
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Structural technology mapping with power

optimization

Anna Fedotova

ISP RAS,

HSE

Moscow, Russia

aafedotova_6@edu.hse.ru

Mikhail Chupilko

ISP RAS,

Plekhanov RUE

 Moscow, Russia

chupilko@ispras.ru

Abstract—The paper is devoted to the implementation of

structural technology mapper — a step of IC design flow based

on standard cells — better (in terms of the results quality) than

existing open-source logic synthesis tools. The main idea is to

match input logic graph with standard cells represented as logic

trees. A distinctive feature of our implementation from existing

structural technology mapping approaches is the possibility to

perform power-oriented optimization using a cost function

based on specifications of physical characteristics of the target

cells. A comparison with a technology mapper used in

OpenLane has been performed on examples from OpenABC-D

dataset.

Keywords— hardware design, integrated circuits, structural

technology mapping, HDL, logic synthesis

I. INTRODUCTION

One of the main stages of VLSI design is logic
synthesis [1] – construction of a logical circuit in terms of a
given set of standard logical cells using an RTL model
represented in a hardware description language (for example,
in the Verilog language [2]). Logic synthesis process contains
the following steps: translation of an RTL model into some
internal representation, logic optimization, technology
mapping into a netlist of standard cells taken from a
technology library (described in the Liberty format [3]). In this
paper, it is proposed to concentrate on the task of technology
mapping of an optimized logic circuit into a netlist of standard
cells.

In modern industrial practice, the problem of technology
mapping is solved by commercial EDAs from Synopsys,
Cadence Design Systems, and Siemens. In addition, it should
be noticed that in existing open source solutions, such as
OpenLane [4], the solving the problem of technology mapping
is conducted by the Yosys [5] and ABC tools [6]. However,
these tools are not able to compete with commercial CAD
systems, since they do not support the design of complex
VLSI circuits: they have restrictions on the size of the
processed input circuits, as well as on considering the timing
characteristics of the synthesized circuits. The typical size of
circuits used in OpenLane does not exceed 10^6 gates.

Since all the open source solutions listed above use
functional mapping, i.e. comparison of parts of an input design
and standard cells using truth tables, it is interesting if it is
possible to improve the characteristics of the technology
mapping by using of structural comparison of standard cells
and parts of the input logic circuit. It is assumed that the basic
framework for developing a technology mapping tool is
provided by ISP RAS, including tools for preparing logical
circuits in internal representation obtained from files in
Verilog format. Ultimately, a technology mapping tool should
be developed that maps better (runs faster and synthesizes
better estimates of netlist characteristics) of the existing open-
source solution used in OpenLane.

The rest of the paper is organized as follows. The second
chapter describes the related work. The third chapter is
devoted to the description of the developed technology
mapping implementation. The forth chapter shows the results
of the experiments. The fifth chapter concludes the paper.

II. RELATED WORK

The proposed in this paper structural mapper
implementation uses approach similar to the one described in
[7], which provides a solution to this problem in terms of
pattern matching, description of technology-specific units,
and optimization against technology-independent circuits
represented as directed acyclic graphs.

In [7] it is suggested to use the Aho-Corasick algorithm to
find the correspondence between input design and standard

cells. Let a set of strings of total length n in the alphabet of

size k be given. Aho-Corasick algorithm builds a prefix tree –
trie for this set of strings, and then builds an automaton using
this tree, which can be used in various string tasks – for
example, to find all occurrences of each string from a given
set in an arbitrary text in linear time [8]. Implementation
described uses Aho-Corasick algorithm to match strings
representing pattern paths with strings representing input
circuit paths.

To the best of our knowledge, there is no more information
on open-source structural technology mappers.

III. SUGGESTED TECHNOLOGY MAPPER

Our implementation receives logical circuits transformed
into the internal representation of the Utopia EDA project [10]
of logic synthesis tool.

The Liberty file is read by the parser into a set of objects
describing library cells, with access by object name or the
entire collection. Then, for each cell, a truth table is built to
organize the query “interface”: truth table -> cell name -> cell
from a set of objects.

 The internal representation uses gates and links to
describe logic circuits. Gate types include: IN – input gates,
OUT – output gates, ZERO – zero value gates, ONE – one
value gates, BUF - buffer gates, AND – and gates, OR – or
gates, XOR – xor gates, MAJ – major gates, NULL – null
gates. The links between gates may or may not be inverted.
The internal representation is used to describe different logical
bases. An implementation of the representation is written in
C++.

The algorithm in [7] (and follow exactly this limitation)
can only match trees – the fanout of each logic gate does not
exceed 1. Thus, it is necessary to transform the input circuit
into a set of a number of trees. The algorithm finds all logic
gates with fanout greater than 1 and makes “cuts” –
unnecessary outgoing edges are removed and a new logic gate

is built in place of the deleted edge – an input and a new edge.
The number of the gates for which the cut was made is saved
for the correct assembly of the mapped trees into a single
circuit after the completion of the algorithm.

The algorithm matches elements from the technology
library with each of the trees in the set. Below, for clear
understanding, it is described how the algorithm operates with
only one tree (it works similarly for all the trees in the set).

The implementation uses a technology library of cells in
Liberty format. Before the algorithm starts running, the cells
from the library are translated into graphs in inner
representation. Thus, all schemas that participate in the
mapping are in inner representation.

Next, the Aho-Corasick algorithm is used. Aho-Corasick
takes as input sets of strings representing circuits. Thus, to
match a schema and a pattern-element of a technology library,
it is necessary to match all the path lines of the pattern with a
certain set of path lines of the input tree.

After all possible tree and library schema mappings have
been found, information about the found mappings is saved.
Dynamic programming is used to find the minimum tree
coverage area (here can work different functions
are based on information from Liberty library). Once the
minimum coverage is found, information about the minimum
coverage is saved. Information about the numbers of the logic
gates of the input circuit, in the place of which each of the
elements of the minimum coverage must be built is also

stored. Thus, after the algorithm has passed through all the
trees, information about all the minimum tree coverages is
collected. Based on information about minimal coverages, a
coverage of the entire input circuit is constructed.

IV. RESULTS OF EXPERIMENTS

We have conducted experiments on 15 designs taken from
OpenABC-D repository [9]). The results (see Table 1) show
that in the major number of cases (including one of the bigger
aes design) we win in the value of power consumption
estimated by OpenLane’s OpenSTA. At the same time, we
lose in area (not dramatically) and in time (the situation here
is worse than with area).

CONCLUSION

The goal of this research is to develop a technology
mapper that would be more effective than existing open-
source solutions in terms of power characteristics; at the same
time it should have been based on structural mapping and
allow to have a cost function based on Liberty technology
library. In this paper we managed to show that it is possible to
solve the task of technology mapping by means of structural
approach and to receive a more efficient output designs
according to the selected power cost function. The future work
is to reduce its operational time, improve area and time values
of the resulting mapping and to research a possibility of
combination of the approach with truth-table-based mapping.

TABLE I. RESULTS OF EXPERIMENTS

Design

name

Vertex / edges

number

Input/
Output

number

Our technology mapper Yosys+ABC

Power,

uW
Area, um2

The worst data

arrival time, ns

Power,

uW
Area, um2

The worst data

arrival time, ns

ac97_ctrl 22 060 / 33 524 4 476 33 400 363 800 9.92 28 100 331 315 7.09

aes 39 215 / 68 140 1 212 6 660 188 356 121.79 14 900 136 239 6.94

des3_area 7 766 / 12 737 367 1 400 39 524 45.28 3 980 23 759 6.68

fir 9 002 / 13 560 761 1 000 38 655 33.8 8 710 33 143 7.51

i2c 2 018 / 3 187 305 629 9 238 15.68 434 5 577 4.58

iir 13 645 / 20 623 935 1 960 59 354 48.63 29 700 48 583 9.81

mem_ctrl 29 814 / 47 906 2 149 37 400 200 908 120.45 7 770 108 764 9.52

pci 38 279 / 57 826 6 586 75 100 670 748 270.7 59 200 620 715 12.24

sasc 1 214 / 1 827 260 354 5 291 8.82 406 3 700 3.32

simple_spi 1 764 / 2 694 296 478 7 754 11.87 484 4 805 3.29

spi 8 311 / 12 530 492 5 270 31 873 1.09 2 080 18 398 6.13

ss_pcm 762 / 1 165 194 278 3 692 8.64 281 2 367 2.19

usb_phy 893 / 1 380 222 219 4 415 5.47 239 2 729 2.43

wb_conmax 81 107 / 128 947 4 197 145 000 599 860 106.56 94 600 461 569 10.35

wb_dma 8 231 / 12 818 1 530 7 220 69 916 29.96 4 290 55 944 7.09

REFERENCES

[1] Kamkin A.S., Smolov S.A., Chupilko M.M. Comparison of open
routes for designing digital equipment: qFlow, OpenLANE, Coriolis,
SymbiFlow. Proceedings of the Institute of System Programming of
the Russian Academy of Sciences. 2021; 33(6): pp. 111-130. DOI:
10.15514/ISPRAS-2021-33(6)-8

[2] IEEE Standard for Verilog Hardware Description Language. IEEE Std
1364-2005, 2006. DOI: 10.1109/IEEESTD.2006.99495

[3] Liberty standard “User Guides and Reference Manual Suite Version
2017.06”

[4] OpenLane. — URL: https://github.com/The-OpenROAD-
Project/OpenLane

[5] Yosys. — URL: https://github.com/YosysHQ/yosys

[6] ABC. — URL: https://github.com/berkeley-abc/abc

[7] Keutzer K. DAGON: Technology Binding and Local Optimization by
DAG Matching // 24th ACM/IEEE Design Automation Conference.
1987: pp. 341-347. DOI: 10.1145/37888.37940

[8] Aho-Corasick algorithm – URL: https://algorithmica.org/ru/aho-
corasick (accessed: 05.02.2024).

[9] https://github.com/NYU-
MLDA/OpenABC/tree/master/bench_openabcd

[10] Utopia EDA project – URL: https://gitlab.ispras.ru/mvg/utopia-eda.git

https://github.com/YosysHQ/yosys
https://github.com/berkeley-abc/abc
https://algorithmica.org/ru/aho-corasick
https://algorithmica.org/ru/aho-corasick
https://github.com/NYU-MLDA/OpenABC/tree/master/bench_openabcd
https://github.com/NYU-MLDA/OpenABC/tree/master/bench_openabcd

