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Abstract—This paper presents the results of an experimental 

comparison of methods for the synthesis of combinational logic 

circuits that implement specified Boolean functions. The 

comparison was based on an estimate of power, delay and area 

of synthesized logic circuits. The following methods were 

considered: the method of Akers, bi-decomposition, the methods 

of cascades, Minato-Morreale, Reed-Muller and DSD-

decomposition. 
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I. INTRODUCTION 

The technology-independent optimization (optimization) 
of logic circuits is one of the most important steps in the logic 
synthesis process with a significant impact on the quality of 
the digital systems being designed. 

Different methods of synthesis of logic circuits 
implementing given Boolean functions (synthesis methods) 
are widely used in logic optimization approaches. For 
instance, these methods can be used in optimization that is 
based on rewriting that is the replacement of subcircuits of 
the original logic circuit with other subcircuits that more 
effectively implement the same functions [1]. 

There are three main criteria for logic optimization 
(metrics for evaluating these criteria in a logic net are given 
in parentheses): 

1) power (switching activity); 

2) delay (the longest path from input to output); 

3) area (the number of logic gates). 

The aim of this study was to perform an experimental 
comparison of logic circuit synthesis methods and to identify 
the best one for each optimization criterion. 

Other published papers also present the results of 
comparisons between different synthesis methods. In [2], the 
considered methods are as follows: sum-of-products (SOP) 
and product-of-sums (POS) two-level expressions, MUX-
based expressions, Quine-McCluskey [3] method and 
different types of XOR expressions. The comparison was 
made for all Boolean functions of 3 and 4 variables and for a 
thousand random generated functions of 5 variables. The 
comparison was based on estimating the delay and area of 
synthesized logic circuits without technology mapping. 

In [4], a new approach to bi-decomposition of Boolean 
functions is described and compared with the best algorithms 
in logic synthesis tools such as FBDD [5], SIS [6], ABC [7]. 
Sixteen circuits from the MCNC [8], ISCAS [9] and 
IWLS [10] benchmark suites were used for the comparison 

by power, delay and area after the process of technology 
mapping. 

In [11], a comparison was made between the size (number 
of products in the SOP) of the minimal SOP of a Boolean 
function and the size of the SOP obtained by Minato-
Morreale [12] method. The study was considered for different 
Boolean functions with the number of variables ranging from 
3 to 20. 

In this article an experimental comparison of methods of 
synthesis of logic circuits implementing given Boolean 
functions was carried out. The following methods were 
considered: the method of Akers [13], bi-decomposition [14], 
the methods of cascades [15], Minato-Morreale [12], Reed-
Muller [16] and DSD-decomposition [17]. The circuits were 
synthesized in bases of different logic gates without 
technology mapping processing. Power, delay and area of the 
circuits were estimated for the comparison. Boolean 
functions of size from 4 to 10 variables were considered in 
the experiment. The choice of a benchmark may have a 
significant impact on the results of experiments. In this study 
we decided to generate a set of tests based on information 
about the frequency of occurrence of NPN-equivalence 
classes of Boolean functions of four variables. 

This paper is organized as follows:  Section II provides a 
brief overview of considered methods. Section III describes 
the methodology of the tests carried out. Section IV presents 
the results of this study and Section V is a conclusion.  

II. METHODS OVERVIEW 

Akers method [13] is used to create majority-based 
circuits. It is the iterative algorithm that implies the 
manipulations of the table created from the given truth table. 
The columns of the converting table correspond to gates 
arguments. At each step of the algorithm, all sets of triples of 
the columns are iterated and a truth table of a majority gate is 
evaluated. Received truth tables are compared with each 
other, after which the best one is selected according to some 
heuristics. It is inserted into the table as a column. The 
algorithm terminates after obtaining the truth table that is 
equal to the given one. 

Bi-decomposition [14] is based on extracting the 
superposition of two Boolean functions from a single source 
function: 

 𝑓 =  𝜑(𝑔1(𝑧1), 𝑔2(𝑧2)), (1) 

where 𝑓 is a source function, 𝑔1 and 𝑔2 are Boolean 
functions with sets of arguments 𝑧1 and 𝑧2 respectively, 𝜑 is 
a given boolean function of two arguments. 



 

Function 𝜑 is typically represented by logic operations 
such as OR (NOR), AND (NAND), and XOR. Different 
constraints can be imposed on the arguments of new 
functions, such as requiring subfunctions to have disjoint 
support. Alternatively, these arguments can be given before 
bi-decomposition. In this article the method of heuristic 
decomposition was considered. This means that the 
arguments of 𝑔1 and 𝑔2 are not provided, and there is only 
one constraint for their arguments: the number of arguments 
must be less than the number of arguments of the source 
function. Nevertheless, the probability of existence of 
decomposition of this kind is law, especially for completely 
specified functions. If decomposition is impossible, when the 
source function is broken down into two functions, one or 
both of them have the same number of variables.  The circuit 
synthesis algorithm using bi-decomposition is recursive. The 
two Boolean functions obtained at each step of recursion are 
decomposed in the same manner. 

The method of cascades [15] is based on the Shannon [18] 
decomposition, which represents the source function as the 
sum of two sub-functions: 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑥𝑛 ∙ 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛−1, 1) ∪ 

 x̅n ∙ f(x1, x2, … , xn−1, 0),  (2) 

where 𝑓 is a source Boolean function, 𝑥𝑖 is a 𝑖 argument 
of this function. This method is also recursive, and two sub-
function are decomposed in the same way. 

The Minato-Morreale [12] method is a technique for 
obtaining an irredundant sum-of-product (ISOP) of Boolean 
function. An ISOP is a sum-of-products (SOP) of Boolean 
function that cannot have any literal or product removed 
without losing equivalence to the source function. The study 
considered two variations of the method: with and without 
algebraic factoring. Algebraic factoring is an algorithm that 
transforms SOP, reducing the number of literals and products. 
This method does not guarantee obtaining the ISOP of a 
source Boolean function with the minimum number of 
products [11]. 

The Reed-Muller method [16] aims to obtain modulo-2 
sums of products for a source Boolean function (polynomial). 
There are only positive or negative literals for each variable 
in this polynomial. In this article we considered expressions 
where all literals are positive (Zhegalkin polynomial [19]). 

DSD-decomposition (Disjoint Support Decomposition) 
[17] is based on decomposition of a source Boolean function 
into several subfunctions with disjoint support: 

 𝑓 = 𝑘(𝑎1, 𝑎2, … , 𝑎𝑛),  (3) 

where 𝑓 is a source Boolean function, 𝑎1, 𝑎2, … , 𝑎𝑛 are 
subfunctions in decomposition, 𝑘 is a function that links these 
subfunctions. 

In this method the number of subfunctions is equal to or 
greater than 2 (depends on the source function). AND, OR, 
XOR or the Prime function (Boolean function of 3 variables 
or greater that cannot be further decomposed) can be used as 
𝑘. The method is recursive, new functions are decomposed in 
the same way. 

The bases of synthesized circuits for each considered 
method are presented in Table I. 

TABLE I. BASIS OF SYNTHESIZED CIRCUITS 

Method Logic gates 

Akers MAJ, NOT, 0 

Bi-decomposition AND, NOT 

Cascades AND, OR, NOT, 0, 1 

Minato-Morreale AND, NOT 

Minato-Morreale with factoring AND, NOT 
DSD-decomposition AND, OR, XOR, NOT, 1, 0 
Reed-Muller AND, OR, XOR, 1 

III. METHODS 

The synthesis methods were implemented in C++. The 
kitty [20] and STACCATO [21] libraries were used for 
Minato-Morreale and DSD-decomposition methods, 
respectively. The comparison of circuits synthesized by the 
methods was carried out at logic level only without 
technology mapping. 

To compare the methods with each other, a set of test 
cases was written in which a certain number of truth tables of 
Boolean functions over four to ten arguments were generated 
with a probability that was calculated based on the 
information about the frequency of occurrence of NPN-
equivalence classes of Boolean functions of four variables. 
The circuits from the OpenABC-D [22] test set were used for 
obtaining this statistic. The collection process was organized 
as follows: all cuts of the size four [1] were iterated at each 
circuit, then the algorithm identified a NPN-equivalence class 
of the cut function. As a result, the frequency of occurrence 
of each class was achieved. To receive a function over more 
than four arguments a concatenation of the truth tables was 
used. The truth table over four variables was obtained after 
generating a function of NPN-equivalence class according to 
the received probabilities, then four variables swapping, four 
input flipping and output flipping with a 50 percent 
probability were made. 

The number of generated truth tables of Boolean 
functions over a particular number of arguments was 1000. 
These truth tables were supplied as input arguments to the 
synthesis methods, which constructed circuits consisting of 
logic gates. 

In the first comparison, the arity of the gates in 
synthesized circuits was limited to two, therefore the Akers 
algorithm was not participated. Afterwards, using three-input 
gates was allowed and all the algorithms took part in the 
second comparison. 

The following characteristics were used to compare 
circuits: the number of function arguments, area, delay, and 
switching activity. Additionally, the runtime of the methods 
was also taken into account. The switching activity of a 
circuit was calculated as the sum of the switching 
probabilities of all its gates: 

 𝑍 =  ∑
𝑠𝑖

𝑡

𝑛
𝑖=0 ,  (4) 

where Z is the switching activity of the logic circuit, 𝑠𝑖 is 
the number of cells switching (from 1 to 0 and from 0 to 1), 𝑖 
is the cell index of the logic circuit, t is the number of 
simulations. 



 

In the experiment, the number of simulations of each logic 
circuit was 1024. 

The implementations of Akers and bi-decomposition 
methods were tested on truth tables of Boolean functions over 
four to seven and four to eight arguments, respectively. The 
reason is the high asymptotic complexity of these methods 
[23, 14]. 

IV. RESULTS 

The achieved results of the methods comparison are 
described in Tables II and III. Table II illustrates the 
information about the runtime of the methods and 
characteristics of the synthesized circuits composed of two-
input gates only, whereas Table III shows the same but for 
circuits that may include three-input gates. The cells of the 
tables contain the averages of the results obtained. 

The part of Table II, which corresponds to the statistics 
about switching activity of synthesized circuits, reveals that 
the leader in optimizing this parameter for functions over four 
variables is DSD-decomposition method, whereas for 
functions over five and six arguments is Minato-Morreale 
method with factoring and for functions over seven to ten 
arguments is the original Minato-Morreale method. Bi-
decomposition method comes fourth in terms of power 
optimization for functions over four and five arguments, 
comes third for functions over six arguments, for the other 
functions this method reduces its effectiveness and exhibits 
the worst results. The method of cascades is the second from 
the end for optimization of functions over four to eight 
arguments and the worst one for others. Reed-Muller method 
takes the last place in optimization of functions over four to 
six variables but improves its position with an increase in the 
number of variables and becomes the third by functions over 
eight arguments. 

According to Table II, Minato-Morreale method 
optimizes the delay of circuits containing from five to ten 
inputs better than the other methods. This method is followed 
by Reed-Muller algorithm and then Minato-Morreale 
algorithm with factoring. DSD-decomposition method is the 
best for optimizing functions over four arguments but comes 
fourth in terms of delay optimization for the other number of 
arguments. Bi-decomposition and cascades methods are the 
least preferred for optimizing circuit delay. 

The part of Table II Area illustrates that the leader for 
reducing the number of logic gates for circuits from five to 
nine inputs is Minato-Morreale method with factoring. DSD-
decomposition is the first in terms of this optimization for 
functions over four and ten arguments, the method only the 
second and the third for functions over eight and nine 
arguments and over five and six arguments respectively. 
Minato-Morreale method without factoring comes second for 
functions over five and six arguments. Bi-decomposition and 

Reed-Muller methods are the worst in terms of optimizing 
circuit area. 

The fastest algorithm is the method of cascades, while 
Minato-Morreale methods require a little more time for 
execution, these algorithms have a comparable runtime. 
DSD-decomposition and Reed-Muller methods are 
moderately slower than the leader. The most time consuming 
method is bi-decomposition. 

Table III demonstrates the similar ranking to Table II in 
terms of switching activity optimization with the exception of 
Minato-Morreale method without factoring, which works 
more efficiently using three-input logic gates than a similar 
one with factoring. Akers method becomes consistently 
second, shifting the previous rating. 

The Delay of Table III reveals that Akers method is not 
preferred for delay optimization, despite the fact that it 
becomes second for functions over five and six arguments. 
Minato-Morreale method without factoring is the absolute 
leader for optimization of circuit delay with allowing using 
tree-input gates. 

A slightly different result in contrast to Table II is 
achieved in Area optimization. Akers algorithm comes first 
for functions over five to seven arguments and the original 
Minato-Morreale becomes second for functions over eight to 
ten arguments. Otherwise, the results are similar to those 
obtained in Table II. 

The runtime of the algorithms in Table III does not reveal 
any new data except that Akers algorithm is the longest-
running method. 

V. СONCLUSION 

The results of the work of seven methods for the synthesis 
of logic circuits implementing specified Boolean functions 
have been analyzed. The comparison of the obtained circuits 
has been carried out according to the three main criteria: the 
number of logic gates (area), depth (delay) and switching 
activity (power). The analysis of the results has shown that 
DSD-decomposition (only for functions over four arguments) 
and the both Minato-Morreale methods are the best choice for 
power optimization. The similar results have been 
demonstrated for delay optimization of logic circuits. Area 
optimization with a restriction on the arity of logic gates equal 
to two is better to carry out using DSD-decomposition (only 
for functions over four and ten arguments) and Minato-
Morreale method with factoring. Akers algorithm is the 
leader in optimization of a number of three-input gates in 
circuits from five to seven inputs and for other circuits, the 
leader is Minato-Morreale algorithm without factoring. 
Minato-Morreale and cascades methods have demonstrated a 
compatible and minimal runtime, whereas Akers and bi-
decomposition have shown the worst performance. 

TABLE II.  EXPERIMENT RESULTS OF CIRCUITS CONTAINING TWO-INPUT GATES ONLY 

Arguments number 4 5 6 7 8 9 10 

Switching activity 

Bi-decomposition  4.54 8.71 17.66 35.36 70.31   

Method of cascades 5.11 9.78 18.57 34.06 61.29 109.68 197.85 

Minato-Morreale 4.35 7.52 12.88 20.89 33.11 49.41 72.61 

Minato-Morreale with factoring 4 7.16 12.73 22.63 41.74 75.22 134.7 

DSD-decomposition 3.69 9.18 18.25 33.57 59.8 106.14 189.89 

Reed-Muller 6.62 12.13 20.69 33.99 54.71 86.72 136.4 



 

Delay 

Bi-decomposition  3.7 7.61 15.47 31.45 65.9   

Method of cascades 4.89 7.7 9.96 12 14 16 18 

Minato-Morreale 3.11 4.87 6.51 7.76 8.89 10.16 11.92 

Minato-Morreale with factoring 3.11 5.64 7.97 10.4 12.84 15.27 17.73 

DSD-decomposition 2.82 6.84 9.71 11.93 14 16 18 

Reed-Muller 4.38 6.11 7.77 9.03 10.06 11.26 12.96 

Area 

Bi-decomposition  5.92 16.5 42.81 102.69 237.23   

Method of cascades 7.26 17.79 38.44 75.42 140.7 256.73 468.3 

Minato-Morreale 5.97 15.52 35.91 75.78 155.87 301.82 574.24 

Minato-Morreale with factoring 4.23 11.26 25.37 53.92 114.1 231.55 463.79 

DSD-decomposition 3.43 15.88 36.77 77.45 134.61 244.54 444.29 

Reed-Muller 12.8 30.26 64.77 134.16 272.82 548.99 1096.01 

Runtime (ms) 

Bi-decomposition  4.07 7.41 16.39 44.22 167.53   

Method of cascades 2.65 2.91 3.56 5.22 9.44 21.75 62.09 

Minato-Morreale 2.69 3.02 3.73 5.52 9.85 22.71 63.07 

Minato-Morreale with factoring 2.65 3.01 3.68 5.47 9.94 22.85 63.55 

DSD-decomposition 7.2 8.06 9.04 11.26 16.39 30.69 74.56 

Reed-Muller 2.64 3.05 4.16 7.42 16.54 44.13 127.76 

TABLE III. EXPERIMENT RESULTS OF CIRCUITS CONTAINING TWO-INPUT AND THREE-INPUT GATES 

Arguments number 4 5 6 7 8 9 10 

Switching activity 

Akers 3.81 6.2 10.41 21.07    

Bi-decomposition  4.42 8.32 15.95 28.87 58.87   

Method of cascades 4.81 9.37 18.2 33.65 60.85 109.1 197.04 

Minato-Morreale 3.57 5.23 7.83 11.98 19.3 29.96 45.14 

Minato-Morreale with factoring 3.81 6.64 11.65 20.04 37.53 68.05 123.81 

DSD-decomposition 3.46 9.17 18.25 33.57 59.8 106.14 189.89 

Reed-Muller 5.43 9.39 15.56 25.5 40.87 64.69 101.25 

Delay 

Akers 3.32 5.06 7.57 13.61    

Bi-decomposition  3.6 7.44 15.36 31.35 65.79   

Method of cascades 4.58 7.53 9.93 12 14 16 18 

Minato-Morreale 2.29 3.7 4.65 5.22 6.32 7.49 8 

Minato-Morreale with factoring 2.89 5.34 7.72 10.1 12.54 14.98 17.44 

DSD-decomposition 2.56 6.83 9.71 11.93 14 16 18 

Reed-Muller 3.26 4.57 5.57 6.28 7 8.18 9 

Area 

Akers 4.67 9.18 17.29 38.93    

Bi-decomposition  5.66 15.55 38.62 90.02 213.62   

Method of cascades 6.57 16.77 37.56 74.41 139.63 255.25 466.14 

Minato-Morreale 4.09 9.74 22.39 48.57 102.94 206.14 409.41 

Minato-Morreale with factoring 3.78 10.02 22.8 48.74 104.58 215.87 441.36 

DSD-decomposition 2.92 15.86 36.77 72.45 134.61 244.54 444.29 

Reed-Muller 9.38 21.7 46.96 98.86 201.3 405.41 808.42 

Runtime (ms) 

Akers 3.35 6.25 14.75 82.48    

Bi-decomposition  4 7.28 16.14 43.62 165.79   

Method of cascades 2.57 2.83 3.46 5.06 9.2 21.1 60.8 

Minato-Morreale 2.6 2.9 3.55 5.2 9.28 21.49 60.59 

Minato-Morreale with factoring 2.58 2.94 3.6 5.29 9.62 22.19 62.21 

DSD-decomposition 7.3 7.8 8.7 10.75 15.63 29.31 71.96 

Reed-Muller 2.55 2.92 3.96 7.05 15.92 43.48 127.38 
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