

Experimental Comparison of Logic Circuit

Synthesis Methods

Maksim Vershkov

MIEM

HSE

Moscow, Russia

mdvershkov@edu.hse.ru

Alexey Yagzhov

MIEM

HSE

Moscow, Russia

aayagzhov@edu.hse.ru

Nikita Romanov

MIEM

HSE

Moscow, Russia

nsromanov_1@edu.hse.ru

Egor Znatnov

Faculty of Computer

Science, HSE

Moscow, Russia

epznatnov@edu.hse.ru

Anna Fedotova

Faculty of Computer

Science, HSE

Moscow, Russia

aafedotova_6@edu.hse.ru

Abstract—This paper presents the results of an experimental

comparison of methods for the synthesis of combinational logic

circuits that implement specified Boolean functions. The

comparison was based on an estimate of power, delay and area

of synthesized logic circuits. The following methods were

considered: the method of Akers, bi-decomposition, the methods

of cascades, Minato-Morreale, Reed-Muller and DSD-

decomposition.

Keywords—Boolean functions, logic optimization, electronic

design automation

I. INTRODUCTION

The technology-independent optimization (optimization)
of logic circuits is one of the most important steps in the logic
synthesis process with a significant impact on the quality of
the digital systems being designed.

Different methods of synthesis of logic circuits
implementing given Boolean functions (synthesis methods)
are widely used in logic optimization approaches. For
instance, these methods can be used in optimization that is
based on rewriting that is the replacement of subcircuits of
the original logic circuit with other subcircuits that more
effectively implement the same functions [1].

There are three main criteria for logic optimization
(metrics for evaluating these criteria in a logic net are given
in parentheses):

1) power (switching activity);

2) delay (the longest path from input to output);

3) area (the number of logic gates).

The aim of this study was to perform an experimental
comparison of logic circuit synthesis methods and to identify
the best one for each optimization criterion.

Other published papers also present the results of
comparisons between different synthesis methods. In [2], the
considered methods are as follows: sum-of-products (SOP)
and product-of-sums (POS) two-level expressions, MUX-
based expressions, Quine-McCluskey [3] method and
different types of XOR expressions. The comparison was
made for all Boolean functions of 3 and 4 variables and for a
thousand random generated functions of 5 variables. The
comparison was based on estimating the delay and area of
synthesized logic circuits without technology mapping.

In [4], a new approach to bi-decomposition of Boolean
functions is described and compared with the best algorithms
in logic synthesis tools such as FBDD [5], SIS [6], ABC [7].
Sixteen circuits from the MCNC [8], ISCAS [9] and
IWLS [10] benchmark suites were used for the comparison

by power, delay and area after the process of technology
mapping.

In [11], a comparison was made between the size (number
of products in the SOP) of the minimal SOP of a Boolean
function and the size of the SOP obtained by Minato-
Morreale [12] method. The study was considered for different
Boolean functions with the number of variables ranging from
3 to 20.

In this article an experimental comparison of methods of
synthesis of logic circuits implementing given Boolean
functions was carried out. The following methods were
considered: the method of Akers [13], bi-decomposition [14],
the methods of cascades [15], Minato-Morreale [12], Reed-
Muller [16] and DSD-decomposition [17]. The circuits were
synthesized in bases of different logic gates without
technology mapping processing. Power, delay and area of the
circuits were estimated for the comparison. Boolean
functions of size from 4 to 10 variables were considered in
the experiment. The choice of a benchmark may have a
significant impact on the results of experiments. In this study
we decided to generate a set of tests based on information
about the frequency of occurrence of NPN-equivalence
classes of Boolean functions of four variables.

This paper is organized as follows: Section II provides a
brief overview of considered methods. Section III describes
the methodology of the tests carried out. Section IV presents
the results of this study and Section V is a conclusion.

II. METHODS OVERVIEW

Akers method [13] is used to create majority-based
circuits. It is the iterative algorithm that implies the
manipulations of the table created from the given truth table.
The columns of the converting table correspond to gates
arguments. At each step of the algorithm, all sets of triples of
the columns are iterated and a truth table of a majority gate is
evaluated. Received truth tables are compared with each
other, after which the best one is selected according to some
heuristics. It is inserted into the table as a column. The
algorithm terminates after obtaining the truth table that is
equal to the given one.

Bi-decomposition [14] is based on extracting the
superposition of two Boolean functions from a single source
function:

 𝑓 = 𝜑(𝑔1(𝑧1), 𝑔2(𝑧2)), (1)

where 𝑓 is a source function, 𝑔1 and 𝑔2 are Boolean
functions with sets of arguments 𝑧1 and 𝑧2 respectively, 𝜑 is
a given boolean function of two arguments.

Function 𝜑 is typically represented by logic operations
such as OR (NOR), AND (NAND), and XOR. Different
constraints can be imposed on the arguments of new
functions, such as requiring subfunctions to have disjoint
support. Alternatively, these arguments can be given before
bi-decomposition. In this article the method of heuristic
decomposition was considered. This means that the
arguments of 𝑔1 and 𝑔2 are not provided, and there is only
one constraint for their arguments: the number of arguments
must be less than the number of arguments of the source
function. Nevertheless, the probability of existence of
decomposition of this kind is law, especially for completely
specified functions. If decomposition is impossible, when the
source function is broken down into two functions, one or
both of them have the same number of variables. The circuit
synthesis algorithm using bi-decomposition is recursive. The
two Boolean functions obtained at each step of recursion are
decomposed in the same manner.

The method of cascades [15] is based on the Shannon [18]
decomposition, which represents the source function as the
sum of two sub-functions:

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑥𝑛 ∙ 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛−1, 1) ∪

 x̅n ∙ f(x1, x2, … , xn−1, 0), (2)

where 𝑓 is a source Boolean function, 𝑥𝑖 is a 𝑖 argument
of this function. This method is also recursive, and two sub-
function are decomposed in the same way.

The Minato-Morreale [12] method is a technique for
obtaining an irredundant sum-of-product (ISOP) of Boolean
function. An ISOP is a sum-of-products (SOP) of Boolean
function that cannot have any literal or product removed
without losing equivalence to the source function. The study
considered two variations of the method: with and without
algebraic factoring. Algebraic factoring is an algorithm that
transforms SOP, reducing the number of literals and products.
This method does not guarantee obtaining the ISOP of a
source Boolean function with the minimum number of
products [11].

The Reed-Muller method [16] aims to obtain modulo-2
sums of products for a source Boolean function (polynomial).
There are only positive or negative literals for each variable
in this polynomial. In this article we considered expressions
where all literals are positive (Zhegalkin polynomial [19]).

DSD-decomposition (Disjoint Support Decomposition)
[17] is based on decomposition of a source Boolean function
into several subfunctions with disjoint support:

 𝑓 = 𝑘(𝑎1, 𝑎2, … , 𝑎𝑛), (3)

where 𝑓 is a source Boolean function, 𝑎1, 𝑎2, … , 𝑎𝑛 are
subfunctions in decomposition, 𝑘 is a function that links these
subfunctions.

In this method the number of subfunctions is equal to or
greater than 2 (depends on the source function). AND, OR,
XOR or the Prime function (Boolean function of 3 variables
or greater that cannot be further decomposed) can be used as
𝑘. The method is recursive, new functions are decomposed in
the same way.

The bases of synthesized circuits for each considered
method are presented in Table I.

TABLE I. BASIS OF SYNTHESIZED CIRCUITS

Method Logic gates

Akers MAJ, NOT, 0

Bi-decomposition AND, NOT

Cascades AND, OR, NOT, 0, 1

Minato-Morreale AND, NOT

Minato-Morreale with factoring AND, NOT
DSD-decomposition AND, OR, XOR, NOT, 1, 0
Reed-Muller AND, OR, XOR, 1

III. METHODS

The synthesis methods were implemented in C++. The
kitty [20] and STACCATO [21] libraries were used for
Minato-Morreale and DSD-decomposition methods,
respectively. The comparison of circuits synthesized by the
methods was carried out at logic level only without
technology mapping.

To compare the methods with each other, a set of test
cases was written in which a certain number of truth tables of
Boolean functions over four to ten arguments were generated
with a probability that was calculated based on the
information about the frequency of occurrence of NPN-
equivalence classes of Boolean functions of four variables.
The circuits from the OpenABC-D [22] test set were used for
obtaining this statistic. The collection process was organized
as follows: all cuts of the size four [1] were iterated at each
circuit, then the algorithm identified a NPN-equivalence class
of the cut function. As a result, the frequency of occurrence
of each class was achieved. To receive a function over more
than four arguments a concatenation of the truth tables was
used. The truth table over four variables was obtained after
generating a function of NPN-equivalence class according to
the received probabilities, then four variables swapping, four
input flipping and output flipping with a 50 percent
probability were made.

The number of generated truth tables of Boolean
functions over a particular number of arguments was 1000.
These truth tables were supplied as input arguments to the
synthesis methods, which constructed circuits consisting of
logic gates.

In the first comparison, the arity of the gates in
synthesized circuits was limited to two, therefore the Akers
algorithm was not participated. Afterwards, using three-input
gates was allowed and all the algorithms took part in the
second comparison.

The following characteristics were used to compare
circuits: the number of function arguments, area, delay, and
switching activity. Additionally, the runtime of the methods
was also taken into account. The switching activity of a
circuit was calculated as the sum of the switching
probabilities of all its gates:

 𝑍 = ∑
𝑠𝑖

𝑡

𝑛
𝑖=0 , (4)

where Z is the switching activity of the logic circuit, 𝑠𝑖 is
the number of cells switching (from 1 to 0 and from 0 to 1), 𝑖
is the cell index of the logic circuit, t is the number of
simulations.

In the experiment, the number of simulations of each logic
circuit was 1024.

The implementations of Akers and bi-decomposition
methods were tested on truth tables of Boolean functions over
four to seven and four to eight arguments, respectively. The
reason is the high asymptotic complexity of these methods
[23, 14].

IV. RESULTS

The achieved results of the methods comparison are
described in Tables II and III. Table II illustrates the
information about the runtime of the methods and
characteristics of the synthesized circuits composed of two-
input gates only, whereas Table III shows the same but for
circuits that may include three-input gates. The cells of the
tables contain the averages of the results obtained.

The part of Table II, which corresponds to the statistics
about switching activity of synthesized circuits, reveals that
the leader in optimizing this parameter for functions over four
variables is DSD-decomposition method, whereas for
functions over five and six arguments is Minato-Morreale
method with factoring and for functions over seven to ten
arguments is the original Minato-Morreale method. Bi-
decomposition method comes fourth in terms of power
optimization for functions over four and five arguments,
comes third for functions over six arguments, for the other
functions this method reduces its effectiveness and exhibits
the worst results. The method of cascades is the second from
the end for optimization of functions over four to eight
arguments and the worst one for others. Reed-Muller method
takes the last place in optimization of functions over four to
six variables but improves its position with an increase in the
number of variables and becomes the third by functions over
eight arguments.

According to Table II, Minato-Morreale method
optimizes the delay of circuits containing from five to ten
inputs better than the other methods. This method is followed
by Reed-Muller algorithm and then Minato-Morreale
algorithm with factoring. DSD-decomposition method is the
best for optimizing functions over four arguments but comes
fourth in terms of delay optimization for the other number of
arguments. Bi-decomposition and cascades methods are the
least preferred for optimizing circuit delay.

The part of Table II Area illustrates that the leader for
reducing the number of logic gates for circuits from five to
nine inputs is Minato-Morreale method with factoring. DSD-
decomposition is the first in terms of this optimization for
functions over four and ten arguments, the method only the
second and the third for functions over eight and nine
arguments and over five and six arguments respectively.
Minato-Morreale method without factoring comes second for
functions over five and six arguments. Bi-decomposition and

Reed-Muller methods are the worst in terms of optimizing
circuit area.

The fastest algorithm is the method of cascades, while
Minato-Morreale methods require a little more time for
execution, these algorithms have a comparable runtime.
DSD-decomposition and Reed-Muller methods are
moderately slower than the leader. The most time consuming
method is bi-decomposition.

Table III demonstrates the similar ranking to Table II in
terms of switching activity optimization with the exception of
Minato-Morreale method without factoring, which works
more efficiently using three-input logic gates than a similar
one with factoring. Akers method becomes consistently
second, shifting the previous rating.

The Delay of Table III reveals that Akers method is not
preferred for delay optimization, despite the fact that it
becomes second for functions over five and six arguments.
Minato-Morreale method without factoring is the absolute
leader for optimization of circuit delay with allowing using
tree-input gates.

A slightly different result in contrast to Table II is
achieved in Area optimization. Akers algorithm comes first
for functions over five to seven arguments and the original
Minato-Morreale becomes second for functions over eight to
ten arguments. Otherwise, the results are similar to those
obtained in Table II.

The runtime of the algorithms in Table III does not reveal
any new data except that Akers algorithm is the longest-
running method.

V. СONCLUSION

The results of the work of seven methods for the synthesis
of logic circuits implementing specified Boolean functions
have been analyzed. The comparison of the obtained circuits
has been carried out according to the three main criteria: the
number of logic gates (area), depth (delay) and switching
activity (power). The analysis of the results has shown that
DSD-decomposition (only for functions over four arguments)
and the both Minato-Morreale methods are the best choice for
power optimization. The similar results have been
demonstrated for delay optimization of logic circuits. Area
optimization with a restriction on the arity of logic gates equal
to two is better to carry out using DSD-decomposition (only
for functions over four and ten arguments) and Minato-
Morreale method with factoring. Akers algorithm is the
leader in optimization of a number of three-input gates in
circuits from five to seven inputs and for other circuits, the
leader is Minato-Morreale algorithm without factoring.
Minato-Morreale and cascades methods have demonstrated a
compatible and minimal runtime, whereas Akers and bi-
decomposition have shown the worst performance.

TABLE II. EXPERIMENT RESULTS OF CIRCUITS CONTAINING TWO-INPUT GATES ONLY

Arguments number 4 5 6 7 8 9 10

Switching activity

Bi-decomposition 4.54 8.71 17.66 35.36 70.31

Method of cascades 5.11 9.78 18.57 34.06 61.29 109.68 197.85

Minato-Morreale 4.35 7.52 12.88 20.89 33.11 49.41 72.61

Minato-Morreale with factoring 4 7.16 12.73 22.63 41.74 75.22 134.7

DSD-decomposition 3.69 9.18 18.25 33.57 59.8 106.14 189.89

Reed-Muller 6.62 12.13 20.69 33.99 54.71 86.72 136.4

Delay

Bi-decomposition 3.7 7.61 15.47 31.45 65.9

Method of cascades 4.89 7.7 9.96 12 14 16 18

Minato-Morreale 3.11 4.87 6.51 7.76 8.89 10.16 11.92

Minato-Morreale with factoring 3.11 5.64 7.97 10.4 12.84 15.27 17.73

DSD-decomposition 2.82 6.84 9.71 11.93 14 16 18

Reed-Muller 4.38 6.11 7.77 9.03 10.06 11.26 12.96

Area

Bi-decomposition 5.92 16.5 42.81 102.69 237.23

Method of cascades 7.26 17.79 38.44 75.42 140.7 256.73 468.3

Minato-Morreale 5.97 15.52 35.91 75.78 155.87 301.82 574.24

Minato-Morreale with factoring 4.23 11.26 25.37 53.92 114.1 231.55 463.79

DSD-decomposition 3.43 15.88 36.77 77.45 134.61 244.54 444.29

Reed-Muller 12.8 30.26 64.77 134.16 272.82 548.99 1096.01

Runtime (ms)

Bi-decomposition 4.07 7.41 16.39 44.22 167.53

Method of cascades 2.65 2.91 3.56 5.22 9.44 21.75 62.09

Minato-Morreale 2.69 3.02 3.73 5.52 9.85 22.71 63.07

Minato-Morreale with factoring 2.65 3.01 3.68 5.47 9.94 22.85 63.55

DSD-decomposition 7.2 8.06 9.04 11.26 16.39 30.69 74.56

Reed-Muller 2.64 3.05 4.16 7.42 16.54 44.13 127.76

TABLE III. EXPERIMENT RESULTS OF CIRCUITS CONTAINING TWO-INPUT AND THREE-INPUT GATES

Arguments number 4 5 6 7 8 9 10

Switching activity

Akers 3.81 6.2 10.41 21.07

Bi-decomposition 4.42 8.32 15.95 28.87 58.87

Method of cascades 4.81 9.37 18.2 33.65 60.85 109.1 197.04

Minato-Morreale 3.57 5.23 7.83 11.98 19.3 29.96 45.14

Minato-Morreale with factoring 3.81 6.64 11.65 20.04 37.53 68.05 123.81

DSD-decomposition 3.46 9.17 18.25 33.57 59.8 106.14 189.89

Reed-Muller 5.43 9.39 15.56 25.5 40.87 64.69 101.25

Delay

Akers 3.32 5.06 7.57 13.61

Bi-decomposition 3.6 7.44 15.36 31.35 65.79

Method of cascades 4.58 7.53 9.93 12 14 16 18

Minato-Morreale 2.29 3.7 4.65 5.22 6.32 7.49 8

Minato-Morreale with factoring 2.89 5.34 7.72 10.1 12.54 14.98 17.44

DSD-decomposition 2.56 6.83 9.71 11.93 14 16 18

Reed-Muller 3.26 4.57 5.57 6.28 7 8.18 9

Area

Akers 4.67 9.18 17.29 38.93

Bi-decomposition 5.66 15.55 38.62 90.02 213.62

Method of cascades 6.57 16.77 37.56 74.41 139.63 255.25 466.14

Minato-Morreale 4.09 9.74 22.39 48.57 102.94 206.14 409.41

Minato-Morreale with factoring 3.78 10.02 22.8 48.74 104.58 215.87 441.36

DSD-decomposition 2.92 15.86 36.77 72.45 134.61 244.54 444.29

Reed-Muller 9.38 21.7 46.96 98.86 201.3 405.41 808.42

Runtime (ms)

Akers 3.35 6.25 14.75 82.48

Bi-decomposition 4 7.28 16.14 43.62 165.79

Method of cascades 2.57 2.83 3.46 5.06 9.2 21.1 60.8

Minato-Morreale 2.6 2.9 3.55 5.2 9.28 21.49 60.59

Minato-Morreale with factoring 2.58 2.94 3.6 5.29 9.62 22.19 62.21

DSD-decomposition 7.3 7.8 8.7 10.75 15.63 29.31 71.96

Reed-Muller 2.55 2.92 3.96 7.05 15.92 43.48 127.38

REFERENCES

[1] H. Riener, A. Mishchenko, and M. Soeken, “Exact DAG-aware
rewriting,” in Proc. Design, Autom. Test Europe Conf. Exhibit.,
2020, pp. 732–737.

[2] G. Ammes, W. Lau, and R. P. Ribas. (Aug. 2018). Comparative
analysis of different Boolean function synthesis Methods. Presented
at Microelectronics Students Forum 2018, Rio Grande do Sul,
Brazil [Online]. Available:
https://sbmicro.org.br/eventos/sforum/volume-18

[3] E. J. McCluskey, “Minimization of Boolean functions,” Bell Syst.
Tech. J., vol. 35, no. 6, pp. 1417–1444, Nov. 1956.

[4] M. Choudhury and K. Mohanram, “Bi-decomposition of large
Boolean functions using blocking edge graphs,” in Proc. of the

International Conference on Computer-Aided Design., 2010, pp.
586–591.

[5] D. Wu and J. Zhu, “FBDD: A folded logic synthesis system,” in
International Conference on ASIC, Shanghai, China, Oct. 2005, pp.
746–751.

[6] E. M. S. K. J. Singh, L. L. C. M. R. Murgai, and R. K. B. A.
SangiovanniVincentelli, “Sis: A system for sequential circuit
synthesis,” University of California, Berkeley, vol. 94720, p. 4,
1992.

[7] ABC. [Online]. Available: https://github.com/berkeley-abc/abc

[8] S. Yang, “Logic Synthesis and Optimization Benchmarks User
Guide”, Tech. Rep. 1991-IWLS-UG-Saeyang, Jan. 1991.

https://sbmicro.org.br/eventos/sforum/volume-18
https://github.com/berkeley-abc/abc

[9] F. Brglez, D. Bryan, K. Kozminski, “Combinational Profiles of
Sequential Benchmark Circuits,” in Proc. of the International
Symposium of Circuits and Systems, 1989, pp. 1929–1934.

[10] C. Albrecht, "IWLS 2005 Benchmarks,” in International Workshop
on Logic Synthesis, June 2005.

[11] T. Sasao and J. T. Butler, “Worst and best irredundant sum-
ofproducts expressions”, IEEE Trans. Comp, vol. 50, no. 9, pp.
935–948, Sept. 2001.

[12] S. Minato: “Fast generation of prime-irredundant covers from
binary decision diagrams,” IEICE Trans. Fundamentals, vol. E76-
A, no. 6, pp. 967-973, June 1993.S.

[13] B. Akers, “Synthesis of combinational logic using three-input
majority gates,” in Proc. 3rd Annu. Symp. Switch. Circuit Theory
Logical Design, 1962, pp. 149–157.

[14] Y. V. Pottosin, “Synthesis of combinational circuits by means of bi-
decomposition of Boolean functions,” Informatics, vol. 19, no. 1,
pp. 7–18, 2022.

[15] G. N. Povarov, “A method for synthesis of computing and
controlling contact circuits,” (in Russian), Automatika i
Telemekhanika, vol. 18, no. 2, pp. 145–162, 1957.

[16] B. Harking, “Efficient algorithm for canonical ReedMuller
expansions of Boolean functions”, IEE Proc., Part E, vol. 137, no.
5, pp. 366–370, 1990.

[17] V. Bertacco, “Scalable Hardware Verification with Symbolic
Simulation,” Springer, 2005.

[18] C. E. Shannon, “The synthesis of two-terminal switching circuits,”
The Bell System Technical Journal, vol. 28, no. 1, pp. 59–98, 1949.

[19] I. I. Zhegalkin, “On the technique of calculating propositions in
symbolic logic”, (in Russian and French), Mat. Sb, vol. 34, no. 1,
pp. 9-28, 1927.

[20] kitty. [Online]. Available: https://github.com/kovidgoyal/kitty

[21] STACCATO. [Online]. Available:
https://web.eecs.umich.edu/staccato/

[22] OpenABC-D. [Online]. https://github.com/NYU-
MLDA/OpenABC

[23] S.-Y. Lee, H. Riener, and G. De Micheli, “Logic resynthesis of
majoritybased circuits by top-down decomposition,” in Proc. 24th
Int. Symp. Design Diagnost. Electron. Circuits Syst., 2021, pp. 105–
110.

https://github.com/kovidgoyal/kitty
https://web.eecs.umich.edu/staccato/
https://github.com/NYU-MLDA/OpenABC
https://github.com/NYU-MLDA/OpenABC

