
2024 SYRCoSE (Spring/Summer Young Researchers’ Colloquium on Software Engineering)

Applicances of different kind of storage systems for
network traffic analysis results

Vladislav Egorov
Ivannikov Institute for System Programming of the RAS,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia

Moscow, Russia
unclehook@ispras.ru

Roman Ponomarenko
Ivannikov Institute for System Programming of the RAS,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia

Moscow, Russia
rerandom@ispras.ru

Aleksandr Getman
Ivannikov Institute for System Programming of the RAS,
25, Alexander Solzhenitsyn st., Moscow, 109004, Russia

National Research University ”Higher School of Economics”,
20 Myasnitskaya ulitsa, Moscow 101000 Russia

Moscow Institute of Physics and Technology,
9 Institutskiy per., Dolgoprudny, Moscow Region, 141701, Russia.

Lomonosov Moscow State University,
1 Leninskie Gory, Moscow, 119991 Russia

Moscow, Russia
ever@ispras.ru

Abstract—Network Traffic Analysis (NTA) helps identify secu-
rity threats, monitor network performance, and plan for future
capacity. While real-time analysis is ideal, it can be difficult due
to high data volume and complexity. Large amounts of traffic
require parsing, and real-time data may miss hidden threats.
Post-analysis can address these challenges. It hardly depends on
choosing an effective and appropriate storage solutions. A variety
of storage systems exist, each employing different approaches and
formats to retain data. This article explores the applications of
various storage systems for NTA results. Three different types of
storage systems considered, including Greenplum, Nebula graph
and OpenSearch. A comparative approach is employed, analyzing
the same dataset across various storage systems.This allows to
examine how different database structures and query capabilities
influence the efficiency and accuracy of NTA. The resulting
insights will not only provide valuable guidance for selecting the
optimal storage solution for specific NTA tasks, but also serve as
a foundation for future research in this area.

Index Terms—Network Traffic Analysis, storage systems,
database analysis, greenplum, OpenSearch, nebula graph

I. INTRODUCTION

Network Traffic Analysis (NTA) have many appliances
such as security threats identification, network performance
monitoring and bottlenecks, capacity planning of network
infrastructure and different application monitoring. While real
time traffic analysis is very important it might be hard to
achieve. Moreover, it could be unachievable is some cases.
There are two main reasons why analyzing network traf-
fic in real-time is challenging: Volume of Data and Data
Complexity. Network traffic can be immense, especially in
large organizations or environments with high bandwidth.
Another important thing is that not all network traffic is

readily interpretable. Raw data packets need to be parsed and
analyzed to understand the context and identify anomalies. In
other cases information from real-time data is not enough.
For example, threat incidents might be identified only then it
already appeared. Post-facto analysis is a viable solution to
this problem. Stored network traffic analysis results have a
wide range of practical applications, here are some key areas:

• Stored data allows for forensic investigation after a
security breach. Analysts can examine historical traffic
patterns to identify suspicious activity leading up to the
incident.

• Stored traffic data can be used to train machine learning
models to recognize malicious patterns. These models can
then be used for real-time analysis to proactively block
threats.

• Historical traffic data helps predict future network de-
mands. This information is crucial for network admin-
istrators to plan for infrastructure upgrades or capacity
expansion to ensure smooth network operation.

• By analyzing historical traffic patterns, security teams can
build baselines for normal network activity. Deviations
from these baselines can indicate potential threats like
malware or unauthorized access attempts.

The biggest challenge for NTA systems lies in designing
a robust data storage solution that is flexible, scalable, and
delivers fast performance. The large volume of data generated
necessitates this robust infrastructure to ensure efficient storage
and analysis. Choosing the optimal database for this demand-
ing environment presents distinct challenges, including:

978-1-7281-4387-3/19/$31.00 © 2024 IEEE

• Data Variety: Effectively accommodating the diverse
data formats generated by NTA systems within a single
database.

• Performance: Ensuring efficient data retrieval and analy-
sis, especially for real-time security monitoring.

• Scalability: Adapting the database to accommodate the
ever-growing volume of network traffic data.

• Security: Implementing robust security measures to safe-
guard sensitive network data stored within the database.

There are various types of storage systems, each with its
own strengths and weaknesses. Traditional options include
relational database management systems which follows SQL
standard. They might be categorized into OnLine Analyti-
cal Processing (OLAP) and Online Transaction Processing
(OLTP) systems. NoSQL databases differ from SQL by not
adhering to the SQL standard. Examples include document-
oriented, key-value, graph, and hierarchical databases. The
selection of a storage system depends heavily on the data type,
its characteristics, and how it will be used. For our experiment,
three database types were chosen. Since Network Traffic
Analysis (NTA) results often involve analytical queries, an
OLAP database might be sufficient. Greenplum[1], a popular
and advanced OLAP database with horizontal scaling and full
SQL compatibility[2], is a strong contender. It also supports
OLTP type of load. Document-oriented databases with full-
text search capabilities are also interesting because they are
schema-less and offer advanced search functionalities. Elastic-
search[3] is a well-known document-oriented database, but its
license is not entirely open-source. This why, OpenSearch[4],
a fork of Elasticsearch, will be considered. Given that NTA
results often consist of interconnected data, a graph database
could be a suitable option. While Neo4J[5], Dgraph[6], and
others exist, Nebula Graph[7] was chosen for its proven
horizontal autoscaling capabilities and, more importantly, its
ability to handle large amounts of data[8].

Several experiments were conducted to identify the most
suitable storage system for NTA results. These experiments
focused on data load times, data acquisition metrics, and disk
space usage. To ensure a fair comparison, all experiments used
the same network traffic data set.

This paper is organized as follows. Section II describes
the distinct characteristics of NTA data and the challenges
associated with its storage. Then, It describes the general
problem statement, structure, and unique characteristics of
network traffic data. Section III includes analyzes of existing
storage solutions for NTA, their strengths and weaknesses
outlined. Section IV provides general design considerations
and data schema used in experimental part. Section V contains
evaluation results which include comparison of three database
types for storing NTA results, evaluating their limitations
and advantages. By leveraging a comprehensive analysis of
these works and recent advancements in NTA research, we
unveil a comparative evaluation of various database types.
This in-depth exploration include relational, NoSQL, and
graph databases, meticulously highlighting their strengths and
weaknesses within the context of NTA data. Experimental

results, including performance estimations, storage space re-
quirements, and other relevant metrics, are presented. Section
VI concludes article by summarizing the findings and high-
lighting potential areas for future research to improve storage
solutions for NTA data.

II. PROBLEM STATEMENT

For better understanding problems connected with storing
NTA results, key characteristics of this type of stored data
must be presented. First of all, storing and processing of
network traffic falls under the concept of big data[9] due to its
significant volume, variety, and speed of new data acquisition.
Data can be generated at a high speed, which makes it difficult
to process and store in real time. The volume of network traffic
data can reach petabytes in large organizations, requiring
scalable storage solutions and efficient processing methods. In
article[9], suggested NewSql and NoSQL databases over re-
lational databases, because they inappropriate on big datasets.
In NTA systems time of occuring some events plays big
part. This kind of systems often relies on temporal context,
as patterns and anomalies can be associated with specific
times, dates, or intervals. For example, time arrival of packets
can be used as classification characteristic for deep learning
methods [10], [11]. Time stamps and temporal metadata are
crucial for effective analysis and storage of network traffic, as
they help to evaluate various statistical patterns in the large
volume of network traffic. For instance, a burst in network
traffic[12] at unusual hours might indicate suspicious activity,
while recurring spikes during business hours could point to
bandwidth bottlenecks. Therefore, time stamps and precise
temporal metadata are crucial for efficient analysis and storage
of NTA data. They empower security professionals to not
only identify potential threats but also gain valuable insights
into network usage patterns and resource allocation needs.
By effectively leveraging temporal data, organizations can
achieve a deeper understanding of their network behavior and
proactively address potential security vulnerabilities and per-
formance issues. Network traffic analysis can be categorized
by two main levels of detail[13]: packet-level and flow-level.
While packet-level network data offers a highly detailed view
of traffic, it necessitates powerful, specialized equipment. This
approach becomes impractical for expansive networks due
to scalability limitations with a growing number of devices.
Additionally, storing such granular data demands significant
storage capacity. Flow-level analysis, on the other hand, pro-
vides a more scalable and privacy-conscious alternative. By
aggregating packets, flow-level data offers a sufficient level of
detail for network monitoring in modern environments with
vast amounts of traffic and numerous connected devices.

III. RELATED WORK

The challenge of storing network traffic analysis results has
been around for decades. Early attempts relied on relational
databases. TelegraphCQ[14], for example, leveraged Post-
greSql[15] for this purpose, with extensions for handling large
continuous queries over ever-changing network data streams.

TelegraphCQ focuses on handling large streams of continuous
queries over variable data streams. Later, timemachine[16]
emerged, offering a cost-effective solution that utilized com-
modity hardware to buffer high-volume traffic for several days.
The core principle behind this time machine lies in the ”heavy-
tailed” distribution of network traffic. This allows for capturing
most connections in their entirety, while strategically skipping
less critical data, all within a configurable per-connection
byte limit. Some of the suggested approaches[17] based on
special data format of network data, such as NetFlow[18]
and IpFIX[19]. This kind of solutions facilitate the cost-
effective monitoring of high-bandwidth links, using off-the-
shelf hardware capabilities. Further this approach improved
by NetMemex[20], provide network flow data with full packet
payload. More advanced solution[21] separate constraints of
static data analysis, exploiting high bandwidth cluster solutions
which gain immediate insights into dynamic environments
through seamless data acquisition and analysis. Unveiling
historical context with rapid responsiveness, empowering data-
driven decision-making at every level. These comprehensive
solution, often referred to as streaming data warehouses,
represent a paradigm shift in network data analysis, offering
unparalleled flexibility and agility. The researchers highlight
a key advantage of their solution by contrasting it with exist-
ing systems like those[22] based on Apache Hadoop. While
Hadoop offers valuable functionalities, it’s limited to analyzing
data captured at specific points in time (snapshots). This can
be a disadvantage when real-time insights are crucial. Many
of mentioned solutions didn’t exist in free access nowadays.
In the next paragraphs, several most recent and interesting
technologies introduced.

PcapDB[23] is a distributed, open-source, and search-
optimized packet capture system. It is designed to replace
expensive commercial appliances with off-the-shelf hardware
and a free, easy-to-manage software system. Captured packets
are reorganized during capture by flow (an indefinite length
sequence of packets with the same src/dst IPs/ports and
transport protocol), indexed by flow, and searched (again) by
flow. The indexes for the captured packets are relatively tiny
(typically less than 1% the size of the captured data). Data
captured in Pcap format is stored on-site at each Capture Node,
minimizing network traffic. This setup enables cyber incident
responders and analysts to swiftly search through indexed
data instead of raw Pcap files, significantly cutting down
query times, and allowing for searches across various capture
locations. PcapDB indexes build on top of the PostgreSql
but developers didn’t describe them in detail. While indexes
in PcapDB allows to fast search networks it strugle of luck
of functionality. It allows only to search information through
network and transport level of TCP/IP stack.

In 2017 group of researchers presented Moloch[24] an
open source, large scale, full packet capturing, indexing,
and database system. It build on top of the Elasticsearch[3]
database system. Later, developers of Moloch evolved it to
Arkime[25]. Arkime group network packets by logical flows
of data, grouping by network addresses information. Arkime

store all possible data in one index. Every document in this
index may consists of any of supported network protocol
records. A key benefit of this approach is the ability to
perform full-text searches across captured network traffic. This
facilitates easy exploration of large datasets. However, using
a full-text search engine like Elasticsearch can introduce per-
formance overhead, especially for structured data like network
traffic. Elasticsearch offers horizontal scaling by distributing
data across nodes (sharding). While this enhances scalability,
it can increase query complexity and impact performance.
Replication ensures data redundancy but comes at the cost of
higher storage consumption and write latency. Striking a bal-
ance between these features can be challenging. Additionally,
large and frequently updated datasets can strain the indexing
process, affecting search performance.

GRANEF[26] — Graph-based network forensics is a new
approach to analyzing network traffic data. GRANEF toolkit
utilizes Dgraph database for storing and querying data. Main
advantages in links between various network members. It
allows analysts to easily navigate and visually identify inter-
esting network traffic. Dmitry Larin’s 2023 master’s thesis[27]
proposed a novel approach for describing network topology
using a multilevel graph model. This model leverages data
from OSPF and BGP communication between routers to
represent the network topology across different layers of the
TCP/IP protocol suite. The approach facilitates analysis of
the network’s state at each level. The storage architecture
utilizes two key components: Nebula Graph and Clickhouse.
Nebula Graph is a graph database optimized for efficient
graph queries, which is particularly well-suited for the type of
data being analyzed. ClickHouse[28], an OnLine Analytical
Processing (OLAP) database, serves as the storage for time-
series events. The proposed composite data storage approach
leverages two types of databases to gain the advantages of
each.

IV. GENERAL DESIGN

A. Data schema

Main investigated data schema is based on [29] dissertation
work. This data model offers a method for analyzing network
interactions independent of underlying protocols. It consider
network communication as a set of logic connections, there
packets transfered between logical entities residing at the same
level within the network architecture. This approach allow to
don’t get attached to specific protocol stacks, allowing for the
flexible representation of diverse network interactions. Logic
connection described by concrete network protocol type is
called Context. Distinct instances of a defined context can be
efficiently differentiated by their unique key. Key is usually
presented in protocol headers and usually describes some
address information. In general, context key is presented in
binary format, but may be serialized in different formats.
At this moment it serialized into json[30]. Json bring more
flexibility in further processing and exporting of data.

Set of instances of Context present a tree structure. In this
tree each Context connected with it parent. Parent symbolize

Figure 1. Context tree

Figure 2. Block tree

more lower layer in network stack. Example of context tree
presented on Figure 1.

While context describe logical connections, payload of this
connections either network streams or packets with header
fields, presented by blocks. Block is universal structure which
describes sequence of bytes, with some characteristics. Each
block is assigned a parse type. Parse type is similar to
Context type, and connected with type of network stream,
name of network protocol packet or type of field of packet.
Proposed data schema semantically separate blocks by two
subtypes: stream block and fragment block. The stream block
usually acts as a data source for another blocks. It may define
dedicated network stream or original network data. Fragment
block more simple thing, it just define network packet or
protocol field. Every fragment block must have offset and size
which define range of bytes in data source related to this block.
Each block possesses a semantic connection to the specific
context in which it appears.

Proposed data schema utilizes a three-tiered approach to
represent network connections Figure 2:

1) Top Level provides metadata describing the overall
logical network connection across various network stack
layers.

2) Second Level described by stream blocks represent
unique network flows, each encapsulating a specific
communication stream and it payload.

3) Last level delve into the most granular details, describing
individual network packets or specific fields within those
packets by Fragment block

B. Sql database (greenplum)

Greenplum [1] is an open-source data warehouse software
built on top of PostgreSQL[15]. It is designed for handling

large datasets and complex queries. Greenplum’s MPP archi-
tecture distributes data and workloads across multiple servers,
enabling efficient processing of large-scale data warehouses
and analytics tasks. It also supports some specific data types
like net-types[31] which can be useful for network data anal-
ysis. Greenplum scales horizontally by adding more servers,
this allows to seamlessly grow storage and processing capacity
as overall data volumes increase. This advantage is very
important for storing always increasing amount of network
data. Furthermore, it is fully sql compatible and inherited
most of PostgreSql functions. Main feature of greenplum is
support of OLAP data storage format. As work with NTA
results gets into description of big data there is no big need for
OLTP operations like update or delete. OLAP databases are
optimized for performing aggregations and complex queries
on large datasets. This enables network analysts to quickly
identify trends, pinpoint peak traffic periods, and analyze
traffic patterns across different user groups or applications.
Greenplum allows to recursively fetch rows by recursive
Common Table Expression (CTE)[32]. This feature helps to
easily work with context and block tree of supposed data
schema. One of inherited features of PostgreSql is support of
JSONB[33] data format. This kind of data can also be stored as
raw text, but jsonb add aditional features like: more compact
storage format, support of specialized functions for search.
JSONB also supports indexing, which can be a significant
advantage. All this features allows to easily search through
Context keys of experimental data schema.

C. NoSQL database(OpenSearch)

OpenSearch[4] is open source fork of elasticsearch popular
full-text search database. OpenSearch excels at horizontal
scaling by adding more nodes to the cluster. This allows to
handle growing volumes of network traffic data efficiently
without sacrificing performance. Advanced full-text search
engine allows to easily find and filter some information
across various network traffic fields (IP addresses, URLs,
protocols) for in-depth analysis. It also support of aggregation
and extended analytic. OpenSearch’s aggregation framework
allows to analyze network traffic data from various angles.
Moreover, it provides insightful visualizations, which can be
used to identify trends, patterns, and anomalies in traffic flows.
Unlike traditional databases with rigid schemas, OpenSearch
offers a schema-less design. This provides flexibility to store
and analyze network traffic data with diverse formats and
structures. While Elasticsearch is great for near real-time
analysis, for very long-term historical data analysis, other
solutions like data lakes might be more efficient. Index in
OpenSearch defined by mappings. Each mapping consists of
fields with any of the supported types. One of the supported
types is Object[34]. An object field type contains a json object.
A value in a json object may be another json object. This kind
of fields automatically indexed by search engine and their
containment may be used in queries. Big disadvantages of
OpenSearch is hard working with related data. There is no
some kind of sql join or reference. OpenSearch provide basic

relations only between documents of one index by mechanism
of parent/child relationship[35]. This approach didn’t allow to
represent tree like structures.

D. Graph database(Nebula graph)
Nebula graph[7] excels at modeling and querying relation-

ships between data points. This could be beneficial for net-
work traffic analysis if you want to understand how different
devices, users, or IP addresses interact with each other. For
instance, tracking connections within a malware outbreak or
visualizing communication patterns within a network. Nebula
boasts impressive query performance for interconnected data,
allowing for efficient retrieval of specific network traffic flows
based on relationships. Nebula can scale horizontally to handle
growing volumes of network traffic data. While Nebula Graph
Database offers a variety of data types, it doesn’t natively
support storing and indexing JSON data directly. However,
it provides a workaround: JSON data can be dynamically
converted (casted) into a specific data type called a ”Map”[36].
This ”Map” type essentially acts as a representation of a
JSON object within Nebula Graph and can be used in complex
queries for flexible data manipulation.

E. Binary data
Network traffic analysis results come in a variety of formats,

and understanding these formats is crucial for effective storage
and analysis. One key aspect to consider is that this data can
often be presented in binary format. Common storage formats
for network traffic captures include pcap (packet capture) and
its successor, pcapng. These formats preserve the raw network
packets, allowing for in-depth forensic analysis. Additionally,
network traffic analysis can involve extracting network flow
data, which summarizes conversations between devices rather
than individual packets. Furthermore, network traffic anal-
ysis may involve processing captured data through specific
data changing alghorithms like decompression and decryption,
which result must be stored in binary format. The only storage
which supports raw bytes data is greenplum. It allows to
store raw bytes in specific format called binary large ob-
jects(BLOB[37]). While Elasticsearch doesn’t natively support
raw bytes, it can accommodate binary data encoded in base64
format[38]. However, the process of encoding and decoding
can introduce significant performance overhead, especially
for large datasets. Moreover, binary data in OpenSearch is
not searchable. Unlike Greenplum and Elasticsearch, Nebula
currently doesn’t offer direct support for storing raw byte
data types. Binary data often presents indexing challenges
for traditional databases. Storing it literally within a database
might not be the most performant or scalable solution. Best
practices for storing this kind of data lay in usage of external
object storages, like CEPH, HDFS and etc. In this research
raw bytes data will be ignored.

V. EVALUATION

A. Experiment design
To ensure a fair comparison of storage systems for NTA

results, a single network data set was used throughout the

experiments for each of considered databases. This ensured
a controlled environment for evaluating performance and
facilitated a direct comparison of the systems’ capabilities
for loading and retrieving data. The first set of experiments
investigated data loading times. Minimizing this metric is
crucial for NTA due to the large volumes of data typi-
cally collected and the limited storage capacity of collectors.
Following successful data loading, storage space usage was
analyzed. Subsequent experiments focused on data acquisition
performance for loaded data. Here, the specific tree-based data
schema, as described in Section IV, played a critical role. The
goal was to efficiently extract data with minimal connections
between elements. For metrics collection Opentelemetry[39]
used. OpenTelemetry uses tracing to capture the performance
of requests or tasks. Percentiles can then be used to summarize
the distribution of these execution times. In this context, p50
(50th percentile) would likely represent the duration at which
50% of requests took less time to complete, and p90 (90th
percentile) would represent the duration at which 90% of
requests took less time to complete.

B. Dataset

Basic experimental dataset it is a network trace in pcap
format. Table I summarizes key statistics about the trace
content. The trace serves as input for a network traffic analysis
system. After processing, the results are loaded into one of the
storage systems under consideration.

Table I
DATASET STATISTICS

Statistic Value
Overall size, Mbytes 5893.71
Number of unique contexts 150355
Number of unique streams 19117
Number of IP packets 6067525
Number of TCP packets 2463840
Number of HTTP streams 2548

C. Hardware

The experiments were conducted using servers with spe-
cific hardware configurations. These servers included Intel(R)
Xeon(R) Silver 4314 CPUs clocked at 2.40 GHz, 256 GB of
memory, and Dell EMC VD SSDs. One important property
for NTA storage is horizontal scaling. This type of scaling,
often achieved through distributed databases, which allows to
distribute the data load across multiple nodes. To leverage this
benefit, all the considered databases were deployed in a multi-
node configuration, with each database running on two nodes.

D. Data load

Different databases handle concurrent access in varying
ways. For instance, Greenplum utilizes a centralized approach.
Client requests are received by the master node, which then
forwards them to the appropriate data node for processing.
In contrast, OpenSearch employs a distributed client-based
load balancing strategy. Here, any node within the cluster can

Table II
LOAD STATISTICS

Greenplum OpenSearch Nebula
C S C S C S

Time, s 1087 770 1012
p50, ms 5.9 5.9 4.2 3.5 5.6 5.7
p90, ms 7.1 7 4.6 3.8 6.1 6.2
p99, ms 7.5 7.5 5.1 4.9 6.4 6.5
min, ms 3.4 4.07 2.74 2.48 3.18 4.65
max, ms 54.25 29.4 217.5 153.4 212.1 8.44
SD, ms 0.73 0.83 0.69 2.06 0.76 0.44
spans/min 7160 910 9400 1190 7520 954

Table III
SPACE STATISTICS

Space stats
Greenplum, MB 181

Nebula, MB 115.7
OpenSearch, MB 20.7

potentially receive and handle client requests. It’s important
to note that in this experiment, data loading is performed
synchronously within a single thread. Statistics of loading data
into databases presented in Table II. In Table II, C refers to
Context and S refers to Stream.

Important characteristic for consider is size of stored data.
Table III provides an overview of the storage space statistic
for all types of databases.

E. Data query

For each database had executed queries which return same
data. It is set of queries that return address information
about HTTP streams by defined source IP address. In case
of OpenSearch it is impossible to get connected data in one
query. Acquisition of required data might be achieved only be
series of queries. Total number of executed queries for each
database is equal 330. Results of HTTP streams acquisition
presented in Table IV.

It’s worth noting that queries to OpenSearch performed in
several requests, yet it still achieved impressive read speeds.
The exceptional read speed of OpenSearch might be attributed
to its handling of the ”context key”, the most valuable field for
search within the considered data schema. Unlike Greenplum
and Nebula, which required special type casts and functions
for searching this JSON field, OpenSearch natively stored and
indexed it in its original format. This native handling likely
contributed to the superior read performance.

Table IV
FETCH STATISTICS

Greenplum OpenSearch Nebula
p50, ms 80.4 18.9 170
p90, ms 83.1 140.4 176.6
p99, ms 92.8 264.9 181.5
min, ms 68.9 15.5 155.5
max, ms 140.9 348.5 198.7
SD, ms 5.05 62.2 5.7

VI. CONCLUSION

In this paper, appliance of different storage systems for
NTA results was considered. The investigation focused on
their suitability for storing and facilitating analysis of complex
network data. This article evaluated the suitability of three
storage systems (OpenSearch, Nebula Graph, Greenplum) for
storing and analyzing complex network traffic data (NTA
results). While OpenSearch offers the fastest write speeds
and space efficiency, it lacks the ability to represent intricate
relationships within the data. Nebula Graph excels at modeling
these relationships but may not be ideal for very high data
volumes. Greenplum provides a traditional relational model,
allowing for flexible analysis but potentially consumes more
storage space. The key takeaway is that there’s no one-
size-fits-all solution. The optimal storage system depends on
specific network needs: High Data Volume: All evaluated
databases can horizontally scale to accommodate significant
data growth. Intricate Relationships: Nebula Graph excels at
modeling complex network connections, making it ideal for
scenarios where understanding these relationships is crucial.
Loosely Connected Data: Greenplum’s relational model with
SQL support allows efficient storage of data points with
fewer connections. Schema Flexibility: OpenSearch offers the
most flexibility for storing various NTA data structures due
to its schema-less architecture. The optimal storage solution
depends on the specific requirements of the network envi-
ronment and analysis needs. OpenSearch performed well in
write benchmark tests, achieving the lowest time in load
experiments. Moreover, OpenSearch impressed with its space
efficiency. Impressively, in 50% of fetch experiments, this
database outperformed all others in speed. However, it did
experience occasional performance spikes. Greenplum showed
average results in read tests and more important it had lowest
deviation of values. Nebula performs well on load tests but
it had some problems with fetching the data. Most inefficient
space consumption demonstrate Greenplum. Future research
could involve conducting controlled experiments to quantify
the performance and scalability of each storage system un-
der varying network traffic loads. Additionally, investigating
the integration of these systems into a comprehensive NTA
framework could offer valuable insights for network security
professionals. By carefully considering the volume, structure,
and desired analysis depth of their network data, organizations
can select the most suitable storage system for their NTA
efforts.

REFERENCES

[1] “Greenplum database.” (2024), [Online]. Available:
https://greenplum.org (visited on 03/20/2024).

[2] Z. Lyu, H. H. Zhang, G. Xiong, et al., “Greenplum: A
hybrid database for transactional and analytical work-
loads,” in Proceedings of the 2021 International Con-
ference on Management of Data, 2021, pp. 2530–2542.

[3] “Elasticsearch.” (2024), (visited on 03/22/2024).
[4] “Opensearch.” (2024), [Online]. Available: https : / /

opensearch.org (visited on 03/20/2024).

https://greenplum.org
https://opensearch.org
https://opensearch.org

[5] “Neo4j graph database & analytics — graph database
management system.” (2024), [Online]. Available:
https://neo4j.com (visited on 03/22/2024).

[6] “Dgraph — graphql cloud platform, distributed graph
engine.” (2024), [Online]. Available: https://dgraph.io
(visited on 03/22/2024).

[7] “Open source distributed graph database — nebula-
graph.” (2024), [Online]. Available: https : / / www .
nebula-graph.io (visited on 03/22/2024).

[8] M. Wu, X. Yi, H. Yu, Y. Liu, and Y. Wang, “Nebula
graph: An open source distributed graph database,”
arXiv preprint arXiv:2206.07278, 2022.

[9] A. D’Alconzo, I. Drago, A. Morichetta, M. Mellia, and
P. Casas, “A survey on big data for network traffic mon-
itoring and analysis,” IEEE Transactions on Network
and Service Management, vol. 16, no. 3, pp. 800–813,
2019.

[10] A. I. GETMAN and M. K. Ikonnikova, “A survey of
network traffic classification,” Proceedings of the Insti-
tute for System Programming of the RAS (Proceedings
of ISP RAS), vol. 32, no. 6, pp. 137–154, 2021.

[11] S. Rezaei and X. Liu, “Deep learning for encrypted traf-
fic classification: An overview,” IEEE communications
magazine, vol. 57, no. 5, pp. 76–81, 2019.

[12] D. Wei, F. Shi, and S. Dhelim, “A self-supervised learn-
ing model for unknown internet traffic identification
based on surge period,” Future Internet, vol. 14, no. 10,
p. 289, 2022.

[13] M. Piskozub, R. Spolaor, and I. Martinovic, “Compact-
flow: A hybrid binary format for network flow data,”
in Information Security Theory and Practice: 13th
IFIP WG 11.2 International Conference, WISTP 2019,
Paris, France, December 11–12, 2019, Proceedings 13,
Springer, 2020, pp. 185–201.

[14] S. Chandrasekaran, O. Cooper, A. Deshpande, et al.,
“Telegraphcq: Continuous dataflow processing,” in Pro-
ceedings of the 2003 ACM SIGMOD international con-
ference on Management of data, 2003, pp. 668–668.

[15] “Postgresql: The world’s most advanced open source
database.” (2024), [Online]. Available: https : / / www.
postgresql.org/ (visited on 03/20/2024).

[16] S. Kornexl, V. Paxson, H. Dreger, A. Feldmann, and
R. Sommer, “Building a time machine for efficient
recording and retrieval of high-volume network traffic,”
in 5th Internet Measurement Conference, USENIX As-
sociation, 2005, pp. 267–272.

[17] A. Bär, P. Casas, L. Golab, and A. Finamore, “Db-
stream: An online aggregation, filtering and processing
system for network traffic monitoring,” in 2014 Interna-
tional Wireless Communications and Mobile Computing
Conference (IWCMC), IEEE, 2014, pp. 611–616.

[18] B. Claise, “Cisco systems netflow services export ver-
sion 9,” RFC Editor, RFC 3954, Oct. 2004. [Online].
Available: https://www.rfc-editor.org/rfc/rfc3954.txt.

[19] B. Claise, B. Trammell, and P. Aitken, “Specification
of the ip flow information export (ipfix) protocol for

the exchange of flow information,” RFC Editor, RFC
7011, Sep. 2013. [Online]. Available: https://www.rfc-
editor.org/rfc/rfc7011.txt.

[20] H. Lim, V. Sekar, Y. Abe, and D. G. Andersen, “Net-
memex: Providing full-fidelity traffic archival,” arXiv
preprint arXiv:1603.04387, 2016.

[21] M. Wullink, G. C. Moura, M. Müller, and C. Hes-
selman, “Entrada: A high-performance network traf-
fic data streaming warehouse,” in NOMS 2016-2016
IEEE/IFIP Network Operations and Management Sym-
posium, IEEE, 2016, pp. 913–918.

[22] Y. Lee and Y. Lee, “Toward scalable internet traffic mea-
surement and analysis with hadoop,” ACM SIGCOMM
Computer Communication Review, vol. 43, no. 1, pp. 5–
13, 2012.

[23] S. I. Steinfadt and P. S. Ferrell, “Packet capture solu-
tions: Pcapdb benchmark for high-bandwidth capture,
storage, and searching,” Los Alamos National Labora-
tory (LANL), Los Alamos, NM (United States), Tech.
Rep., 2017.

[24] J. Uramová, P. Segeč, M. Moravčı́k, J. Papán, T. Mokoš,
and M. Brodec, “Packet capture infrastructure based
on moloch,” in 2017 15th International Conference
on Emerging eLearning Technologies and Applications
(ICETA), IEEE, 2017, pp. 1–7.

[25] “Arkime.” (2024), [Online]. Available: https://arkime.
com (visited on 03/20/2024).

[26] M. Cermak and D. Sramkova, “Granef: Utilization of
a graph database for network forensics.,” in SECRYPT,
2021, pp. 785–790.

[27] D. Larin, “Razrabotka i primenenie modeli opisanija
mnogourovnevyh setevyh topologij dlja reshenija
zadachi monitoringa i modelirovanija setevoj infrastruk-
tury,” Master’s thesis, Moscow Institute of Physics and
Technology (National Research University), Moscow,
Jun. 2023.

[28] “Fast open-source olap dbms - clickhouse.” (2024),
[Online]. Available: https://clickhouse.com (visited on
03/22/2024).

[29] Y. Markin, “Metody i sredstva uglublennogo anal-
iza setevogo trafika,” Ph.D. dissertation, ISP RAN,
Moscow, 2017.

[30] T. Bray, “The JavaScript Object Notation (JSON) Data
Interchange Format,” RFC 7159, Mar. 2014, 16 pp.
[Online]. Available: https : / /www.rfc- editor.org/ info/
rfc7159.

[31] “Postgresql: Documentation: 16: 8.9. network address
types.” (2024), [Online]. Available: https : / / www .
postgresql . org / docs / current / datatype - net - types . html
(visited on 03/22/2024).

[32] “Greenplum: With queries (common table expres-
sions).” (2024), [Online]. Available: https : / / docs .
vmware . com / en / VMware - Greenplum / 7 / greenplum -
database/admin guide- query- topics- CTE- query.html
(visited on 03/22/2024).

https://neo4j.com
https://dgraph.io
https://www.nebula-graph.io
https://www.nebula-graph.io
https://www.postgresql.org/
https://www.postgresql.org/
https://www.rfc-editor.org/rfc/rfc3954.txt
https://www.rfc-editor.org/rfc/rfc7011.txt
https://www.rfc-editor.org/rfc/rfc7011.txt
https://arkime.com
https://arkime.com
https://clickhouse.com
https://www.rfc-editor.org/info/rfc7159
https://www.rfc-editor.org/info/rfc7159
https://www.postgresql.org/docs/current/datatype-net-types.html
https://www.postgresql.org/docs/current/datatype-net-types.html
https://docs.vmware.com/en/VMware-Greenplum/7/greenplum-database/admin_guide-query-topics-CTE-query.html
https://docs.vmware.com/en/VMware-Greenplum/7/greenplum-database/admin_guide-query-topics-CTE-query.html
https://docs.vmware.com/en/VMware-Greenplum/7/greenplum-database/admin_guide-query-topics-CTE-query.html

[33] “Postgresql: Documentation: 12: 8.14. json types.”
(2024), [Online]. Available: https://www.postgresql.org/
(visited on 03/21/2024).

[34] “Object — opensearch documentation.” (2024), [On-
line]. Available: https : / / opensearch . org / docs / latest /
field - types / supported - field - types / object/ (visited on
03/21/2024).

[35] “Join — opensearch documentation.” (2024), [Online].
Available: https://opensearch.org/docs/latest/field-types/
supported-field-types/join/ (visited on 03/22/2024).

[36] “Map — nebulagraph database manual.” (2024), [On-
line]. Available: https://docs.nebula-graph.io/3.6.0/3.
ngql-guide/3.data-types/8.map/ (visited on 03/20/2024).

[37] “Postgresql: Documentation: 12: 8.4. binary data types.”
(2024), [Online]. Available: https://www.postgresql.org/
docs/12/datatype-binary.html (visited on 03/20/2024).

[38] “Binary — opensearch documentation.” (2024), [On-
line]. Available: https : / / opensearch . org / docs / latest /
field - types / supported - field - types / binary/ (visited on
03/20/2024).

[39] “Opentelemetry.” (2024), [Online]. Available: https: / /
opentelemetry.io (visited on 03/22/2024).

https://www.postgresql.org/
https://opensearch.org/docs/latest/field-types/supported-field-types/object/
https://opensearch.org/docs/latest/field-types/supported-field-types/object/
https://opensearch.org/docs/latest/field-types/supported-field-types/join/
https://opensearch.org/docs/latest/field-types/supported-field-types/join/
https://docs.nebula-graph.io/3.6.0/3.ngql-guide/3.data-types/8.map/
https://docs.nebula-graph.io/3.6.0/3.ngql-guide/3.data-types/8.map/
https://www.postgresql.org/docs/12/datatype-binary.html
https://www.postgresql.org/docs/12/datatype-binary.html
https://opensearch.org/docs/latest/field-types/supported-field-types/binary/
https://opensearch.org/docs/latest/field-types/supported-field-types/binary/
https://opentelemetry.io
https://opentelemetry.io

APPENDIX

ACRONYMS

CTE Common Table Expression. 4

NTA Network Traffic Analysis. 1, 2, 4–6

OLAP OnLine Analytical Processing. 2–4
OLTP Online Transaction Processing. 2, 4

	Introduction
	Problem statement
	Related work
	General design
	Data schema
	Sql database (greenplum)
	NoSQL database(OpenSearch)
	Graph database(Nebula graph)
	Binary data

	Evaluation
	Experiment design
	Dataset
	Hardware
	Data load
	Data query

	Conclusion
	Appendix

