessary to build a formal model of security policies to define
the requirements and be able to prove their consistency and
completeness. The verified security policy model is used in a
testing of system implementation where we perform a model
analysis to ensure that observable system behavior satisfies the
model. But the analysis requires large resources and in some
cases faces insurmountable difficulties.

The research revealed the particular problems connected
with value uncertainty. We identified the subset of Event-B
language to avoid unsolvable uncertainty and proposed the
approach to resolve certain values and effectively perform
trace analysis. These results can be applied to other formal
model languages which use first order logic.

We implemented the proposed methods in the trace analysis
tool prototype. The prototype was tested on a large set of test
traces with a security system model and showed a significant
gain in analysis time compared to the ProB animator tool. This
analysis can be performed with a single entity of a model state
space which shows support of long traces.

REFERENCES

[1] E. Bartocci, Y. Falcone, A. Francalanza, and G. Reger, “Introduction to
runtime verification,” in Lectures on Runtime Verification, ser. Lecture
Notes in Computer Science, E. Bartocci and Y. Falcone, Eds. Springer,
2018, vol. 10457, pp. 1–33.

[2] G. Reger and K. Havelund, “What is a trace? A runtime verification
perspective,” in Leveraging Applications of Formal Methods, Verification
and Validation: Discussion, Dissemination, Applications, ser. Lecture
Notes in Computer Science, T. Margaria and B. Steffen, Eds. Springer,
2016, vol. 9953.

[3] Information protection. Formal access control model. Part 1. General
principles, State Std. GOST R 59 453.1, 2021, (in Russian).

[4] Information protection. Formal access control model. Part 2. Recom-
mendations on verification of formal access control model, State Std.
GOST R 59 453.2, 2021, (in Russian).

[5] P. Devyanin, D. Efremov, V. Kulyamin, A. Petrenko, A. Khoroshilov,
and I. Shchepetkov, Modeling and verification of access control security
policies in operating systems. Moscow, Russia: Hotline-Telecom, 2019,
(in Russian).

[6] D. Efremov, V. Kopach, E. Kornykhin, V. Kulyamin, A. Petrenko,
A. Khoroshilov, and I. Shchepetkov, “Runtime verification of operating
systems based on abstract models,” in Proceedings of the Institute for
System Programming of the RAS. Proceedings of ISP RAS, 2021,
vol. 33, no. 6, pp. 15–26, (in Russian).



[7] P. Devyanin and M. Leonova, “The techniques of formalization of
OS Astra Linux Special Edition access control model using Event-B
formal method for verification using Rodin and ProB,” in Prikladnaya
Diskretnaya Matematica, 2021, no. 52, pp. 25–40, (in Russian).

[8] J.-R. Abrial, M. Butler, S. Hallerstede, T. Hoang, F. Mehta, and
L. Voisin, “Rodin: An open toolset for modelling and reasoning in
Event-B,” in The International Journal on Software Tools for Technology
Transfer. Springer, 2010, vol. 12, pp. 447–466.

[9] M. Leuschel and M. Butler, “ProB: an automated analysis toolset for
the B method,” in The International Journal on Software Tools for
Technology Transfer. Springer, 2008, vol. 10, pp. 185–203.

[10] D. Déharbe, “Integration of SMT-solvers in B and Event-B development
environments,” Science of Computer Programming, vol. 78, pp. 310–
326, 03 2013.

[11] J. Schmidt and M. Leuschel, “SMT solving for the validation of B and
Event-B models,” in The International Journal on Software Tools for
Technology Transfer. Springer, 2022, vol. 24, pp. 1043–1077.

[12] E. Brauer, “Second-order logic and the power set,” Journal of Philo-
sophical Logic, vol. 47, pp. 123–142, 2018.

[13] A. Fürst, T. Hoang, D. Basin, K. Desai, N. Sato, and K. Miyazaki, “Code
generation for Event-B,” presented at the Integrated Formal Methods
2014, Bertinoro, Italy, 09 2014.

[14] S. Wright, “Automatic generation of C from Event-B,” presented at the
Workshop on Integration of Model-based Formal Methods and Tools,
Bangkok, Thailand, 02 2009.

[15] F. Yang, J.-P. Jacquot, and J. Souquières, “JeB: Safe simulation of Event-
B models,” presented at the The 20th Asia-Pacific Software Engineering
Conference, Bangkok, Thailand, 12 2013.

[16] N. Cataño and V. Rivera, “EventB2Java: A code generator for Event-
B,” in NASA Formal Methods, ser. Lecture Notes in Computer Science,
O. T. S. Rayadurgam, Ed. Springer, 2016, vol. 9690.

[17] P. Devyanin, Security models of computer systems. Control for access
and information flows. Moscow, Russia: Hotline-Telecom, 2013, (in
Russian).


