

Four-dimensional ACC analysis

Mustafina Nazgul Ibragimovna

HSE University
Perm, Russia

ORCID: 0000-0001-8617-659X

Plaksin Mikhail Alexandrovich

HSE University

Perm State University

Perm, Russia

ORCID: 0000-0002-6288-8610

Mikisheva Polina Alekseevna

HSE University

Perm, Russia

ORCID: 0009-0003-0246-5418

Abstract— The article discusses the issues of planning and

resource management in the process of testing software

systems. The paper presents the ACC analysis method used at

Google to optimize the distribution of efforts for testing

different parts of the system. Extending the method by adding

a fourth characteristic - actors (classes of system users) -

allows for a more flexible assessment of action requirements

and user skill levels. Illustrative examples of system attributes

and components help understand the principles of the

method. The work proposes a new approach to risk

management and process improvement in testing software

systems in a multidimensional space. The effectiveness of

applying the enhanced ACC analysis method using a risk-

oriented approach was demonstrated using the example of a

control system for technological operations in the repair of

electric motors, for which attributes, components, actors were

identified, opportunities at their intersection were analyzed,

and testing was conducted, which helped improve the system's

quality.

Keywords— Testing, risk registry, test plan, test cases,

system for controlling technological operations, ACC

methodology, Google+, risk-oriented approach, risk

identification, efficiency improvement, risk assessment,

productivity enhancement, process optimization, data analysis,

software engineering.

I. INTRODUCTION

Testing is one of the most important processes in
software system development. The main goal of testing is to
detect errors and defects in the product being tested, as well
as to identify discrepancies between the product's
characteristics and the requirements and expectations of
users [1-15]. One of the main problems associated with
testing is the lack of resources for exhaustive testing. A good
test plan should be created at the beginning of a project and
may change during the development of the software
product. This makes tasks such as planning and
management relevant: the task of best resource allocation
allocated to the testing phase, and the task of assessing the
progress made during testing.

At Google, a special method called ACC analysis [16]
is used to address these challenges. It allows ranking
different parts of the developing system using a popular
risk-oriented approach today, providing recommendations
on what percentage of efforts should reasonably be planned
for testing specific parts of the system.

The original ACC analysis manipulates three
characteristics of a software system: attributes, components,
and capabilities. ACC stands for Attribute, Component,
Capability. This article proposes to expand the method by
including a fourth characteristic - actors (classes of system
users). This increases the manageability of the testing
process, allows for a different perspective on testing
organization, makes the process more flexible, clarifies

requirements for implementing specific actions, and also the
level of user qualification.

The article describes the ACC analysis method used for
software testing and its proposed enhancement. ACC
analysis is a risk-oriented approach that ranks different parts
of a developing system based on the percentage of efforts
required for testing. The original ACC analysis considers
three characteristics: attributes, components, and
capabilities. The proposed enhancement adds a fourth
characteristic: actors (roles of system users). It increases the
manageability of the testing process, provides a different
perspective on testing organization, makes the process more
flexible, clarifies requirements for implementing specific
actions, and considers the level of user qualification. The
text also provides an example of applying the improved
ACC method for analyzing a Repair Shop system. The
enhancement allows for better distribution of testing
resources, prioritization of testing based on risk levels, and
consideration of user roles and qualifications.

II. THE ORIGINAL ACC METHOD

Since ACC analysis is not well known enough, first a
description of the traditional methodology is provided,
followed by our proposed enhancement. The results of
applying ACC to analyze the system for repairing electric
motors are then presented.

As an illustration, the application of ACC analysis for
testing the system for controlling technological operations
in the repair of electric motors (Repair Shop) is described.
The system operates according to the following scheme:

• Users of the Maintenance and Repair Shop can be
divided into roles: worker, master, workshop
supervisor, director, and Maintenance and Repair
Shop administrator. Several individuals can belong
to each category, except for the director.

• During engine repair, various "operations" are
performed. Each operation belongs to one of the
"operation groups."

• A broken engine is brought to the company for
repairs. The workshop supervisor registers it in the
Maintenance and Repair Shop: creates a "card" for
it, assigns a unique number to the engine, and
determines the list of necessary operations.
Subsequently, as the repair progresses, the card
will be marked with the completion of each
operation.

• The card is placed in the "In Progress" list. The
card is visible to all users of all types.

• The workshop supervisor assigns a master
responsible for the engine repair.

• The master assigns workers to perform each
operation, is responsible for the start and end of the
work, makes notes in the engine card about the
completion, suspension, and completion of the
operations as the repair progresses.

• After the completion of the last operation, the
engine card is automatically moved from the "In
Progress" list to the "Completed" list.

• The Maintenance and Repair Shop administrator:
adds, edits, and deletes users, assigns them a
category; adds, edits, and deletes operations and
operation groups, assigns an operation to a group;
adds, edits, and deletes customers;

• The director has the ability to generate reports that
provide information on which worker performed a
specific operation, and how much time was spent.

The system model created using ACC analysis
significantly differs from traditional models such as
functional, structural, flow, and parametric. From an ACC
perspective, the system is represented as a matrix, where
columns correspond to system attributes, rows to
components, and cells contain the capabilities that the
system provides to the user. This matrix is constructed as
follows.

First, key characteristics of the system are identified,
qualities that are important to the user and in which the
developed software system should stand out from analogs.
In the context of ACC, these are called attributes and are
typically expressed as adjectives. Their number is small.

As an illustration, the following list of attributes for the
social network Google+ is provided: Social (allows users to
exchange information and thoughts), Expressive (users use
the product's features for self-expression), Simple (users
easily understand how to do what they want), Relevant
(shows only information that interests the user), Expandable
(integrates with other Google resources, third-party sites,
and applications), Confidential (user data will not be
disclosed).

For our illustrative Repair Shop system, the following
attributes were identified: "Simple" (offers users only
intuitive actions), "Convenient" (minimizes time for
frequently performed actions), "Accessible" (allows users
with different roles to connect), "Secure" (protects
information from external threats).

The second step of ACC analysis involves identifying
"components." The concept of components in ACC differs
from the traditional understanding. Components are the
structural units of the system, not in terms of program
structure but from the user's perspective. Components are
the key parts of code that make the program what it is.

For the social network Google+, components include
Profile, People, Feed, Circles, Notifications, Interests,

Posts, Comments, Photos. For our illustrative Repair Shop
system, components include Search, Repair Card, In
Progress, Completed, Reports, Users, Groups, Operations,
Customers.

The third stage of ACC analysis involves describing the
"capabilities of the system" - actions that the system can
perform at the user's request. As expected for actions, they
are expressed using verbs. In the ACC model, capabilities
do not exist on their own. They are linked to components
and attributes. It is considered that each capability is
implemented by a certain component with the aim of
providing a certain quality of the product (a certain
attribute). For example, for the social network Google+, the
component "View Page" interacts with the attribute
"Accessible" in three capabilities:

• make the document accessible to employees;

• allow employees to edit the document;

• display the employee's position on the page.

This results in a matrix where columns correspond to
attributes, rows to components, and capabilities are
recorded in the cells. Figure 1 shows the matrix model for
Google+ from [16, p.132].

Fig. 1. ACC Table for Google+

Next, a matrix of "attributes-components-capabilities"
for our illustrative Repair Shop system is shown
in Tables I-II.

TABLE I. ACC TABLE FOR THE ATTRIBUTES SIMPLE AND USER-FRIENDLY FOR REPAIR SHOP

 1/ Simple: Intuitive actions
2/ Convenient: minimizing operations for frequently

performed actions

A/
Search

Administrator:

1. Search for employees by name and
email

Administrator:

2. Search for a specific order by repair
number

Administrator:

1. On each tab, you can search (jobs, groups, operations,
reports, customers) by key information

(probability - very rarely,
criticality minimal)

Risk 1

(probability- very rarely, criticality
minimal)

Risk 1

(probability- very rarely, criticality minimal)
Risk 1

B/

Repair Map

Master:

1. Adding a description to the order
(probability- very rarely, criticality

low)

Risk 2

Master:

2. Assign workers to order
(probability- often, criticality

significant)

Risk 12

1. The order

automatically moves
from the completed

list to the finished list

(probability- very
rarely, criticality

significant)

Risk 4

Master:

2. Start/finish/suspend repairs
(probability- often, criticality

maximum)

Risk 16

C/

In progress

Head of Department:

1 Review cards of unfinished tasks

(probability- often, criticality maximum)
Risk 16

All:

1. Display selected number of current tasks

(probability- very rarely, criticality minimal)
Risk 1

D/

Completed

Head of Department:

1. Review cards of completed tasks

(probability- often, criticality maximum)
Risk 16

Master:

1. Change task status

from completed to

incomplete

(probability- sometimes,

criticality maximum)
Risk 12

Director:
2. Send email notification

of task completion

(probability- rarely,
criticality minimal)

Risk 2

E/

Reports

Director:

1. Download report

(probability- rarely, criticality low)
Risk 4

Director:

1. Check how much time

a worker spent on
performing the operation

(probability- sometimes,

criticality low)
Risk 6

Director:

2. Review which operations
were performed by specific

workers during a specified

period
(probability- sometimes,

criticality low)

Risk 6

F/
Users

Administrator:
1. Add users

(probability- very rarely,

criticality significant)
Risk 3

Administrator:
2. Delete users

(probability- very rarely,

criticality significant)
Risk 3

Administrator:

3. Edit users

 (probability- very
rarely, criticality

significant)

Risk 3

Administrator:

1. View selected number

of user records
(probability- very rarely,

criticality low)

Risk 2

Administrator:
2. Dismiss users

(probability- very rarely,

criticality low)
Risk 2

G/
Groups

Administrator:
1. Add groups

(probability- very rarely,

criticality significant)
Risk 3

Administrator:
2. Delete groups

(probability- very rarely,

criticality significant)
Risk 3

Administrator:
3. Edit groups

(probability- very rarely,

criticality significant)
Risk 3

Administrator:

1. Adding operations to a group from a pre-formed list
(probability- rarely, criticality significant)

Risk 6

H/

Operations

Administrator:

1. Add operations
(probability- very rarely,

criticality significant)

Risk 3

Administrator:

2. Delete operations
(probability- very rarely,

criticality significant)

Risk 3

Administrator:

3. Edit operations
(probability- very rarely,

criticality significant)

Risk 3

I/
Customers

Administrator:
1. Add customers

(probability- very rarely,

criticality minimal)

Risk 1

Administrator:
2. Delete customers

(probability- very rarely,

criticality minimal)

Risk 1

Administrator:
3. Edit customers

(probability- very rarely,

criticality minimal)

Risk 1

1. Automatic notifications are automatically sent to mail

on email for completed tasks
(probability- rarely, criticality significant)

Risk 6

TABLE II. ACC TABLE FOR THE ATTRIBUTES ACCESSIBLE AND SECURE FOR REPAIR SHOP

3/ Affordable: allows connecting users with different roles to

connect

4/ Secure: protects information from

against various threats

A/

Search

All:

1. Search by job number and customer in current and completed

work
(probability - very rarely, criticality minimal)

Risk 1

B/

Repair Map

All:
1. View repair completion status

(probability – very rarely, criticality maximum)

Risk 4

C/

In progress

All:
1. View all works in active and suspended states

(probability- rarely, criticality maximum)

Risk 8

D/
Completed

All:
1. View the list of completed works, their completion date,

customer, repair number

(probability - very rarely, criticality minimal)
Risk 1

Administrator:
1. Cannot change master and workers after work has started,

which helps prevent scheduling conflicts

(probability- very rarely, criticality significant)
Risk 3

E/
Reports

Director:

1. Keep reports confidential
(probability - very rarely, criticality maximum)

Risk 4

F/
Users

Administrator:
1. Assign roles with limited access rights
(probability- rarely, criticality maximum)

Risk 8

G/

Groups

Administrator:
1. Keep operation groups confidential

(probability- very rarely, criticality maximum)

Risk 4

H/

Operations

Administrator:
1. Keep operations confidential

(probability - very rarely, criticality maximum)

Risk 4

I/

Customers

Administrator:
1. Keep customers confidential

(probability – very rarely, criticality maximum)
Risk 4

There can be many capabilities (tens or hundreds). They
provide the result for which the user uses the system.
Therefore, the correctness of their implementation should be
verified. This means that each capability should be tested at
least once.

Already, this matrix is useful as a source of information
for building a testing plan "components-attributes-
capabilities."

• Each capability requires at least one test.
Therefore, the number of capabilities in a table cell
indicates the minimum number of tests associated
with that cell. It is easy to identify cells, rows, and
columns that require maximum testing efforts.

• Each row and each column represent a certain
logical integrity. All cells in a row (column) are
connected. Therefore, it is logical to test them
together. Therefore, each row and each column can
serve as a test session assignment. This way, we
eliminate duplication and ensure a high level of
coverage.

However, the ACC analysis goes further. To increase
the informativeness of the model, it involves a risk-oriented
approach. This is done as follows.

So far, we have considered all capabilities equal in terms
of testing. But in reality, this is not the case. Some
capabilities are more significant, while others are less
significant. It is necessary to test the more significant
capabilities first. (There may not be enough resources to test
everything indiscriminately.) The question is: how to
determine the significance of capabilities from a testing
perspective? ACC proposes to assess the risk of their failure.

Two characteristics are evaluated for each capability:
the probability of failures and the degree of criticality of
failures. The probability is assessed on a scale of "very rare
- rare - sometimes - often." The criticality of failure is
assessed on a scale of "minimal (the user may not even
notice) - minor - significant - maximum (a blow to the
product's reputation; will make the user stop using it)." In
both cases, an even number of values is deliberately set on

the scales. This is done intentionally to deprive the tester of
the opportunity to choose an average option.

After evaluating the probability and criticality of failures
for each capability, the risk value (the product of probability
and criticality) is calculated and added to the "components-
attributes-capabilities" matrix. For better visualization, the
matrix is presented as a "heat map,": 1-2 - green risks, 3-4 -
yellow, 6-9 - orange, 12-16 - red (5, 10, 11 cannot be).

(When there are multiple possibilities in one cell [16], it
recommends averaging their risks. In the opinion of the
authors of this article, this recommendation is strange. In our
opinion, either the maximum or the sum should be taken.)

The informativeness of the matrix sharply increases. It
provides information to answer questions such as:

• How to distribute the resources allocated for
testing among different functions and components
of the system? Which functions and components
should receive more attention, and which less?
What should be tested first?

• What is the criterion for completing testing? When
do we have the right to say, "We have tested
everything"?

Further, the description of the enhancement introduced
by the authors in the ACC analysis begins.

III. OUR SUGGESTIONS FOR IMPROVMENTS OF ACC

ANALYSIS

A fourth dimension - actors, classes of system users -
was added to the three dimensions of classical ACC analysis
(attributes-components-capabilities).

All users of the Repair Shop system are divided into five
classes (playing one of five roles): director, workshop
manager, master, administrator, worker. Each role has its
needs, its goals in using the Repair Shop system. Each
action performed by the system (each capability of the
system) is executed upon request of one or several roles.
That is, each role has its own set of capabilities.

"Entering the fourth dimension" immediately provided
a new perspective on the system, allowing it to be viewed
from the user's standpoint. Another basis for grouping
capabilities and assessing their risks emerged. What does
this provide? Firstly, it is logical to conduct test sessions as
the work of a specific role. Secondly, different users may
have different qualifications. There should be a
correspondence between the user's level of qualification and
the level of riskiness of actions performed by them.
Performing highly risky actions by low-skilled specialists
increases the likelihood of failures. On one hand, there is an
opportunity to specify requirements for implementing a
specific action of the system (an action intended for low-
skilled specialists should have low "riskiness"). On the other
hand, "risk assessment" of actions allows determining the
"riskiness assessment" of each role. Thus, defining
requirements for the level of qualification of users
performing that role (highly risky actions should only be
performed by highly qualified specialists).

Ideas for further development of the method.

The fourth dimension - it does not necessarily have to be
actors. Depending on the project, it can be something else.

We have moved from three-dimensional space to four-
dimensional space. The logical next step is
multidimensional space. It is possible to introduce
consideration of the fifth, sixth, and further dimensions. The
limitations here will be associated with the increasing
complexity of the model. To combat this complexity, it is
logical to use automation.

IV. THE EXAMPLE OF APPLYING IMPROVED ACC METHOD

FOR ANALYZING THE REPAIR SHOP SYSTEM

As mentioned earlier, a total of 4 attributes, 9
components, and 41 features were identified that intersect
attributes and components. The probability and criticality of
failures for the features were evaluated, and risk levels were
calculated based on these assessments. User roles were
assigned to the features that were accessible to them. Most
features were accessible to one role, a few to all roles, and
one feature had no role assigned as the corresponding action
was performed automatically.

The features were sorted in descending order of risk
level. There were a total of 5 red-level risks (three at level
16 and two at level 12), 6 orange-level risks (two at level 8
and four at level 6), 17 yellow-level risks, and 13 green-
level risks.

The total sum of all risks was 231. This number can be
considered as the overall risk level of the entire system.

The features were grouped by components, attributes,
and actors. The total weights of the features by groups are
presented in tables III, IV and V (The column "Sum after
testing" will be explained later).

TABLE III. COMPONENT AND RISK SUM TABLE

Component Description

Sum of

risks before

testing

Sum of

risks after

testing

Search
Search strings on

different application tabs
4 4

Repair Map
Card with repair

information
40 19

Work in progress
List of active and

suspended repair cards
25 17

Completed
List of completed repair

cards
34 26

Reports

Tab for viewing working

hours and order
information

20 20

Users
User data administration

tab
30 26

Groups
Work group data
administration tab

28 28

Operations
Possible engine operation

administration tab
22 22

Customers
Customer work data

administration tab
28 28

TABLE IV. ATTRIBUTE AND RISK SUM TABLE

Attribute Description

Sum of risks

before

testing

Sum of

risks after

testing

Simple Intuitive actions 124 99

Convenient

Minimization of

operations for

frequently

performed actions

66 54

Accessible

Allows connection

for users with

different roles

14 14

Secure

Protects

information from
various threats

27 23

TABLE V. ROLE AND RISK SUM TABLE

Role
Sum of risks

before testing

Sum of risks

after testing

Administrator 120 116

Master 42 21

Workshop Manager 32 16

Director 22 22

All 15 15

The discipline of session testing was chosen for testing.

The question arose of how to organize sessions based on
what principle. Traditional ACC analysis suggests using
rows and columns of a table, i.e. conducting testing "by
components" or "by attributes". This is convenient for
tracking the completeness of testing (it is sufficient to mark
"closed" rows and columns). In our case, this order turned
out to be not very convenient. The point is that each user
should authenticate when logging into the system. This
takes time. In the table, capabilities related to different roles
often reside in the same row and column. So, to test one row
(one column), it will be necessary to log in and out of the

system several times. To avoid this, it was more convenient
to conduct testing "by roles". Although this complicates
tracking the completeness of testing (capabilities of one role
are scattered in the table in different places). Another
argument in favor of testing "by roles" was the simplicity of
building test scenarios. When testing "by roles", it's easy to
do this (unlike testing "by components" and "by attributes").

At the same time, the question of the order of checking
"actors" arose. It is noticed that Table V leads to an incorrect
decision. The thought arises that it should be checked based
on the reduction of the sum of risks related to the actor. This
is incorrect. A large sum can be obtained not because it
includes the most significant risks, but because it includes
many less significant risks. This is precisely the situation
reflected in Table IV. The role of Administrator carries the
greatest weight here. However, the Administrator does not
have any "red" risks. In terms of "red" risks, the roles of
Master and Workshop Manager take the lead. The former
has three "red" risks (16 + 12 + 12 = 40), and the latter has
two (16 + 16 = 32). However, another factor intervenes in
determining the order of "role testing": the order of filling
the information base. According to this factor, the role of
Administrator was brought to the forefront. Testing the
capabilities of all other actors required a filled information
base (operations, operation groups, users performing
different roles). Therefore, it was decided to first check the
Administrator's actions to fill and adjust the information
base, and only after that to check the most risky capabilities.
Thus, the table "components-attributes-capabilities" was
used as the basis for building the testing plan.

Another role played by this table is the basis for building
the testing completion criterion. The criterion chosen was
the change in the level of system riskiness, i.e. the total sum
of all risks. We proceeded from the assumption that as a
result of testing, the probability of system failures would
decrease. And this means that the magnitude of risks would
decrease. (Testing will not be able to affect the criticality of
failures.) The criterion for ending testing was chosen as a
15% reduction in system riskiness.

A total of 13 errors were found during testing. As these
errors were corrected, the probability of failures was
reassessed, and the level of system riskiness was
recalculated. The new risk values are shown in Tables III,
IV and V in the column "Risk Sums after Testing". After
correcting the thirteenth error, the level of system riskiness
decreased by 18%. This means that the criteria for ending
testing were satisfied.

Table V shows that the most progress was achieved for
those roles to which the most risky capabilities were
attributed. The sum of risks for the Master decreased from
42 to 21, and for the Workshop Manager from 32 to 16.

In comparison to other testing methodologies such as
RUP and IEEE, which focus more on test formatting advice,
ACC addresses both the structure and content of the
information system. Additionally, using a risk-oriented
approach helps in creating efficient tests due to prioritizing
capabilities based on their failure probability and criticality,
considering the frequent time constraints.

CONCLUSION

The article presents proposals for improving the
Activity-Components-Component (ACC) analysis method.

In addition to the three dimensions of the traditional ACC
analysis - "attributes-components-capabilities," it is
proposed to add a fourth dimension - "actors" (roles). This
provides a new perspective on the system - a user-oriented
view, providing another opportunity for organizing testing.

The application of the enhanced ACC method is
demonstrated in organizing the testing of a specific software
system - a system for monitoring the technological
operations of repairing electric motors. The addition of the
"actors" dimension facilitated the optimization of test
sessions organization. The main focus was on testing the
most risky capabilities. During testing, 13 errors were
identified and corrected, leading to an 18% reduction in the
overall system risk level.

Further development of the ACC method may involve
either replacing the "actors" parameter with another
parameter or continuing to increase the number of
dimensions, making ACC analysis five-dimensional, six-
dimensional, etc. This will make the method more complex
and raise questions about its automation.

REFERENCES

[1] Kulakov K. A., Dimitrov V. M. Fundamentals of software testing

//Electronic textbook for students of the Institute of Mathematics and
Information Technologies. /Petrozavodsk: PetrSU. - 2018.

[2] Safiulin R.Z. Development of testing technologies in education //

Education management: theory and practice. 2015. №1 (17). URL:
https://cyberleninka.ru/article/n/razvitie-tehnologiy-testirovaniya-v-

obrazovanii (date of reference: 15.11.2023).

[3] Karpunin Aleksey Aleksandrovich, Ganev Yuri Mikhailovich,
Chernov Maxim Mikhailovich Quality assurance methods in the

design of complex software systems // NIKSS. 2015. №2 (10). URL:

https://cyberleninka.ru/article/n/metody-obespecheniya-kachestva-
pri-proektirovanii-slozhnyh-programmnyh-sistem (date of

reference: 15.11.2023).

[4] Galimova, E. Yu. Methodology for selecting automated, manual and
mixed way of testing a software product based on quality criteria //

Proceedings of Tula State University. Technical Sciences. - 2019. -

№. 7. - С. 248-256.
[5] Kulikov S. S. et al. Software testing: textbook. - 2019.

[6] Polevshchikov, I. S., Chirkov, M. S., Levanov, A. A. V. Automated

system of test-plans development in software testing // Engineering
Gazette of Don. - 2019. - №. 8 (59). - С. 29.

[7] Piven A. A., Skorin Yu. I. Software testing // Sistemy obrokobki

informatsii. - 2012. - №. 4 (1). - С. 56-58.

[8] Kuvshinova E. A., Glazova V. F. TESTING AS IMPORTANT

COMPONENT OF THE SYSTEM OF CONTROL OF

SOFTWARE QUALITY // Applied Mathematics and Informatics:
Modern Research in Natural and Technical Sciences. - 2017. - С.

305-308.

[9] Drobysh A. A., Santsevich S. N. Debugging and testing of software.
- 2020.

[10] Shakirova A. I., Khasyanov A. F., Dautov E. F. Software testing time

reduction // Modern Science-Intensive Technologies. - 2019. - №. 7.
- С. 104-109.

[11] Vildanova K. I. Choice of software testing method // Scientific Notes

of UlSU. Series" Mathematics and Information Technologies". -
2022. - №. 2. - С. 31-37.

[12] Moiseev D. A. Methodology and process of manual testing //

Reliability and quality of complex systems. - 2017. - №. 3 (19). - С.
107-112.

[13] Aksenov D. O., Khafizov E. U., Ryabov M. A. Software Testing

Management System.
[14] Ivanov E. С. Development of software testing methodology: master's

thesis. - 2014.

[15] Viktorova V. S., Stepanyants A. S. Models and methods for
calculating the reliability of technical systems //M.: LENAND. -

2016.

[16] Carollo J., Whittaker J., Arbon J. How testing is done at Google. -
2012.

[17] Plaksin M.A. Testing and Debugging Programs for Future and

Present Professionals // Moscow: BINOM, 2023.

