

Research and development of methods for

technology-independent power optimization of

integrated circuits

Alexander Kamkin

Plekhanov RUE

ISP RAS

MSU, MIPT, HSE

Moscow, Russia

kamkin@ispras.ru

Sergey Smolov

Plekhanov RUE

ISP RAS

Moscow, Russia

smolov@ispras.ru

Anastasiya Kurganskaya

ISP RAS

MIEM, HSE

Moscow, Russia

askurganskaya_1@edu.hse.ru

Alexey Yagzhov
ISP RAS

MIEM, HSE

Moscow, Russia

aayagzhov@edu.hse.ru

Abstract — Increasing power consumption has become a

major issue in the integrated circuit industry. Solving this

problem will lead to a reduction in packaging costs. The

main challenge in this problem is to generate a netlist that

minimizes power dissipation. This paper proposes a method

for technology-independent power optimization of

combinational circuits. The proposed algorithm is based on

a probabilistic estimate of power consumption. The method

includes 3 consecutive stages: rewriting, refactoring and

lazy refactoring. The main idea of each stage is the local

resynthesize of sub-circuits of the initial circuit to minimize

the power consumption. Experimental results demonstrated

reducing the switching activity by 20.5 % with developed

algorithm.

Keywords — integrated circuit combinational circuits,

switching activity, power consumption, technology-

independent optimization

I. INTRODUCTION

In the era of advanced technology and increasing

demands for high-performance electronic devices, the

design and manufacturing of integrated circuits (IC) play

an increasingly important role in digital systems. IC is a

group of electronic circuits placed on a metal plate

designed with semiconductor materials. An IC is the

fundamental building block for all modern electronic

devices.

The complexity and functionality of ICs continue to

increase, so does their power consumption. The increase

in power will lead to an increase in heat dissipation cost

and packaging cost [1, 2]. Reducing power consumption

in control systems, especially digital circuits, is an urgent

scientific and technical issue that has recently attracted

increasing attention from scientists and engineers [3]. It is

clear that estimating and minimizing power during the

design phase is crucial to avoid costly redesigns during

manufacturing.

The IC design process contains several steps: 1)

system specification, 2) architectural design step, 3) RTL

model design, 4) logic synthesis, 5) physical

synthesis [4]. Logic synthesis transforms a cycle-level

functional design into a gate-level representation [5]. It

makes up the gap between the technology-independent

and technology-dependent stages. The result of logic

synthesis is an optimal network composed of standard

cells in a given technology library. In most design

systems, the logical synthesis process contains at least

two important stages: technologically independent

optimization and technological mapping [6]. During the

technology-independent optimization stage, the circuit is

represented as a Boolean function, and this function is

transformed into an equivalent one with optimal quality

metrics.

The technology-independent power optimization is

very important, because power optimization has a

cumulative effect [7].

This paper is aimed to explore the problem of

technology-independent power optimization of

combinational circuits. This paper offers an initial

overview of some key definitions in section 2. Then the

power estimation model on a technology-independent

phase is considered in section 3. After that the

optimization approach is proposed in section 4. The

current results are described in section 5. Section 6

concludes the paper.

II. BACKGROUND

Circuits and nodes: a Boolean circuit is a directed

acyclic graph (DAG). Logic gates are nodes, with wires

connecting these gates representing edges. The primary

inputs (PIs) are the nodes of the Boolean circuit without

incoming edges. The primary outputs (POs) are a subset

of the nodes that connect the Boolean circuit with its

environment. A Boolean circuit may be represented in

different basis and represented using various graphs. An

And-Inverter Graph (AIG) is a directed acyclic graph

(DAG) in which there are PI, PO and two-input AND

gate with two incoming edges, respectively. It is possible

that there may be certain markings on the edges. A

marked edge is indicative of a signal inversion.

Cuts: a cut C of node v is a set of nodes, called

leaves, through which all paths from the primary inputs

of the original circuit to node v lead. Node v is the root of

the cut. A cut is K-feasible if the number of leaves does

not exceed K. The cut function is the function of node v

in terms of the cut leaves.

NPN-equivalent: two Boolean functions, f and g, are

considered to be NPN-equivalent if f can be derived from

g by negating and permuting the inputs and negating the

output.

Switching activity: the average number of switches

per cycle at the output of the gate is the switching

activity.

III. ESTIMATION MODEL

The power dissipation of CMOS digital circuits

includes two components: dynamic one and static one.

Reverse currents of p-n junctions, resistive load, and

leakage currents are the cause of static power. Static

power is dissipated when the logic element is in a fixed

logic state ("0" or "1"). The reasons for the dynamic

power are processes of charging and discharging of the

circuit node capacitance. This energy is dissipated when

the signals at the outputs of the circuit nodes are

switched. And this component of power dissipation is

dominant [8] in comparison with static power. This

assertion is not applicable to VLSI (Very-large-scale

integration) ICs. But this paper will not present such

circuits.

The average level of dynamic power dissipation for a

single gate is estimated by the following

approximation [9]:

 𝑃𝑎𝑣𝑔 = 0.5 ∙
𝐶∗𝑉2

𝑇
∗ 𝐸𝑠𝑤 (1)

where 𝐶 - average load capacitance of the gate;

𝑉 - supply voltage; 𝑇 - clock cycle time;

𝐸𝑠𝑤 - switching activity.

The only multiplier in the formula that can be

changed in the technology independent stage is 𝐸𝑠𝑤 (rest

of them are constants for the optimized circuit). As a

result, to minimize power consumption, the switching

activity should be minimized.

В. Power estimation model

Power estimation methods are classified [10, 11]:

• methods based on modeling

• statistical methods

• probabilistic methods

The modeling is the simplest method and the most

accurate method. The specified sets are fed to the input of

the circuit. Then the behavior of the circuit is simulated

and as a result, a power value is obtained. This method is

costly.

The idea of statistical estimation is to repeatedly

simulate the operation of the circuit. In this case, random

sets are fed to the input of the circuit. The simulation

takes place until the average power value has not been

obtained. This method is less accurate than the previous

one. A stopping criterion based on statistics is required

for this method.

The probabilistic method is the fastest. This method is

based on calculating the probability of switching each

node of the circuit [8].

For estimation of the switching activity of

combinational circuits a probabilistic model was chosen.

In this idea, a signal probability is used to evaluate the

switching activity. Signal probability can be calculated

by the signal's input probabilities depending on the

logical function of the cell. Figure 1 illustrates the formulas

for calculating signal probabilities for several Boolean

functions: inversion, logical AND, logical OR, logical

XOR. Signal probabilities for three-input, four-input

functions etc. are calculated using a similar idea.

Figure 1. Formulas for calculating signal probabilities for a) inverter; b)

two-input AND; c) two-input OR; d) two-input XOR.

The switching activity for gate i is the sum of the

probabilities of switching from 0 to 1 and from 1 to 0.

The probability of switching from 1 to 0 is equal to the

product of the probabilities that the gate is in state 1 in

this clock cycle and in state 0 in the next clock cycle. The

formula for the probability of switching from 1 to 0:

 𝑝𝑠𝑤
1→0 = 𝑝(1) ∗ 𝑝(0) (2)

Similarly, the formula for the probability of switching
from 0 to 1:

 𝑝𝑠𝑤
0→1 = 𝑝(0) ∗ 𝑝(1) (3)

Consequently, the formula for the switching activity:

 𝐸𝑠𝑤 = 𝑝𝑠𝑤
1→0 + 𝑝𝑠𝑤

0→1 = 2𝑝(0) ∗ 𝑝(1) (4)

Finally, 𝑝(0) = 1 − 𝑝(1). The formula for the
switching activity for gate i can be calculated as follows:

 𝐸𝑠𝑤 = 2𝑝(1) ∗ (1 − 𝑝(1)) (5)

where 𝑝(1) - the output signal probability that the
gate is in state 1 .

IV. PROPOSED METHOD

According to the selected power estimation method,
switching activity should be minimized for power
optimization. The proposed method is based on three
approaches which are applied consecutively for input
circuit: rewriting, refactoring and lazy refactoring.

A. Rewriting

B. Refactoring

It represents a modification of rewriting. The basic
idea is that a single large cut is computed for each node.
Optimization is based on the replacement the cut with
sub-circuit that implement the same Boolean function,
but the replacement has to lead to a decrease in the
switching activity of the circuit as a whole. The change in
switching activity can be calculated as the difference in
switching activity of the removed nodes and the added
nodes. To reduce the error, the minimum threshold for
reducing the switching activity should be set. Methods
such as Akers [12], Bi-Decomposition [13], Minato-
Morreale [14], DSD-decomposition [15] and others can
be used as synthesis algorithms to obtain equivalent
Boolean functions.

The implemented method employs the Minato-
Morreale algorithm without algebraic simplification of
sum-of-product forms (SOPs) for synthesis of sub-
circuits. Reconvergence-driven cuts of size 10 were
extracted for this approache (reconvergence refers to the
situation in which paths starting at the output of one of
the nodes meet again before reaching the primary output
of the design) [16].

C. Lazy refactoring

The algorithm is a modification of basic algorithm of
refactoring with delayed replacement. The main idea is to
resynthesize equivalent sub-circuits with reduced
switching activity and substitute the initial sub-circuits
with those exhibiting optimal switching activity. In this
algorithm two-level sub-graphs are optimized. However,
that not all sub-graphs are replaced; only those that are
non-intersecting are.

This approach consists of two stages: 1) select and
optimization of each two-level sub-circuit; 2) select from
the received set of intersecting sub-graphs a subset of
non-intersecting ones.

First stage: The main purpose of this stage is to
identify all sub-circuits that can be optimized. The
optimization process is based on the local resynthesize of
two-level sub-graphs, which involves reordering inputs.
In the initial stage, a two-level sub-graph is constructed
for each node. Each sub-graph is a Boolean function. In
case the Boolean function under consideration permits
the interchange of inputs, then all possible permutations
of the inputs are considered. For each variant the
switching activity can be calculated. The sub-graph with
the minimum value of the switching activity is selected.
And in case the value of the switching activity is strictly
less than that of the initial sub-graph, the latter is added
into the desired set.

The possibility of permutation of inputs is determined

by the properties of the Boolean function. If a function is

both associative and commutative, it is possible to swap

the inputs. For example, in Figure 2 two-level sub-

graph is created for the 6th node. In this example, the

inputs may be rearranged in any desired order.

Figure 2. Sub-circuit

Figure 3 shows three unique sub-graphs in terms of

switching activity for the Boolean function presented in

Figure 2. All of these sub-graphs are equivalent

functions, but the overall switching activity of these three

sub-graphs may vary depending on the distribution of

input probabilities.

Figure 3. Example

Suppose the probability that the inputs gate in state

1 is given and they are as follows: 𝑝𝑎(1) = 0,3; 𝑝𝑏(1) =
0,7; 𝑝𝑐(1) = 0,1; 𝑝𝑑(1) = 0,5,

where 𝑝𝑖(1) – the probability that the input gate 𝑖 in

state 1.

The overall switching activity for each sub-graph in

Figure 3 is detailed below:

𝐸𝑠𝑤 = 𝐸𝑠𝑤
𝑖𝑛𝑝𝑢𝑡𝑠

+ 𝐸𝑠𝑤
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝐸𝑠𝑤

𝑜𝑢𝑡𝑝𝑢𝑡𝑠
= ∑𝐸𝑠𝑤

𝑖

3

𝑖=0

+

 +𝐸𝑠𝑤
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝐸𝑠𝑤

6 (6)

The overall switching activity of the inputs (nodes

1, 2, 3, and 4) and outputs (node 6) for the various sub-

circuits remains unchanged, but the switching activity of

the internal nodes (nodes 4 and 5) differs for sub-graphs

a, b, and c.

This example shows how the overall switching

activity of the internal gates of sub-graph can change

when the inputs are rearranged. Switching activity of

internal gates for sub-graph a:

𝐸𝑠𝑤
3 = 2𝑝𝑎(1)𝑝𝑐(1)(1 − 𝑝𝑎(1)𝑝𝑐(1)) = 0,3318

𝐸𝑠𝑤
4 = 2𝑝𝑐(1)𝑝𝑑(1)(1 − 𝑝𝑐(1)𝑝𝑑(1)) = 0,095

𝐸𝑠𝑤
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 0,4268

for sub-graph b:

𝐸𝑠𝑤
3 = 2𝑝𝑎(1)𝑝𝑏(1)(1 − 𝑝𝑎(1)𝑝𝑏(1)) = 0,0582

𝐸𝑠𝑤
4 = 2𝑝𝑏(1)𝑝𝑑(1)(1 − 𝑝𝑏(1)𝑝𝑑(1)) = 0,455

𝐸𝑠𝑤
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 0,5132

for sub-graph c:

𝐸𝑠𝑤
3 = 2𝑝𝑎(1)𝑝𝑑(1)(1 − 𝑝𝑎(1)𝑝𝑑(1)) = 0,255

𝐸𝑠𝑤
4 = 2𝑝𝑏(1)𝑝𝑐(1)(1 − 𝑝𝑏(1)𝑝𝑐(1)) = 0,1302

𝐸𝑠𝑤
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 0,3852

In this example, the inputs are swapped in the sub-

graph and the overall switching activity has changed.

Second stage: The final task is to select a set of non-

intersecting sub-graphs from the set of intersecting ones

resulted from the first stage. Additionally, the solution to

such a task should provide the greatest possible gain in

optimizing the total switching activity of the circuit.

The problem is depicted as a graph. The graph

represents sub-graphs that need to be replaced as nodes,

and edges indicate intersections between sub-graphs.

Each node has a weight. It is optimization gain that can

be obtained by replacing. This problem is equivalent to

the maximum weighted independent set problem. To

solve it, a greedy algorithm is used.

When the non-intersecting set is selected, sub-circuits

are replaced. The algorithm can be applied multiple times

to the same circuit to achieve the best result.

In this method the preliminary estimation of

optimization can be obtained before replacement. And

this algorithm can be applied to circuits on an arbitrary

basis.

V. RESULTS

The considered method was implemented using the
C++ language and was applied to circuits from
OpenABC-D [17] dataset, which were represented in
AIG.

Although the logical optimization process used a
probabilistic approach to evaluate the switching activity,

simulation (under a zero-delay model) of the source and
resulting circuits was used to evaluate the results.

Table 1 presents the results of the optimization of area
(Area) which is calculated as the number of logic gates in
the circuit and switching activity (SA) for 47 circuits
from the dataset. Each of first three columns illustrates
the results of optimization for each stage individually,
relative to the previous step: rw – rewriting; rf – refactor;
lr – lazy refactor. The fourth column presents the results
of optimization for the proposed method relative to the
source circuit. Optimization was calculated using the
following expression:

 𝐷𝑒𝑙𝑡𝑎 =
𝐸𝑠𝑤
𝑜𝑙𝑑−𝐸𝑠𝑤

𝑛𝑒𝑤

𝐸𝑠𝑤
𝑜𝑙𝑑 ∗ 100% (7)

where 𝐸𝑠𝑤
𝑜𝑙𝑑 - the initial switching activity,

𝐸𝑠𝑤
𝑛𝑒𝑤 - the switching activity after optimization.

The similar expression was used for area.

Additionally, we compared our method with the

resyn2 pass from ABC [18] and resyn2, which consist

from our approaches for optimization switching activity

(modified resyn2):

 𝑏; 𝑟𝑤; 𝑟𝑓; 𝑏; 𝑟𝑤; 𝑟𝑤𝑧; 𝑏; 𝑟𝑓; 𝑟𝑤𝑧; 5 ∗ 𝑙𝑟 (8)

where b – balance; rw – rewriter; rwz – zero-cost

rewriter, rf – refactor for switching activity optimization;

lr – lazy refactor.

The final two columns show the result of the

optimization of area and switching activity by ABC

resyn2 and our modified resyn2 (m-resyn2).

The table 2 shows the average results for area and

switching activity optimization which was calculated as

the arithmetic mean of the optimization values for all

considered circuits.

Consequently, using our method for optimizations

and modified resyn2 pass yields comparable results in

terms of area optimization, as well as better results in

regard to switching activity optimization, when compared

to the resyn2 pass from ABC.

VI. СONCLUSION

Power optimization of logic circuits is a crucial

concern in computer engineering. This paper presents a

technology-independent approach to minimize the power

consumption of integrated circuits. The optimization

method comprises a number of stages. Firstly, the circuit

is reduced in size through rewriting. Then we use

refactoring with synthesis algorithms to reduce the

switching activity of cones. Finally, a heuristic method is

proposed to further reduce switching activity without

significant circuit changes.

For future work, the power minimization method will

be subjected to further development. The refactoring

stage can be improved by using Boolean function

synthesis algorithms that take into account the switching

activities of the input gates, in order to reduce the power

consumption of the synthesized circuits.

Additionally, further research will be conducted to

assess the impact of the proposed method on the circuit

after the technology-dependent stage.

ACKNOWLEDGEMENTS

This research was carried out at Plekhanov Russian

University of Economics at the expense of a grant from

the Russian Science Foundation, № 23-21-00313,

https://rscf.ru/project/23-21-00313.

TABLE I. EXPERIMENT RESULTS OF OPTIMIZATION CIRCUITS IN AIG

Design

rw rf lr all 3 stages ABC resyn2 m-resyn2

Ar-
ea SA Area SA Area

S
A Area SA Area SA Area SA

ac97_ctrl 3,6 3,5 1,9 4,0 0,0
0,
1 5,5 7,5 3,4 3,1 5,7 7,6

aes 9,7 23,6 0,0 0,0 0,0
0,
1 9,7 23,6 9,9 -2,9 9,9 24,4

aes_secworks 26,3 34,0 -1,4 0,4 0,1
0,
0 25,3 34,2 19,1 22,0 26,8 34,2

aes_xcrypt 8,2 15,6 -1,4 0,5 0,1
0,
0 6,9 16,1 6,6 1,4 7,2 15,7

apex1 6,8 3,3 0,6 4,5 0,5
1,
1 7,8 8,7 19,8 13,9 9,7 7,4

bc0 18,6 18,8 -26,7 28,1 0,5
2,
3 -2,6 43,0 40,5 38,3 0,9 50,6

bp_be 2,4 2,0 -0,3 2,3 0,0
0,
1 2,1 4,5 3,7 1,9 2,1 5,0

c1355 56,4 49,1 0,0 0,0 0,0
0,
0 56,4 49,1 20,2 12,2 55,7 47,3

c5315 22,9 21,3 -0,5 0,2 0,0
0,
7 22,5 21,9 16,2 11,9 24,0 23,0

c6288 38,2 31,9 -2,2 1,0 0,0
0,
3 36,9 32,8 19,5 21,4 37,4 33,0

c7552 37,6 34,6 0,0 0,0 0,0
0,
4 37,6 34,8 29,1 20,0 40,0 35,4

dalu 32,2 38,4 -5,1 6,8 0,0
0,
1 28,8 42,6 36,9 32,8 1,3 42,9

des3_area 8,4 13,4 0,0 0,0 0,0
0,
0 8,4 13,4 7,1 12,8 8,4 13,4

dft 4,5 4,3 -14,3 13,1 0,0
0,
1 -9,2 16,9 2,0 1,3 -1,8 19,3

div 40,9 39,5 -0,2 0,0 0,0
0,
0 40,7 39,5 28,7 28,1 41,2 40,5

dynamic_node 3,5 2,7 -2,1 5,5 0,0
0,
2 1,5 8,2 3,5 1,8 4,8 8,1

ethernet 2,4 2,2 -18,8 14,8 0,0
0,
1 -16,0 16,7 2,4 2,4 -7,3 20,5

fir 27,0 24,7 0,0 0,0 0,0
1,
9 27,0 26,2 10,7 5,2 27,7 26,5

fpu 26,7 28,3 -1,3 0,4 0,0
1,
3 25,8 29,5 17,6 15,7 26,8 30,7

hyp 22,9 22,8 0,0 0,0 0,0
0,
0 22,9 22,8 1,4 0,3 22,9 22,8

i2c 9,2 8,9 -7,2 2,7 0,0
0,
7 2,6 12,0 16,1 14,1 1,9 11,9

i10 18,0 16,9 -0,8 1,0 0,1
1,
4 17,4 18,9 19,6 13,1 16,3 20,0

idft 4,1 4,0 -14,4 13,2 0,0
0,
1 -9,7 16,7 1,9 1,3 -2,2 19,2

iir 28,1 26,0 0,0 0,0 0,0
2,
0 28,1 27,5 19,7 12,6 29,2 28,2

jpeg 25,3 26,3 0,7 1,9 0,0
0,
4 25,9 28,0 8,3 4,3 26,2 28,0

k2 7,6 3,8 0,4 1,4 0,5
0,
5 8,4 5,6 38,4 -6,6 18,4

-
30,5

log2 22,7 26,0 0,0 0,0 0,0
0,
1 22,7 26,1 8,4 17,1 24,1 35,3

mainpla 20,2 20,2 -46,3 31,0 0,4
1,
4 -16,3 45,7 30,7 28,3 -19,4 55,0

max 0,0 0,0 -1,6 0,2 0,0
0,
4 -1,6 0,6 0,9 -0,1 -1,3 0,8

mem_ctrl 9,5 8,8 -23,5 6,5 0,0
0,
3 -11,7 15,0 40,9 20,7 -10,8 17,0

multiplier 29,3 29,6 0,0 0,0 0,0
0,
1 29,3 29,7 9,2 7,8 31,1 30,8

https://rscf.ru/project/23-21-00313

pci 7,5 7,9 -0,3 0,1 0,0
0,
1 7,2 8,1 6,7 5,8 8,1 8,2

picosoc 4,2 3,9 -19,8 13,6 0,0
0,
2 -14,8 17,1 5,6 5,0 -6,6 23,3

sasc 6,3 5,9 -1,2 5,2 0,0
0,
0 5,2 10,9 2,4 3,1 5,2 11,0

sha256 14,8 15,1 0,4 1,4 0,0
0,
5 15,1 16,7 13,1 14,2 15,6 17,0

simple_spi 10,9 10,0 -2,7 8,5 0,0
0,
5 8,5 18,0 8,9 6,9 2,4 20,0

sin 18,0 20,9 0,0 0,0 0,0
0,
5 18,0 21,3 6,9 16,5 20,3 33,0

spi 19,2 22,5 0,1 0,2 0,0
0,
1 19,3 22,7 21,1 21,4 22,4 24,3

sqrt 32,4 30,0 0,0 0,0 0,0
0,
0 32,4 30,0 20,9 21,7 33,3 30,6

square 19,6 22,1 0,1 1,4 0,0
0,
4 19,7 23,5 10,0 3,8 23,0 26,4

ss_pcm 1,8 1,8 -1,0 0,4 0,0
0,
0 0,8 2,2 1,3 2,2 0,8 2,3

tinyRocket 18,1 16,6 -9,5 0,7 0,0
0,
4 10,3 17,4 17,9 15,2 12,2 18,4

tv80 13,0 15,4 -4,3 1,6 0,1
0,
9 9,3 17,5 16,7 17,9 8,8 19,3

usb_phy 9,3 8,9 -1,1 3,2 0,0
0,
1 8,3 12,0 8,2 7,0 10,0 12,3

vga_lcd 0,9 0,8 -21,3 15,6 0,0
0,
0 -20,3 16,3 1,1 1,4 -10,2 20,2

wb_conmax 2,2 2,8 -2,8 0,9 0,1
0,
8 -0,4 4,6 5,6 9,1 0,8 5,7

wb_dma 12,7 5,6 -0,1 0,8 0,0
0,
0 12,6 6,4 16,8 7,3 14,0 6,5

TABLE II. AVERAGE VALUES OF THE EXPERIMENT RESULTS

rw rf lr all 3 stage ABC resyn2 m-resyn2

Area SA Area SA Area SA Area SA
Are

a SA Area SA

16,3 16,5 -4,9 4,1 0,1
0,
4 12,0 20,5

14,
0 10,9 13,1

21,
3

REFERENCES

[1] M. Yaseen, S. Abd, and I. Mansoor, ‘Critical factors affecting the
adoption of open source software in public organizations’, ijcsm,
pp. 29–37, Jul. 2020, doi: 10.52866/ijcsm.2020.01.02.005.

[2] K. Kaur and A. Noor, ‘CMOS Low Power Cell Library for Digital
Design’, VLSICS, vol. 4, no. 3, pp. 43–51, Jun. 2013, doi:
10.5121/vlsic.2013.4305

[3] W. Nebel and J. P. Mermet, Low power design in deep submicron
electronics: proceedings of the NATO advanced study institute on
low power design in deep submicron electronics, Il Ciocco, Lucca,
Italy, 20-30 August, 1996. in NATO ASI series, no. 337.
Dordrecht Boston London: Kluwer academic publ. in cooperation
with NATO scientific affairs division, 1997.

[4] A. B. Kahng, J. Hu, J. Lienig, and I. L. Markov, VLSI Physical
Design: From Graph Partitioning to Timing Closure. Dordrecht:
Springer Science+Business Media B.V, 2011.

[5] S. Zou, J. Zhang, B. Shi, and G. Luo, ‘PowerSyn: A Logic
Synthesis Framework With Early Power Optimization’, IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 43, no. 1,
pp. 203–216, Jan. 2024, doi: 10.1109/TCAD.2023.3297069.

[6] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli,
‘Multilevel logic synthesis’, Proc. IEEE, vol. 78, no. 2, pp. 264–
300, Feb. 1990, doi: 10.1109/5.52213

[7] J. Lamoureux and S. J. Wilton, “On the interaction between
power-aware FPGA CAD algorithms,” in Proc. Int. Conf.
Comput.-Aided Design (ICCAD), 2003, pp. 701–708.

[8] I. A. Murashko, ‘МЕТОДЫ ОЦЕНКИ РАССЕИВАЕМОЙ
МОЩНОСТИ В ЦИФРОВЫХ КМОП СХЕМАХ’, Доклады
БГУИР, no. 1(17), pp. 100–108, 2007.

[9] Chi-Ying Tsui, M. Pedram, and A. M. Despain, ‘Technology
Decomposition and Mapping Targeting Low Power Dissipation’,

30th ACM/IEEE Design Automation Conference, Dallas, TX,
USA, pp. 68–73, 1993, doi: 10.1109/DAC.1993.203921.

[10] M. Pedram, ‘ACM Transactions on Design Automation of
Electronic Systems’, Power minimization in {IC} design:
principles and applications, vol. 1, no. 1, pp. 3–56, Jan. 1996.

[11] F. N. Najm, ‘A survey of power estimation techniques in VLSI
circuits’, IEEE Trans. VLSI Syst., vol. 2, no. 4, pp. 446–455, Dec.
1994, doi: 10.1109/92.335013.

[12] B. Akers, “Synthesis of combinational logic using three-input
majority gates,” in Proc. 3rd Annu. Symp. Switch. Circuit Theory
Logical Design, 1962, pp. 149–157.

[13] M. Choudhury and K. Mohanram, “Bi-decomposition of large
Boolean functions using blocking edge graphs,” in Proc. of the
International Conference on Computer-Aided Design., 2010, pp.
586–591.

[14] S. Minato: “Fast generation of prime-irredundant covers from
binary decision diagrams,” IEICE Trans. Fundamentals, vol. E76-
A, no. 6, pp. 967-973, June 1993.S.

[15] V. Bertacco, “Scalable Hardware Verification with Symbolic
Simulation,” Springer, 2005.

[16] A. Mishchenko and R. K. Brayton, “Scalable logic synthesis using
a simple circuit structure,” in Proc. IWLS, Vail, CO, USA, 2006,
pp. 15–22.

[17] OpenABC-D. [Online]. https://github.com/NYU-
MLDA/OpenABC.

[18] ABC. [Online]. https://github.com/berkeley-abc/abc.

https://github.com/NYU-MLDA/OpenABC
https://github.com/NYU-MLDA/OpenABC

