
On the automated unit tests generation
for Java applications using Spring

Kirill Shishin, Ilia Muravev, Egor Kulikov
Department of Software Engineering

St. Petersburg State University
{kirill.a.shishin, muravjovilya, egor.k.kulikov}@gmail.com

Abstract—This paper considers the automated unit tests gen-
eration for programs written in Java using the Spring frame-
work. Although several test generation tools for “pure” Java
applications have been developed in recent decades, the features
of this framework are mostly not taken into account. However,
Spring is used to develop many industrial Java applications.
At the same time, the presence of Spring components in the
application for which the tests are generated imposes additional
requirements not only on the code analysis approaches, but also
on the structure of the generated tests.

The main source of the information about object types and
their properties is the Spring application context. The paper
proposes an instrument for analyzing the application context,
that in some cases allows generating test scenarios corresponding
to real program executions and avoiding excessive mocking. The
full initialization of the application context does not occur during
this analysis. It makes the test generation safe for user data.

The proposed instrument for analyzing the Spring context
has been integrated into the UnitTestBot Java automatic test
generation tool. We also provide examples of tests generated for
real open-source projects.

Index Terms—Software Testing, Automated Unit Test Gener-
ation, Spring, Mocking, UnitTestBot Java.

I. INTRODUCTION

Software testing is an important and essential part of any
project. While manually written tests often cover only a small
percentage of program execution paths, their development usu-
ally requires significant effort and time from developers and
testers. That’s why solutions for the automated test generation
have been actively developed over the last decades. They
are intended to help their users to significantly increase the
test coverage of a program, reducing many times the efforts
spent on writing tests. There is a well-known experiment [1]
on the Coreutils1 project, showing how effective and useful
automated test generation can be. Although this project has
been developed for many years and tests have been written
manually all the time, the test automation tool created by the
authors of the experiment managed to significantly increase
code coverage with tests in just a few hours and found some
defects that had been unknown for more than 15 years. The
relevance of automated test generation is also confirmed by the
annual competitions of test generation tools [2]. At these com-
petitions, participating tools test real projects (e.g., Guava2,

1Coreutils project. Available: https://www.gnu.org/software/coreutils/
2Guava: Google Core Libraries for Java. Available: https://github.com/

google/guava

Seata3, Spoon4, etc.). As a result, winners are identified in
several categories, including the efficiency of code defect
detection, the percentage of program lines covered, and the
human-readability of the generated tests.

Among the automated test generators showing good results
at competitions, we would like to mention the open-source
project UnitTestBot Java5, which is being developed at Huawei
Russian Research Institute. In 2022, the tool performed well
in the competition [3], and in 2023, it was ranked first in the
human-readability of generated tests and second overall in all
categories [4]. UnitTestBot Java is a command-line tool and a
plugin for IntelliJ IDEA6, which aims to generate unit tests for
Java applications. The methodological basis of the project is
two code analysis techniques: symbolic execution and fuzzing.

UnitTestBot Java is good at generating tests for code in
“pure” Java, that is, without the use of special frameworks.
However, such frameworks are used quite often and impose
additional requirements on the analysis of user code and the
format of generated tests. One of the most popular frameworks
today [5] is Spring7. It is used in the development of many
Java projects. Therefore, it is important for UnitTestBot Java
to be capable of generating specialized tests for applications
that rely on this framework.

Spring is a diverse framework. However, one of its main
features are Dependency Injection (DI) and Inversion of Con-
trol (IoC). Spring has a DI/IoC container8 that stores managed
objects — beans. The configuration of this container can be
defined in various ways: through annotations in user code,
special configuration classes, or XML files. In addition, the
user can also choose a profile that defines how the application
will be configured. More than that, the framework offers a
mechanism for implementing the MVC pattern, distinguishing
between services and controllers, each of which requires a
distinct testing approach as agreed by human testers. It is
important that the generated tests must be not only correct,
but should also follow the commonly accepted guidelines

3Seata: Simple Extensible Autonomous Transaction Architecture. Available:
https://github.com/apache/incubator-seata

4Spoon. Available: https://github.com/INRIA/spoon
5UnitTestBot. Available: https://www.utbot.org
6IntelliJ IDEA — the Leading Java and Kotlin IDE. Available: https://www.

jetbrains.com/idea/
7Spring framework. Available: https://spring.io
8The IoC container. Available: https://docs.spring.io/spring-framework/

reference/core/beans.html

https://www.gnu.org/software/coreutils/
https://github.com/google/guava
https://github.com/google/guava
https://github.com/apache/incubator-seata
https://github.com/INRIA/spoon
https://www.utbot.org
https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
https://spring.io
https://docs.spring.io/spring-framework/reference/core/beans.html
https://docs.spring.io/spring-framework/reference/core/beans.html


for testing Spring applications [6], [7], [8]. These and other
features of the framework make automated testing of Spring
applications a very challenging task.

When creating unit tests, we usually test a component in
isolation from the external environment (other microservices,
databases, authentication mechanisms). Therefore, many com-
plicated features of the Spring framework do not have a
significant impact on the unit test generation mechanisms and
will be important only in the case of creating integration or
end-to-end tests, meaning that “pure” Java testing techniques
can be used. However, when it comes to virtual calls, in a
“pure” Java program, there is no reliable way to determine
which implementation should be called in tests. In contrast, in
a Spring application, there is a configuration that determines
which concrete classes will be used in place of abstract types at
runtime. Using this type substitution information, it is possible
to generate tests that are better aligned with the actual behavior
of the program and test those scenarios that can occur during
application use.

It is also important to note that since unit testing does not
involve launching an application and initializing its context,
and usually means testing a component in isolation, it is
expected that full context initialization will not take place
during the automated test generation, which includes analysis
of the user configuration. Otherwise, test generation may be
dangerous for user data: for example, during context initial-
ization, environment variables may be unexpectedly set, some
data may be loaded from third-party services, etc. This creates
additional challenges when solving the task of test generation
for applications written with Spring.

II. SPRING-BASED TEST GENERATION

Let’s consider a minimalistic example in which the type in-
formation from the application configuration allows generating
tests better representing the real behavior of the program.

Assume the task is to generate tests for the
getSpecies() method from the SpeciesService
class,

1@Service
2public class SpeciesService {
3

4 @Autowired
5 @Setter
6 private Animal animal;
7

8 public String getSpecies() {
9 return animal.getSpecies();

10 }
11}

where Animal is the interface having the following form:

1public interface Animal {
2 String getSpecies();
3}

Suppose that we have two implementations of this interface
in the project.

1public class Cat implements Animal {
2 public String getSpecies() {
3 return "cat";
4 }
5}
6

7public class Dog implements Animal {
8 public String getSpecies() {
9 return "dog";

10 }
11}

However, in the application configuration, only one of them —
Cat — is used to create the Animal bean.

1public class AnimalConfiguration {
2

3 @Bean
4 public Animal animal(){
5 return new Cat();
6 }
7}

Assume that we develop tests for this method manually. One
possible approach is mocking virtual call of getSpecies()
method.

1public void testGetSpecies() {
2 SpeciesService speciesService
3 = new SpeciesService();
4

5 Animal animalMock = mock(Animal.class);
6 when(animalMock.getSpecies())
7 .thenReturn("mouse");
8

9 speciesService.setAnimal(animalMock);
10

11 String actual = speciesService.getSpecies();
12 assertEquals("mouse", actual);
13}

Such a test is formally correct, but far from checking the
actual behavior of the program and therefore is hardly valuable
in practice.

At the same time, when developing tests, we have an
opportunity to investigate the application configuration and to
find out that only Cat implementation is used for a given
interface and to write a test that much more closely resembles
the real behavior.

1public void testGetSpecies() {
2 SpeciesService speciesService
3 = new SpeciesService();
4

5 Cat animal = new Cat();
6 speciesService.setAnimal(animal);
7

8 String actual = speciesService.getSpecies();
9 assertEquals("cat", actual);

10}



Now, let’s consider the scenario of automated test gener-
ation. If we do not extract type information from the Spring
application configuration indicating which of the Animal im-
plementations is preferred, we can either generate the already
mentioned test with a mock or choose any of the Animal
interface implementations arbitrarily. In this way, another for-
mally correct but valueless test using the Dog implementation
can be generated. However, if the application configuration
is analyzed and the test generation tool is provided with the
information that only the Cat implementation is used for
the Animal interface, then the generated test will accurately
represent the actual behavior of the program.

Despite the fact that the type concretization described above
cannot always be done (due to possible ambiguity of the
possible types choice) and it is not always necessary to
do it, in some cases, concretization allows for generating
more expressive tests for Spring applications that verify real
execution scenarios. Therefore, the ability to generate tests
with type concretization is a desirable option for the test
generator.

III. OVERVIEW

A. Existing tools

There are a number of tools that to some extent solve
the problem of automated testing of programs in Java. All
of them use one or several basic code analysis techniques:
symbolic execution, fuzzing or machine learning [9]. The
most famous open-source solutions are EvoSuite9, UnitTestBot
Java10, and Randoop11. Among the commercial tools let us
mention Parasoft Jtest12, Diffblue Cover13 and Machinet14.

Among these tools, only a small subset can generate tests
for Spring applications. For example, Parasoft Jtest generates
only test method templates. Of course, this reduces the total
time required to write tests, but the scope of the covered code
depends on the user, who needs to substitute arguments with
values in the code of the generated test method templates.

The code snippet below shows an example of a generated
test template for a Spring application using Parasoft Jtest. It
is taken from the official Parasoft website15.

9What is EvoSuite? Available: https://github.com/EvoSuite/evosuite
10UnitTestBot Java: Automated unit test generation and precise code

analysis for Java. Available: https://github.com/UnitTestBot/UTBotJava
11Randoop: Automatic unit test generation for Java. Available: https:

//randoop.github.io/randoop/
12Parasoft Jtest for Java Unit Testing. Available: https://www.parasoft.com/

products/parasoft-jtest/java-unit-testing/
13What is Diffblue Cover? — Diffblue. Available: https://www.diffblue.com
14Machinet: AI Assistant for Developers. Available: https://www.machinet.

net
15Accelerate Unit Testing of Spring Applications With Parasoft Jtest

& Unit Test Assistant. Available: https://alm.parasoft.com/hubfs/New
Pages/Whitepaper:%20Accelerate%20Unit%20Testing%20of%20Spring%
20Applications%20with%20Parasoft%20Jtest%20and%20Unit%20Test%
20Assistant.pdf

1@Test
2public void testGetPerson() throws Throwable {
3 MockedStatic<ExternalPersonService> mocked =

mockStatic(ExternalPersonService.class);
4 mocks.add(mocked);
5

6 Person getPersonResult = null; // UTA: default
value

7 mocked.when(() ->
8 ExternalPersonService.getPerson(anyInt())
9 ).thenReturn(getPersonResult);

10

11 // Given
12 PeopleController underTest = new

PeopleController();
13

14 // When
15 int id = 1;
16 Model model = mock(Model.class);
17 ResponseEntity<Person> result = underTest.

getPerson(id, model);
18

19 // Then
20 assertNotNull(result);
21 assertNotNull(result.getBody());
22}

Another example of a tool that can generate tests for Spring
applications is Diffblue Cover. It is able to generate tests that
take into account the Spring application specifics.

Below is an example of the test generated for a Spring
application using Diffblue Cover.

1@ContextConfiguration(classes = {SpeciesService.
class})

2@ExtendWith(SpringExtension.class)
3class SpeciesServiceUnitTests {
4 @MockBean
5 private Animal animal;
6

7 @Autowired
8 private SpeciesService speciesService;
9

10 @Test
11 void testGetSpecies() {
12 when(animal.getSpecies())
13 .thenReturn("");
14 assertEquals("",
15 speciesService.getSpecies());
16 verify(animal, atLeast(1)).getSpecies();
17 }
18}

However, such tests do not follow the test writing guidelines
for Spring applications mentioned in the introduction (for
example, it is rather unconventional to use a class under
test for context configuration) and the tool does not offer a
mechanisms to deal with excessive mocking.

Thus, none of the test automation tools we are aware of
offer mechanisms for generating tests based on the application
configuration.

B. UnitTestBot Java
UnitTestBot Java is a part of the UnitTestBot tool lineup for

automated unit test generation. The tool uses two mechanisms
to generate test scenarios: a symbolic engine and a fuzzer.

https://github.com/EvoSuite/evosuite
https://github.com/UnitTestBot/UTBotJava
https://randoop.github.io/randoop/
https://randoop.github.io/randoop/
https://www.parasoft.com/products/parasoft-jtest/java-unit-testing/
https://www.parasoft.com/products/parasoft-jtest/java-unit-testing/
https://www.diffblue.com
https://www.machinet.net
https://www.machinet.net
https://alm.parasoft.com/hubfs/New_Pages/Whitepaper:%20Accelerate%20Unit%20Testing%20of%20Spring%20Applications%20with%20Parasoft%20Jtest%20and%20Unit%20Test%20Assistant.pdf
https://alm.parasoft.com/hubfs/New_Pages/Whitepaper:%20Accelerate%20Unit%20Testing%20of%20Spring%20Applications%20with%20Parasoft%20Jtest%20and%20Unit%20Test%20Assistant.pdf
https://alm.parasoft.com/hubfs/New_Pages/Whitepaper:%20Accelerate%20Unit%20Testing%20of%20Spring%20Applications%20with%20Parasoft%20Jtest%20and%20Unit%20Test%20Assistant.pdf
https://alm.parasoft.com/hubfs/New_Pages/Whitepaper:%20Accelerate%20Unit%20Testing%20of%20Spring%20Applications%20with%20Parasoft%20Jtest%20and%20Unit%20Test%20Assistant.pdf


The symbolic engine is one of the implementations of the
symbolic execution paradigm [10]. It performs an analysis of
the possible execution paths of a program by mapping a set of
path constraints to each branch of execution. These constraints
are expressed in terms of the logic of predicates, and then
using the SMT solver Z316 their satisfiability is determined.
Obtaining the possible paths of program execution, as well as
their prioritization, comes from the control flow graph that is
constructed from the byte code of the program. The byte code
is preliminarily transformed into Jimple representation using
the Soot17. With this transformation, the byte code takes a
simpler representation having fewer instructions.

The fuzzer used in UnitTestBot Java applies the greybox
fuzzing technique, which involves generating random input
values for a concrete execution of the methods under test. After
each concrete execution, the fuzzer obtains feedback about the
change in execution path. Based on this feedback, it mutates
the input values for the next iteration of its work.

More detailed information about the implementation of the
symbolic engine and fuzzer in UnitTestBot Java can be found
on the official website of the project or in the documentation
in the repository on GitHub18.

Both of these code analysis techniques are usually combined
for maximum efficiency. In UnitTestBot Java, by default,
95% of the time allocated for test generation is given to
the symbolic engine, and the fuzzer is used as an additional
auxiliary tool.

IV. IMPLEMENTATION

This section provides a Spring configuration analyzer im-
plementation and describes a modernization of the UnitTestBot
Java symbolic engine, which allows types to be concretized
during test generation based on the information obtained from
the configuration analyzer.

A. Spring configuration analyzer

The engine obtains Spring-specific information for type con-
cretization from the user application configuration analyzer.
This information is collected using Spring’s own instruments
during the initialization of the application context.

Spring context initialization consists of several steps:
1) Collecting bean definitions. During this phase applica-

tion configurations are parsed and analyzed. As a result,
in particular, bean definitions are created. They include
information about the class of the bean, its properties
and its relationships with other beans.

2) Configuration of the bean definitions (BeanFactoryPost-
Processor19). Once the information about beans has been
collected, Spring can modify these definitions before

16Z3. Available: https://github.com/Z3Prover/z3
17Soot. Available: https://github.com/soot-oss/soot
18UnitTestBot Java documentation. Available: https://github.com/

UnitTestBot/UTBotJava/tree/main/docs
19BeanFactoryPostProcessor. Available: https://docs.spring.io/spring-

framework/docs/current/javadoc-api/org/springframework/beans/factory/
config/BeanFactoryPostProcessor.html

they are used to create the beans themselves. Configur-
ing bean definitions involves setting dependencies, spec-
ifying scope, configuring lifecycle and other parameters
specific to the bean.

3) Creating the beans and configuring them. This stage
involves creating and further configuring the beans in-
stances based on their definitions. Class instances are
created and initialization methods are called.

While the steps of collecting and configuring bean defini-
tions are safe for the user application, the step of creating
the beans may cause changes to user data. For this reason, we
decided to embed ourselves in the Spring context initialization
process and implement our own BeanFactoryPostProcessor. It
collects all necessary and available to the analyzer information
about beans at the stage of setting up the bean definitions, de-
stroys bean definitions, and then stops any further application
initialization. Thus, the creation of the beans is prevented. The
general pipeline of type information collecting during Spring
application context initialization is shown in the Figure 1.

Fig. 1. The initialization stages of the Spring context

To analyze beans from a user application with our post pro-
cessor, we start a “hybrid” Spring application whose classpath
combines the classpaths of both the original user application
and our Spring analyzer module. It is important to note that
the Spring analyzer module has minimal dependencies, which
helps avoid dependency conflicts with the user application.
In particular, Spring analyzer does not depend on a specific
version of Spring and utilizes reflection to handle any pop-
ular Spring version bundled with the user application. When
starting such “hybrid” Spring application, we first determine
whether Spring Boot is used and, based on that, choose
an appropriate application starter class. Furthermore, we dy-
namically patch annotations to make the started application
use desired Spring configuration (Java- or XML- based) and
profiles.

In this way, we get an algorithm for configuring our own
Spring application, shown in the Figure 2, while the entire
process of collecting Spring-specific information for type
concretization by the configuration analyzer is represented
with the chain of actions shown in the Figure 3.

B. Modernization of symbolic engine

The core idea of the symbolic engine modernization is
to change the mechanism used for selecting symbolic object
types. Whereas the symbolic engine previously selected an
arbitrary type, determined by the SMT solver as satisfying the

https://github.com/Z3Prover/z3
https://github.com/soot-oss/soot
https://github.com/UnitTestBot/UTBotJava/tree/main/docs
https://github.com/UnitTestBot/UTBotJava/tree/main/docs
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/beans/factory/config/BeanFactoryPostProcessor.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/beans/factory/config/BeanFactoryPostProcessor.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/beans/factory/config/BeanFactoryPostProcessor.html


Fig. 2. The activity diagram of creating a Spring application on the
UnitTestBot Java side

Fig. 3. The Spring-analyzer’s work scheme

symbolic path constraints, it now tries to consider only those
types that are used in the application configuration chosen for
test generation.

Let’s discuss the example of test generation for the
getSpecies() method from the SpeciesService class,
presented in Section II. In the past, when generating tests, the
Dog implementation of the Animal interface could be chosen
because it satisfied the symbolic path constraints. However,
tests using the Dog class were not particularly useful because
they did not test the actual behavior of the program. In
contrast, now, the Cat class is deterministically chosen as
it is specified in the application configuration.

C. Integration of symbolic engine and configuration analyzer

The Spring configuration analyzer is launched in a separate
process from the symbolic engine. Firstly, this allows running

the configuration analyzer on the extended classpath without
any difficulties. After that, it prevents a possible crash of the
entire test generation in case of an error during the analysis
of custom configurations. For example, running a Java Spring
application based on a custom one on the UnitTestBot side
may cause the JVM crash if the custom application is poorly
designed.

The symbolic engine and user configuration analyzer pro-
cesses, like all other processes in UnitTestBot Java, commu-
nicate using the RD20 framework.

V. RESULTS

As a result of this research, we managed to propose an
approach to the analysis of Spring application configurations,
which sometimes allows generating tests that correspond better
to the actual behavior of the program. The developed config-
uration analyzer was integrated into the well-known tool of
automated test generation UnitTestBot Java.

In particular, the modernized tool is able to generate a
test that checks the actual execution of the getSpecies()
method from the SpeciesService class of the running
example given in Section II. To go further, we also provide
tests generated with the modernized tool on real open-source
projects Java Blog Aggregator: Boot21 and Mall22.

A. Java Blog Aggregator: Boot

We paid attention to the Java Blog Aggregator: Boot project
because it is mentioned, for example, in the article [11] as
one of the recommended projects to study for beginners in
the Spring framework.

Consider the AllCategoriesService class that has
the autowired CategoryService field.

1@Service
2public class AllCategoriesService {
3

4 @Autowired
5 private CategoryService categoryService;
6

7 public Integer[] getAllCategoryIds() {
8 List<Category> categories
9 = categoryService.findAll();

10

11 Integer[] result
12 = new Integer[categories.size()];
13

14 for (int i = 0; i < categories.size(); i++) {
15 result[i] = categories.get(i).getId();
16 }
17

18 return result;
19 }
20}

The signature of the CategoryService class has the form:

20RD: Reactive Distributed communication framework for .NET, Kotlin
and C++ (experimental). Inspired by JetBrains Rider IDE. Available: https:
//github.com/JetBrains/rd

21Java Blog Aggregator: Boot. Available: https://github.com/jirkapinkas/
java-blog-aggregator-boot

22Mall. Available: https://github.com/macrozheng/mall

https://github.com/JetBrains/rd
https://github.com/JetBrains/rd
https://github.com/jirkapinkas/java-blog-aggregator-boot
https://github.com/jirkapinkas/java-blog-aggregator-boot
https://github.com/macrozheng/mall


1@Service
2public class CategoryService

The CategoryService class has the annotation
@Service, which means that this class is used to define a
bean.

As a result of test generation using the modernized UnitTest-
Bot Java for the getAllCategoryIds() method from the
AllCategoriesService class, we get a test:

1@Test
2public void testGetAllCategoryIds() throws Exception
3{
4 AllCategoriesService allCategoriesService
5 = new AllCategoriesService();
6

7 CategoryService categoryService
8 = new CategoryService();
9

10 CategoryRepository categoryRepositoryMock
11 = mock(CategoryRepository.class);
12

13 when(categoryRepositoryMock.findAll())
14 .thenReturn(new ArrayList<>());
15

16 setField(categoryService,
17 "cz.jiripinkas.jba.service
18 .CategoryService",
19 "categoryRepository",
20 categoryRepositoryMock);
21

22 setField(allCategoriesService,
23 "cz.jiripinkas.jba.service
24 .AllCategoriesService",
25 "categoryService",
26 categoryService);
27

28 Integer[] actual =
29 allCategoriesService.getAllCategoryIds();
30

31 assertEquals(0, actual.length);
32 assertEquals(new Integer[0], actual);
33}

Instead of mocking the CategoryService class, its
concrete implementation is used in this test. It makes the
test more expressive. In particular, we can observe that the
CategoryService interacts with the database. Also, the
user can adjust the behavior of the mock related to database
access if necessary.

B. Mall

We also generated tests for the Mall project, which is
very popular, having over one hundred thousand forks and
stars on GitHub. Let’s discuss the test for the delAdmin()
method in the UmsAdminCacheServiceImpl class, that
the modernized UnitTestBot Java has generated based on
Spring application configuration analysis.

1@Service
2public class UmsAdminCacheServiceImpl implements

UmsAdminCacheService
3{
4 @Autowired
5 private UmsAdminService adminService;
6

7 @Autowired
8 private RedisService redisService;
9

10 ...
11

12 @Override
13 public void delAdmin(Long adminId) {
14 UmsAdmin admin
15 = adminService.getItem(adminId);
16

17 if (admin != null) {
18 String key = REDIS_DATABASE + ":" +

REDIS_KEY_ADMIN + ":" +
admin.getUsername();

19

20 redisService.del(key);
21 }
22 }
23

24 ...
25

26}

This class has two autowired fields: UmsAdminService
and RedisService, which have corresponding beans in the
application configuration.

The test generated for the delAdmin() method of the
UmsAdminCacheServiceImpl class is as follows:

1@Test
2public void testDelAdmin()
3 throws Exception
4{
5 UmsAdminCacheServiceImpl

umsAdminCacheServiceImpl
6 = new UmsAdminCacheServiceImpl();
7

8 UmsAdminServiceImpl adminService
9 = new UmsAdminServiceImpl();

10

11 UmsAdminMapper adminMapperMock
12 = mock(UmsAdminMapper.class);
13 when(
14 adminMapperMock.selectByPrimaryKey(any())
15 ).thenReturn(null);
16

17 setField(adminService,
18 "com.macro.mall.service
19 .impl.UmsAdminServiceImpl",
20 "adminMapper", adminMapperMock);
21

22 setField(umsAdminCacheServiceImpl,
23 "com.macro.mall.service.impl
24 .UmsAdminCacheServiceImpl",
25 "adminService", adminService);
26

27 umsAdminCacheServiceImpl.delAdmin(null);
28}

In this test, instead of mocking the abstract type
UmsAdminService, its concrete implementation
UmsAdminServiceImpl is substituted according to
the application configuration. Initialization of the second



autowired field did not occur because it is not required in
the tested program execution path. Although there are no
assertions in this test because the method has void return
type, it is still valuable. Since the tested method takes a
nullable value as an argument, a scenario in which adminId
is null is possible and is a kind of edge case that often
causes NullPointerException. The generated test
ensures that no such exception actually occurs in the method
under test. When writing tests manually, similar scenarios are
often not taken into account.

VI. FUTURE WORK

Unit tests are often used to verify the logic of Spring
application components, so high-quality automatic generation
of such tests is important. However, some bugs can only be
detected by integration and end-to-end tests that interact with
real data storage and other microservices, as well as take into
account the diverse features of the Spring framework (e.g.,
authorization and authentication). For this reason, developing
an integration test generation tool is a prominent direction for
future work. Such a tool will likely also need to initialize a
modified Spring application, meaning that the “hybrid” Spring
application starter developed in this work may find additional
uses.

REFERENCES

[1] C. Cristian, D. Daniel, and E. Dawson, “KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems

Programs,” Proceedings of the 8th USENIX Conference on Operating
Systems Design and Implementation (OSDI’08), USA : USENIX Asso-
ciation, 2008, pp. 209–224.

[2] “Workshop on Search-Based and Fuzz Testing,” Accessed: Apr. 5, 2024.
[Online]. Available: https://sbft24.github.io

[3] D. Ivanov et al., “UTBot Java at the SBST2022 Tool Competition,”
2022 IEEE/ACM 15th International Workshop on Search-Based Software
Testing (SBST), Pittsburgh, PA, USA, 2022, pp. 39–40.

[4] D. Ivanov, A. Menshutin, M. Pelevin et al., “UTBot at the SBFT 2023
Java Tool Competition,” 2023 IEEE/ACM International Workshop on
Search-Based and Fuzz Testing (SBFT), 2023, pp. 68–69.

[5] “Java Programming — The State of Developer Ecosystem in 2022
Infographic,” JetBrains: Developer Tools for Professionals and Teams,
Accessed: Apr. 5, 2024. [Online]. Available: https://www.jetbrains.com/
lp/devecosystem-2022/

[6] “Spring Boot Unit Testing Service Layer using JUnit and Mockito,”
Accessed: Apr. 5, 2024. [Online]. Available: https://www.javaguides.net/
2022/03/spring-boot-unit-testing-service-layer.html

[7] “Overview: Spring Framework,” Accessed: Apr. 5, 2024. [Online].
Available: https://docs.spring.io/spring-framework/reference/testing/
spring-mvc-test-framework/server.html

[8] S. Chathuranga, “Unit and Integration Testing in Spring Boot Micro
Service,” Medium, Accessed: Apr. 5, 2024. [Online]. Available:
https://salithachathuranga94.medium.com/unit-and-integration-testing-
in-spring-boot-micro-service-901fc53b0dff

[9] M. Kim, Q. Xin, S. Sinha, and A. Orso, “Automated test generation
for REST APIs: no time to rest yet,” Proceedings of the 31st ACM
SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA 2022), Association for Computing Machinery, New York, NY,
USA, 2022, pp. 289–301, doi: https://doi.org/10.1145/3533767.3534401.

[10] R. Baldoni, E. Coppa, D. Cono D’elia, C. Demetrescu, and I. Finocchi,
“2018. A Survey of Symbolic Execution Techniques,” ACM Comput.
Surv. 51, 3, Article 50, 2019, 39 pages, https://doi.org/10.1145/3182657.

[11] R. Fadatare, “10+ Free Open Source Projects Using Spring Boot,”
Accessed: Apr. 5, 2024. [Online]. Available: https://www.javaguides.net/
2018/10/free-open-source-projects-using-spring-boot.html

https://sbft24.github.io
https://www.jetbrains.com/lp/devecosystem-2022/
https://www.jetbrains.com/lp/devecosystem-2022/
https://www.javaguides.net/2022/03/spring-boot-unit-testing-service-layer.html
https://www.javaguides.net/2022/03/spring-boot-unit-testing-service-layer.html
https://docs.spring.io/spring-framework/reference/testing/spring-mvc-test-framework/server.html
https://docs.spring.io/spring-framework/reference/testing/spring-mvc-test-framework/server.html
https://salithachathuranga94.medium.com/unit-and-integration-testing-in-spring-boot-micro-service-901fc53b0dff
https://salithachathuranga94.medium.com/unit-and-integration-testing-in-spring-boot-micro-service-901fc53b0dff
https://doi.org/10.1145/3533767.3534401
https://doi.org/10.1145/3182657
https://www.javaguides.net/2018/10/free-open-source-projects-using-spring-boot.html
https://www.javaguides.net/2018/10/free-open-source-projects-using-spring-boot.html

	Introduction
	Spring-based test generation
	Overview
	Existing tools
	UnitTestBot Java

	Implementation
	Spring configuration analyzer
	Modernization of symbolic engine
	Integration of symbolic engine and configuration analyzer

	Results
	Java Blog Aggregator: Boot
	Mall

	Future work
	References

