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Abstract — Increasing power consumption has become a 

major issue in the integrated circuit industry. Solving this 

problem will lead to a reduction in packaging costs. The 

main challenge in this problem is to generate a netlist that 

minimizes power dissipation. This paper proposes a method 

for technology-independent power optimization of 

combinational circuits. The proposed algorithm is based on 

a probabilistic estimate of power consumption. The method 

includes 3 consecutive stages: rewriting, refactoring and 

lazy refactoring. The main idea of each stage is the local 

resynthesize of sub-circuits of the initial circuit to minimize 

the power consumption. Experimental results demonstrated 

reducing the switching activity by 20.5 % with developed 

algorithm. 

Keywords — integrated circuit combinational circuits, 

switching activity, power consumption, technology-

independent optimization 

I. INTRODUCTION 

In the era of advanced technology and increasing 

demands for high-performance electronic devices, the 

design and manufacturing of integrated circuits (IC) play 

an increasingly important role in digital systems. IC is a 

group of electronic circuits placed on a metal plate 

designed with semiconductor materials. An IC is the 

fundamental building block for all modern electronic 

devices. 

The complexity and functionality of ICs continue to 

increase, so does their power consumption. The increase 

in power will lead to an increase in heat dissipation cost 

and packaging cost [1, 2]. Reducing power consumption 

in control systems, especially digital circuits, is an urgent 

scientific and technical issue that has recently attracted 

increasing attention from scientists and engineers [3]. It is 

clear that estimating and minimizing power during the 

design phase is crucial to avoid costly redesigns during 

manufacturing. 

The IC design process contains several steps: 1) 

system specification, 2) architectural design step, 3) RTL 

model design, 4) logic synthesis, 5) physical 

synthesis [4]. Logic synthesis transforms a cycle-level 

functional design into a gate-level representation [5]. It 

makes up the gap between the technology-independent 

and technology-dependent stages. The result of logic 

synthesis is an optimal network composed of standard 

cells in a given technology library. In most design 

systems, the logical synthesis process contains at least 

two important stages: technologically independent 

optimization and technological mapping [6]. During the 

technology-independent optimization stage, the circuit is 

represented as a Boolean function, and this function is 

transformed into an equivalent one with optimal quality 

metrics. 

The technology-independent power optimization is 

very important, because power optimization has a 

cumulative effect [7].  

This paper is aimed to explore the problem of 

technology-independent power optimization of 

combinational circuits. This paper offers an initial 

overview of some key definitions in section 2. Then the 

power estimation model on a technology-independent 

phase is considered in section 3. After that the 

optimization approach is proposed in section 4. The 

current results are described in section 5. Section 6 

concludes the paper. 

II. BACKGROUND 

Circuits and nodes: a Boolean circuit is a directed 

acyclic graph (DAG). Logic gates are nodes, with wires 

connecting these gates representing edges. The primary 

inputs (PIs) are the nodes of the Boolean circuit without 

incoming edges. The primary outputs (POs) are a subset 

of the nodes that connect the Boolean circuit with its 

environment. A Boolean circuit may be represented in 

different basis and represented using various graphs. An 

And-Inverter Graph (AIG) is a directed acyclic graph 

(DAG) in which there are PI, PO and two-input AND 

gate with two incoming edges, respectively. It is possible 

that there may be certain markings on the edges. A 

marked edge is indicative of a signal inversion. 

Cuts: a cut C of node v is a set of nodes, called 

leaves, through which all paths from the primary inputs 

of the original circuit to node v lead. Node v is the root of 

the cut. A cut is K-feasible if the number of leaves does 

not exceed K. The cut function is the function of node v 

in terms of the cut leaves. 

NPN-equivalent: two Boolean functions, f and g, are 

considered to be NPN-equivalent if f can be derived from 

g by negating and permuting the inputs and negating the 

output.  



 

Switching activity: the average number of switches 

per cycle at the output of the gate is the switching 

activity. 

III. ESTIMATION MODEL 

The power dissipation of CMOS digital circuits 

includes two components: dynamic one and static one. 

Reverse currents of p-n junctions, resistive load, and 

leakage currents are the cause of static power. Static 

power is dissipated when the logic element is in a fixed 

logic state ("0" or "1"). The reasons for the dynamic 

power are processes of charging and discharging of the 

circuit node capacitance. This energy is dissipated when 

the signals at the outputs of the circuit nodes are 

switched. And this component of power dissipation is 

dominant [8] in comparison with static power. This 

assertion is not applicable to VLSI (Very-large-scale 

integration) ICs. But this paper will not present such 

circuits. 

The average level of dynamic power dissipation for a 

single gate is estimated by the following 

approximation [9]: 

 𝑃𝑎𝑣𝑔 = 0.5 ∙
𝐶∗𝑉2

𝑇
∗ 𝐸𝑠𝑤  (1) 

where 𝐶 - average load capacitance of the gate; 

𝑉 - supply voltage; 𝑇 - clock cycle time; 

𝐸𝑠𝑤 - switching activity. 

The only multiplier in the formula that can be 

changed in the technology independent stage is 𝐸𝑠𝑤 (rest 

of them are constants for the optimized circuit). As a 

result, to minimize power consumption, the switching 

activity should be minimized. 

В. Power estimation model 

Power estimation methods are classified [10, 11]: 

• methods based on modeling 

• statistical methods 

• probabilistic methods 

The modeling is the simplest method and the most 

accurate method. The specified sets are fed to the input of 

the circuit. Then the behavior of the circuit is simulated 

and as a result, a power value is obtained. This method is 

costly. 

The idea of statistical estimation is to repeatedly 

simulate the operation of the circuit. In this case, random 

sets are fed to the input of the circuit. The simulation 

takes place until the average power value has not been 

obtained. This method is less accurate than the previous 

one. A stopping criterion based on statistics is required 

for this method.  

The probabilistic method is the fastest. This method is 

based on calculating the probability of switching each 

node of the circuit [8]. 

For estimation of the switching activity of 

combinational circuits a probabilistic model was chosen. 

In this idea, a signal probability is used to evaluate the 

switching activity. Signal probability can be calculated 

by the signal's input probabilities depending on the 

logical function of the cell. Figure 1 illustrates the formulas 

for calculating signal probabilities for several Boolean 

functions: inversion, logical AND, logical OR, logical 

XOR. Signal probabilities for three-input, four-input 

functions etc. are calculated using a similar idea. 

 

Figure 1. Formulas for calculating signal probabilities for a) inverter; b) 

two-input AND; c) two-input OR; d) two-input XOR. 

The switching activity for gate i is the sum of the 

probabilities of switching from 0 to 1 and from 1 to 0. 

The probability of switching from 1 to 0 is equal to the 

product of the probabilities that the gate is in state 1 in 

this clock cycle and in state 0 in the next clock cycle. The 

formula for the probability of switching from 1 to 0: 

 𝑝𝑠𝑤
1→0 = 𝑝(1) ∗ 𝑝(0) (2) 

Similarly, the formula for the probability of switching 
from 0 to 1: 

 𝑝𝑠𝑤
0→1 = 𝑝(0) ∗ 𝑝(1) (3) 

Consequently, the formula for the switching activity: 

 𝐸𝑠𝑤 = 𝑝𝑠𝑤
1→0 + 𝑝𝑠𝑤

0→1 = 2𝑝(0) ∗ 𝑝(1) (4) 

Finally, 𝑝(0) = 1 − 𝑝(1). The formula for the 
switching activity for gate i can be calculated as follows: 

 𝐸𝑠𝑤 = 2𝑝(1) ∗ (1 − 𝑝(1)) (5) 

where 𝑝(1) - the output signal probability that the 
gate is in state 1 . 

IV. PROPOSED METHOD 

According to the selected power estimation method, 
switching activity should be minimized for power 
optimization. The proposed method is based on three 
approaches which are applied consecutively for input 
circuit: rewriting, refactoring and lazy refactoring. 

A. Rewriting 

B. Refactoring 



 

It represents a modification of rewriting. The basic 
idea is that a single large cut is computed for each node. 
Optimization is based on the replacement the cut with 
sub-circuit that implement the same Boolean function, 
but the replacement has to lead to a decrease in the 
switching activity of the circuit as a whole. The change in 
switching activity can be calculated as the difference in 
switching activity of the removed nodes and the added 
nodes. To reduce the error, the minimum threshold for 
reducing the switching activity should be set. Methods 
such as Akers [12], Bi-Decomposition [13], Minato-
Morreale [14], DSD-decomposition [15] and others can 
be used as synthesis algorithms to obtain equivalent 
Boolean functions. 

The implemented method employs the Minato-
Morreale algorithm without algebraic simplification of 
sum-of-product forms (SOPs) for synthesis of sub-
circuits. Reconvergence-driven cuts of size 10 were 
extracted for this approache (reconvergence refers to the 
situation in which paths starting at the output of one of 
the nodes meet again before reaching the primary output 
of the design) [16]. 

C. Lazy refactoring 

The algorithm is a modification of basic algorithm of 
refactoring with delayed replacement. The main idea is to 
resynthesize equivalent sub-circuits with reduced 
switching activity and substitute the initial sub-circuits 
with those exhibiting optimal switching activity. In this 
algorithm two-level sub-graphs are optimized. However, 
that not all sub-graphs are replaced; only those that are 
non-intersecting are. 

This approach consists of two stages: 1) select and 
optimization of each two-level sub-circuit; 2) select from 
the received set of intersecting sub-graphs a subset of 
non-intersecting ones. 

First stage: The main purpose of this stage is to 
identify all sub-circuits that can be optimized. The 
optimization process is based on the local resynthesize of 
two-level sub-graphs, which involves reordering inputs. 
In the initial stage, a two-level sub-graph is constructed 
for each node. Each sub-graph is a Boolean function. In 
case the Boolean function under consideration permits 
the interchange of inputs, then all possible permutations 
of the inputs are considered. For each variant the 
switching activity can be calculated. The sub-graph with 
the minimum value of the switching activity is selected. 
And in case the value of the switching activity is strictly 
less than that of the initial sub-graph, the latter is added 
into the desired set. 

The possibility of permutation of inputs is determined 

by the properties of the Boolean function. If a function is 

both associative and commutative, it is possible to swap 

the inputs. For example, in Figure 2 two-level sub-

graph is created for the 6th node. In this example, the 

inputs may be rearranged in any desired order. 

 

Figure 2. Sub-circuit 

Figure 3 shows three unique sub-graphs in terms of 

switching activity for the Boolean function presented in 

Figure 2. All of these sub-graphs are equivalent 

functions, but the overall switching activity of these three 

sub-graphs may vary depending on the distribution of 

input probabilities.  

 

 
Figure 3. Example 

Suppose the probability that the inputs gate in state 

1 is given and they are as follows: 𝑝𝑎(1) = 0,3; 𝑝𝑏(1) =
0,7; 𝑝𝑐(1) = 0,1; 𝑝𝑑(1) = 0,5, 

where 𝑝𝑖(1) – the probability that the input gate 𝑖 in 

state 1. 

The overall switching activity for each sub-graph in 

Figure 3 is detailed below: 

𝐸𝑠𝑤 = 𝐸𝑠𝑤
𝑖𝑛𝑝𝑢𝑡𝑠

+ 𝐸𝑠𝑤
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝐸𝑠𝑤

𝑜𝑢𝑡𝑝𝑢𝑡𝑠
= ∑𝐸𝑠𝑤

𝑖

3

𝑖=0

+ 

 +𝐸𝑠𝑤
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 + 𝐸𝑠𝑤

6  (6) 

The overall switching activity of the inputs (nodes 

1, 2, 3, and 4) and outputs (node 6) for the various sub-

circuits remains unchanged, but the switching activity of 



 

the internal nodes (nodes 4 and 5) differs for sub-graphs 

a, b, and c.  

This example shows how the overall switching 

activity of the internal gates of sub-graph can change 

when the inputs are rearranged. Switching activity of 

internal gates for sub-graph a: 

𝐸𝑠𝑤
3 = 2𝑝𝑎(1)𝑝𝑐(1)(1 − 𝑝𝑎(1)𝑝𝑐(1)) = 0,3318 

𝐸𝑠𝑤
4 = 2𝑝𝑐(1)𝑝𝑑(1)(1 − 𝑝𝑐(1)𝑝𝑑(1)) = 0,095 

𝐸𝑠𝑤
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 0,4268 

for sub-graph b: 

𝐸𝑠𝑤
3 = 2𝑝𝑎(1)𝑝𝑏(1)(1 − 𝑝𝑎(1)𝑝𝑏(1)) = 0,0582 

𝐸𝑠𝑤
4 = 2𝑝𝑏(1)𝑝𝑑(1)(1 − 𝑝𝑏(1)𝑝𝑑(1)) = 0,455 

𝐸𝑠𝑤
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 0,5132 

for sub-graph c: 

𝐸𝑠𝑤
3 = 2𝑝𝑎(1)𝑝𝑑(1)(1 − 𝑝𝑎(1)𝑝𝑑(1)) = 0,255 

𝐸𝑠𝑤
4 = 2𝑝𝑏(1)𝑝𝑐(1)(1 − 𝑝𝑏(1)𝑝𝑐(1)) = 0,1302 

𝐸𝑠𝑤
𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 = 0,3852 

In this example, the inputs are swapped in the sub-

graph and the overall switching activity has changed.  

Second stage: The final task is to select a set of non-

intersecting sub-graphs from the set of intersecting ones 

resulted from the first stage. Additionally, the solution to 

such a task should provide the greatest possible gain in 

optimizing the total switching activity of the circuit.  

The problem is depicted as a graph. The graph 

represents sub-graphs that need to be replaced as nodes, 

and edges indicate intersections between sub-graphs. 

Each node has a weight. It is optimization gain that can 

be obtained by replacing. This problem is equivalent to 

the maximum weighted independent set problem. To 

solve it, a greedy algorithm is used. 

When the non-intersecting set is selected, sub-circuits 

are replaced. The algorithm can be applied multiple times 

to the same circuit to achieve the best result. 

In this method the preliminary estimation of 

optimization can be obtained before replacement. And 

this algorithm can be applied to circuits on an arbitrary 

basis. 

V. RESULTS 

The considered method was implemented using the 
C++ language and was applied to circuits from 
OpenABC-D [17] dataset, which were represented in 
AIG. 

Although the logical optimization process used a 
probabilistic approach to evaluate the switching activity, 

simulation (under a zero-delay model) of the source and 
resulting circuits was used to evaluate the results. 

Table 1 presents the results of the optimization of area 
(Area) which is calculated as the number of logic gates in 
the circuit and switching activity (SA) for 47 circuits 
from the dataset. Each of first three columns illustrates 
the results of optimization for each stage individually, 
relative to the previous step: rw – rewriting; rf – refactor; 
lr – lazy refactor. The fourth column presents the results 
of optimization for the proposed method relative to the 
source circuit. Optimization was calculated using the 
following expression: 

 𝐷𝑒𝑙𝑡𝑎 =
𝐸𝑠𝑤
𝑜𝑙𝑑−𝐸𝑠𝑤

𝑛𝑒𝑤

𝐸𝑠𝑤
𝑜𝑙𝑑 ∗ 100% (7) 

where 𝐸𝑠𝑤
𝑜𝑙𝑑  - the initial switching activity, 

𝐸𝑠𝑤
𝑛𝑒𝑤 - the switching activity after optimization. 

The similar expression was used for area. 

Additionally, we compared our method with the 

resyn2 pass from ABC [18] and resyn2, which consist 

from our approaches for optimization switching activity 

(modified resyn2): 

 𝑏; 𝑟𝑤; 𝑟𝑓; 𝑏; 𝑟𝑤; 𝑟𝑤𝑧; 𝑏; 𝑟𝑓; 𝑟𝑤𝑧; 5 ∗ 𝑙𝑟 (8) 

where b – balance; rw – rewriter; rwz – zero-cost 

rewriter, rf – refactor for switching activity optimization; 

lr – lazy refactor. 

The final two columns show the result of the 

optimization of area and switching activity by ABC 

resyn2 and our modified resyn2 (m-resyn2). 

The table 2 shows the average results for area and 

switching activity optimization which was calculated as 

the arithmetic mean of the optimization values for all 

considered circuits. 

Consequently, using our method for optimizations 

and modified resyn2 pass yields comparable results in 

terms of area optimization, as well as better results in 

regard to switching activity optimization, when compared 

to the resyn2 pass from ABC. 

VI. СONCLUSION 

Power optimization of logic circuits is a crucial 

concern in computer engineering. This paper presents a 

technology-independent approach to minimize the power 

consumption of integrated circuits. The optimization 

method comprises a number of stages. Firstly, the circuit 

is reduced in size through rewriting. Then we use 

refactoring with synthesis algorithms to reduce the 

switching activity of cones. Finally, a heuristic method is 

proposed to further reduce switching activity without 

significant circuit changes. 

For future work, the power minimization method will 

be subjected to further development. The refactoring 

stage can be improved by using Boolean function 

synthesis algorithms that take into account the switching 



 

activities of the input gates, in order to reduce the power 

consumption of the synthesized circuits.  

Additionally, further research will be conducted to 

assess the impact of the proposed method on the circuit 

after the technology-dependent stage. 

ACKNOWLEDGEMENTS 

This research was carried out at Plekhanov Russian 

University of Economics at the expense of a grant from 

the Russian Science Foundation, № 23-21-00313, 

https://rscf.ru/project/23-21-00313. 

TABLE I. EXPERIMENT RESULTS OF OPTIMIZATION CIRCUITS IN AIG 

Design 

rw rf lr all 3 stages ABC resyn2 m-resyn2 

Ar-
ea SA Area SA Area 

S
A Area SA Area SA Area SA 

ac97_ctrl 3,6 3,5 1,9 4,0 0,0 
0,
1 5,5 7,5 3,4 3,1 5,7 7,6 

aes 9,7 23,6 0,0 0,0 0,0 
0,
1 9,7 23,6 9,9 -2,9 9,9 24,4 

aes_secworks 26,3 34,0 -1,4 0,4 0,1 
0,
0 25,3 34,2 19,1 22,0 26,8 34,2 

aes_xcrypt 8,2 15,6 -1,4 0,5 0,1 
0,
0 6,9 16,1 6,6 1,4 7,2 15,7 

apex1 6,8 3,3 0,6 4,5 0,5 
1,
1 7,8 8,7 19,8 13,9 9,7 7,4 

bc0 18,6 18,8 -26,7 28,1 0,5 
2,
3 -2,6 43,0 40,5 38,3 0,9 50,6 

bp_be 2,4 2,0 -0,3 2,3 0,0 
0,
1 2,1 4,5 3,7 1,9 2,1 5,0 

c1355 56,4 49,1 0,0 0,0 0,0 
0,
0 56,4 49,1 20,2 12,2 55,7 47,3 

c5315 22,9 21,3 -0,5 0,2 0,0 
0,
7 22,5 21,9 16,2 11,9 24,0 23,0 

c6288 38,2 31,9 -2,2 1,0 0,0 
0,
3 36,9 32,8 19,5 21,4 37,4 33,0 

c7552 37,6 34,6 0,0 0,0 0,0 
0,
4 37,6 34,8 29,1 20,0 40,0 35,4 

dalu 32,2 38,4 -5,1 6,8 0,0 
0,
1 28,8 42,6 36,9 32,8 1,3 42,9 

des3_area 8,4 13,4 0,0 0,0 0,0 
0,
0 8,4 13,4 7,1 12,8 8,4 13,4 

dft 4,5 4,3 -14,3 13,1 0,0 
0,
1 -9,2 16,9 2,0 1,3 -1,8 19,3 

div 40,9 39,5 -0,2 0,0 0,0 
0,
0 40,7 39,5 28,7 28,1 41,2 40,5 

dynamic_node 3,5 2,7 -2,1 5,5 0,0 
0,
2 1,5 8,2 3,5 1,8 4,8 8,1 

ethernet 2,4 2,2 -18,8 14,8 0,0 
0,
1 -16,0 16,7 2,4 2,4 -7,3 20,5 

fir 27,0 24,7 0,0 0,0 0,0 
1,
9 27,0 26,2 10,7 5,2 27,7 26,5 

fpu 26,7 28,3 -1,3 0,4 0,0 
1,
3 25,8 29,5 17,6 15,7 26,8 30,7 

hyp 22,9 22,8 0,0 0,0 0,0 
0,
0 22,9 22,8 1,4 0,3 22,9 22,8 

i2c 9,2 8,9 -7,2 2,7 0,0 
0,
7 2,6 12,0 16,1 14,1 1,9 11,9 

i10 18,0 16,9 -0,8 1,0 0,1 
1,
4 17,4 18,9 19,6 13,1 16,3 20,0 

idft 4,1 4,0 -14,4 13,2 0,0 
0,
1 -9,7 16,7 1,9 1,3 -2,2 19,2 

iir 28,1 26,0 0,0 0,0 0,0 
2,
0 28,1 27,5 19,7 12,6 29,2 28,2 

jpeg 25,3 26,3 0,7 1,9 0,0 
0,
4 25,9 28,0 8,3 4,3 26,2 28,0 

k2 7,6 3,8 0,4 1,4 0,5 
0,
5 8,4 5,6 38,4 -6,6 18,4 

-
30,5 

log2 22,7 26,0 0,0 0,0 0,0 
0,
1 22,7 26,1 8,4 17,1 24,1 35,3 

mainpla 20,2 20,2 -46,3 31,0 0,4 
1,
4 -16,3 45,7 30,7 28,3 -19,4 55,0 

max 0,0 0,0 -1,6 0,2 0,0 
0,
4 -1,6 0,6 0,9 -0,1 -1,3 0,8 

mem_ctrl 9,5 8,8 -23,5 6,5 0,0 
0,
3 -11,7 15,0 40,9 20,7 -10,8 17,0 

multiplier 29,3 29,6 0,0 0,0 0,0 
0,
1 29,3 29,7 9,2 7,8 31,1 30,8 

https://rscf.ru/project/23-21-00313


 

pci 7,5 7,9 -0,3 0,1 0,0 
0,
1 7,2 8,1 6,7 5,8 8,1 8,2 

picosoc 4,2 3,9 -19,8 13,6 0,0 
0,
2 -14,8 17,1 5,6 5,0 -6,6 23,3 

sasc 6,3 5,9 -1,2 5,2 0,0 
0,
0 5,2 10,9 2,4 3,1 5,2 11,0 

sha256 14,8 15,1 0,4 1,4 0,0 
0,
5 15,1 16,7 13,1 14,2 15,6 17,0 

simple_spi 10,9 10,0 -2,7 8,5 0,0 
0,
5 8,5 18,0 8,9 6,9 2,4 20,0 

sin 18,0 20,9 0,0 0,0 0,0 
0,
5 18,0 21,3 6,9 16,5 20,3 33,0 

spi 19,2 22,5 0,1 0,2 0,0 
0,
1 19,3 22,7 21,1 21,4 22,4 24,3 

sqrt 32,4 30,0 0,0 0,0 0,0 
0,
0 32,4 30,0 20,9 21,7 33,3 30,6 

square 19,6 22,1 0,1 1,4 0,0 
0,
4 19,7 23,5 10,0 3,8 23,0 26,4 

ss_pcm 1,8 1,8 -1,0 0,4 0,0 
0,
0 0,8 2,2 1,3 2,2 0,8 2,3 

tinyRocket 18,1 16,6 -9,5 0,7 0,0 
0,
4 10,3 17,4 17,9 15,2 12,2 18,4 

tv80 13,0 15,4 -4,3 1,6 0,1 
0,
9 9,3 17,5 16,7 17,9 8,8 19,3 

usb_phy 9,3 8,9 -1,1 3,2 0,0 
0,
1 8,3 12,0 8,2 7,0 10,0 12,3 

vga_lcd 0,9 0,8 -21,3 15,6 0,0 
0,
0 -20,3 16,3 1,1 1,4 -10,2 20,2 

wb_conmax 2,2 2,8 -2,8 0,9 0,1 
0,
8 -0,4 4,6 5,6 9,1 0,8 5,7 

wb_dma 12,7 5,6 -0,1 0,8 0,0 
0,
0 12,6 6,4 16,8 7,3 14,0 6,5 

 
TABLE II. AVERAGE VALUES OF THE EXPERIMENT RESULTS 

rw rf lr all 3 stage ABC resyn2 m-resyn2 

Area SA Area SA Area SA Area SA 
Are

a SA Area SA 

16,3 16,5 -4,9 4,1 0,1 
0,
4 12,0 20,5 

14,
0 10,9 13,1 

21,
3 
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