
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE 

Cut-based technology mapper with optimizations 
 

Daniil Garyaev 

ISP RAS 

Plekhanov REU 

Moscow, Russia 

dgaryaev@ispras.ru 

Vladislav Shtrenev 

ISP RAS 

MIEM HSE 

Moscow, Russia 

vsshtrenev@edu.hse.ru

Egor Belin 

ISP RAS 

MIEM HSE 

Moscow, Russia 

esbelin@miem.hse.ru 

 

Grigory Mazov 

ISP RAS 

MIEM HSE 

Moscow, Russia 

gamazov@edu.hse.ru 

Mikhail Chupilko 

ISP RAS 

Plekhanov RUE 

Moscow, Russia 
chupilko@ispras.ru 

Abstract—This paper aims at the problem of construction of 

optimization-oriented technology mapper for logic synthesis. 

We describe our implementation of cut-based technology 

mapper used in our prototype of logic synthesis tool. Our 

implementation supports several optimization strategies: by 

target design area, power, and timing. A comparison with a 

technology mapper used in OpenLane is provided. The 

experiments have been conducted on BENCH descriptions from 

OpenABC-D dataset, showing the selected optimization strategy 

to allow us in majority cases to get the desired characteristics of 

the selected target parameter. 

Keywords—technology mapping, integrated circuits, standard 

cells, optimization 

I. INTRODUCTION 

The process of integrated circuits (ICs) production starts 
from specifications development, which states characteristics 
and functionality the future IC should satisfy. Then, a design 
written in the Verilog or VHDL language is developed. In this 
paper we assume Verilog to be selected. This design should 
be checked against its specification. To conduct such a check, 
one should use functional verification step. When this step is 
done, the process of logic synthesis is started. 

Logic synthesis allows to obtain a technology-mapped 
representation with the specified functionality. The first step 
of logic synthesis is a parsing of Verilog description and 
construction of internal representation in form of graph. One 
of the typically used graphs is so-called AIG. An AIG (And-
Inverter Graph) is a compact graphical representation of 
Boolean functions, consisting of two elements: AND gates 
and inverters. The nodes in the graph represent AND gates, 
which connect through direct edges or through inverted edges 
that signify logical negation. This structure is used for efficient 
circuit optimization and verification. Then this representation 
is undergone logic optimization that can improve the 
effectiveness of a logic circuit based on several criteria. 

After logic optimization, the step of technology mapping 
comes, that is the point of the current paper. It is assumed here 
that the target of the mapping is IC based on standard cells 
(not FPGA). Also, in this research we aim at functional 
mapping, when the input graph representing the desired 
functionality is transformed into new one by means of 
matching truth tables. Our research show that there is a lack 
of optimization-oriented technology mappers and we propose 
our own method to construct them and developed of its 
implementation. 

The paper is organized as follows. The second chapter 
touches upon the related works. The third chapter presents 

some details of our implementation. The next chapter shows 
the results of our experiments and comparison against 
OpenLane’s standard technology mapper. The fifth chapter 
concludes the paper. 

II. RELATED WORK 

Technology mapping in digital circuit design has been 
profoundly influenced by a multitude of scholarly 
contributions, among which the works of Alan Mishchenko 
[1] are of importance. The essence of his algorithm consists in 
the preliminary selection of the best cut (A cut is defined as a 
subset of nodes that isolates a specific portion of the circuit, 
effectively capturing a sub-function within the circuit for 
targeted optimization) for replacement without using the cells 
physical parameters from the technology library. 

Initially, the algorithm computes K-feasible cuts for each 
vertex, with K-feasible referring to a partition of the graph that 
contains no more than K leaves. After establishing these cuts, 
the algorithm processes the vertices in a topological order, 
starting from the primary inputs (PIs) and moving toward the 
primary outputs (POs). In this step, it assesses the depth of all 
cuts for each vertex and selects the cut that minimizes delay, 
which is crucial for the speed optimization of the circuit. 

Subsequent to the timing optimization, the algorithm 
undertakes area recovery to minimize the overall logic gate 
count, thereby optimizing the circuit's area. This is achieved 
through two strategies: using area flow and using exact local 
area. Area flow optimizes the logic sharing between functions, 
while exact local area focuses on minimizing the number of 
gates for individual cuts. 

Once the area recovery is complete, the algorithm selects 
the best cover for the AIG in reverse topological order, from 
the primary outputs back to the primary inputs. This ensures 
that the optimization process does not negatively impact the 
parts of the graph that have already been optimized. 

The final output is a mapped netlist, which provides a 
detailed blueprint of the optimized circuit. This includes 
specific gates and their connections, ready for further 
simulation or fabrication. 

This method is implemented in open-source ABC logic 
optimization tool [2] that works in pair with also open-source 
Yosys logic synthesis tool [3], that is, in order, is the only logic 
synthesizer that is used by open IC design flow OpenLane [4]. 

There are of course some other open-source tools. E.g., 
there is an open-source Mockturtle tool [5]. It is a C++ library 
for logic synthesis and optimization of digital circuits. It 
supports various network representations like AIGs and 



MIGs, and offers a range of optimization techniques. The task 
of technology mapping in the library is solved similarly to 
Mishchenko’s algorithm but with some modifications. For 
instance, in Mockturtle, multi-output cuts are sought [6], and 
algorithms for Boolean and structural matching are combined 
[7]. 

There are some limitations of all the existing algorithms 
that we would like to cover in this paper. E.g., it is impossible 
to run a delay- or area- or power-optimization, as these tools 
allow to run only some optimization from the restricted list 
(say, “area flow”) and the influence on the target 
characteristics is now guaranteed. The aim of our on-going 
research is develop a technology mapping facilities that fix 
this gap by implementing an optimization-with-guarantee 
mapper. 

III. DESCRIPTION OF THE APPROACH 

Our implementation is developed on the base of Utopia 
EDA [8] project, using its internal representation of logic 
graph. Utopia EDA has facilities to construct the internal 
representation out of Verilog and GraphML files (that be 
constructed out of BENCH file). In the description of the 
approach we suppose the internal representation for the 
selected input RTL model to be already constructed and 
premapped to AIG. So, the proposed cut-based technology 
mapper consists of C++ main classes as follows. 

a) Class TechMapper is the main class that manages the 
technology mapping process. This class coordinates actions 
between different subsystem components. Some details of the 
class are as follows. 

- Enum Strategy includes all the names of different 
technology mapping strategies. 

- The TechMapper class constructor receives the path to 
the Liberty library [9] (a standard format in the semiconductor 
industry to describe the timing and power characteristics of 
electronic components, such as standard cells and complex 
cells in integrated circuits) to call Utopia EDA’s Liberty 
parser, the technology mapping strategy (Strategy), the SDC 
class consisting of physical constraints for the circuit 
mapping. 

- Method techmap executes the mapping process using 
provided input vertexes and links between them in the input 
representation format. 

b) Class CombMapper defines the basic interface for all 
technology mappers, providing template methods for their 
implementation. Some details of the class are as follows. 

- Method mapping is responsible for itself mapping of 
internal representation vertex to Liberty cells. 

- Struct BestReplacement is used by mapping() to store the 
selected “the most effective cells” for each input 
representation vertex within the initial circuit. 

c) Class Assembly is responsible for assembling the final 
result from individually mapped components. 

- Method assemble() combines mapped components into a 
single output format or structure. 

The interaction between the components above is done in 
the following way. 

1) Initialization: TechMapper initializes the process by 
loading configurations and input data. 

2) Mapping: Using an implementation of TechMapper 
following the interface provided by BaseMapper, input data 
components are iterated over to be found the most suitable 
mapping (using an instance of BestReplacement). 

3) Assembly: After each input component have been 
mapped, Assembly compiles the mapped model in the Utopia 
EDA’s internal representation. This mapped model can be 
printed by Utopia EDA’s Verilog printer. 

4) Finalization: TechMapper concludes the process, 
saving results and performing cleanup. 

The following three subchapter reveals our approaches to 
development of BaseMapper’s inheritances aimed to power, 
area, and delay optimizations. 

1. Power-targeted optimization 

It is commonly known that the most power dissipation in 
ICs is due to dynamic power and can be characterized by the 
equation [10]: 

𝑃𝑑𝑦𝑛𝑎𝑚𝑖𝑐 =
1

2
𝑓 ∙ 𝑉2 ∑ 𝐶𝑖 ∙

𝑖𝜖𝑠𝑖𝑔𝑛𝑎𝑙𝑠

𝑠𝑖 

where f is the clock frequency, V the supply voltage, Ci the 
capacitance switched by signal i, and si is the probability of 
signal i making 0 to 1 or 1 to 0 transitions. The general idea of 
our mapping strategy is to reduce total switching activity (i.e. 
the number of switches) in the mapped network. 

The main metric that is used in our approach to optimize 
power consumption is Switching flow (that correlates with 
Mischenko’s paper [10]) and it is defined as follows: 

𝑆𝑤𝑖𝑡𝑐ℎ𝐹𝑙𝑜𝑤(𝑛) = 𝑆𝑤𝑖𝑡𝑐ℎ(𝑛) +  ∑
𝑆𝑤𝑖𝑡𝑐ℎ𝐹𝑙𝑜𝑤(𝐿𝑒𝑎𝑓𝑖(𝑛))

𝑁𝑢𝑚𝐹𝑎𝑛𝑜𝑢𝑡(𝐿𝑒𝑎𝑓𝑖(𝑛))
𝑖

 

where Leafi(n) is the i-th leaf of the representative cut of a 
vertex n and NumFanouts(Leafi(n)) is the number of fanouts 
of a vertex Leafi(n) in the currently selected mapping. 
Switch(n) is the total switching activity at the output of vertex 
n, computed with simulation. 

The power optimization strategy is described in class 
PowerMap which is inherited from CutBaseMapper (that is 
inherited in its order from BaseMapper). PowerMap 
implements the findBest method. The findBest method makes 
one pass in topological order over internal representation 
graph and incrementally computes two metrics SwitchFlow 
and AreaFlow (described in section 2) for each cut of the 
considered vertex. When comparing two cuts, their switch 
flows are compared first, and area flow is used as a tie-breaker. 
For the best cut the technology cell is chosen from the sky130 
[4] library. The mapper chooses the technology cell among 
those having the required by the cut truth table, and having the 
minimal CellPower which is computed as follows: 

𝐶𝑒𝑙𝑙𝑃𝑜𝑤𝑒𝑟(𝑐𝑒𝑙𝑙) = ∑ 𝑟𝑃𝑜𝑤𝑒𝑟(𝑝𝑖𝑛𝑖(𝑐𝑒𝑙𝑙)) ∙ 𝑟𝑆𝑤𝑖𝑡𝑐ℎ(𝑝𝑖𝑛𝑖(𝑐𝑒𝑙𝑙))

𝑖

+ 𝑓𝑃𝑜𝑤𝑒𝑟(𝑝𝑖𝑛𝑖(𝑐𝑒𝑙𝑙)) ∙ 𝑓𝑆𝑤𝑖𝑡𝑐ℎ(𝑝𝑖𝑛𝑖(𝑐𝑒𝑙𝑙))  

where 𝑟𝑃𝑜𝑤𝑒𝑟(𝑝𝑖𝑛𝑖(𝑐𝑒𝑙𝑙))  is power that dissipates when 

happens 0 to 1 transition on i-th pin of the cell,  

𝑓𝑃𝑜𝑤𝑒𝑟(𝑝𝑖𝑛𝑖(𝑐𝑒𝑙𝑙))  is the opposite. These values are 

derived from technology library. 𝑟𝑆𝑤𝑖𝑡𝑐ℎ(𝑝𝑖𝑛𝑖(𝑐𝑒𝑙𝑙))  and 



𝑓𝑆𝑤𝑖𝑡𝑐ℎ(𝑝𝑖𝑛𝑖(𝑐𝑒𝑙𝑙)) denotes the number of 0 to 1 and 1 to 0 

transitions respectively. This way the findBest method finds 
techCells for each internal representation graph vertex and 
stores them in an instance of BestReplacement. 

2. Area-targeted optimization 

Considering each inner vertex v, we choose the best one 
among all cones with a root in v that we can match to an 
element of the technology library. The best cone is the cone 
with the minimum 𝐴𝑟𝑒𝑎𝐹𝑙𝑜𝑤  among the other cones of the 
selected vertex (that correlates with papers [10] and [11). The 
cone corresponds to a vertex in the mapped net and the 
𝐴𝑟𝑒𝑎𝐹𝑙𝑜𝑤 is calculated using the formula: 

𝐴𝑟𝑒𝑎𝐹𝑙𝑜𝑤(𝑣) = 𝐴𝑣 + ∑
𝐴𝑟𝑒𝑎𝐹𝑙𝑜𝑤(ℎ𝑒𝑎𝑑(𝑖))

|𝑜𝑒𝑑𝑔𝑒(ℎ𝑒𝑎𝑑(𝑖))|𝑖∈iedges(v) , 

where 𝐴𝑣 is equal to the area of the technical library cell 
that we have mapped to the cone in question, 𝐴𝑣  = 0 for 

PIs/POs. 
𝑖𝑒𝑑𝑔𝑒𝑠(𝑣)

𝑜𝑒𝑑𝑔𝑒𝑠(𝑣)
 are the sets of incoming/outgoing edges for 

vertex v, ℎ𝑒𝑎𝑑(𝑒) is the vertex from which edge 𝑒 exits. 

This strategy is implemented similar to PowerMap class. 
For each vertex it selects the matching technology cell which 
has minimal area in sky130 library and leads to reducing the 
total area of mapped net. 

3. Time-targeted optimization 

The main idea to make time-targeted strategy is to rely on 
so-called “Wire-Load Models” (WLM) [12], which are based 
on some heuristic models developed on the basis of previously 
carried out physical synthesis runs for various other circuits. 
Note that the most accurate information about the circuit delay 
appears after the physical synthesis stage. 

Currently, one can find several WLMs in the public 
domain, which are presented in the Liberty format. Note that 
after 2001-2002, the main commercial tools began to use 
WLMs, described in their own internal formats, taking into 
account the results of physical synthesis [13]. In this paper we 
use WLM provided with sky130 technology library. This 
model is shown in listing 1. 

Listing 1. Sky130 WLM 
wire_load("sky130") { 

      capacitance : 1.42e-05; 

      resistance : 0.0745; 

      slope : 8.3631; 

      fanout_length( 1, 23.2746); 

      fanout_length( 2, 32.1136); 

      fanout_length( 3, 48.4862); 

      fanout_length( 4, 64.0974); 

      fanout_length( 5, 86.2649); 

      fanout_length( 6, 84.2649); 

    } 

The parameters here are capacitance and resistance, taken 
from DEF files describing the characteristics of metal used in 
the given technology. 

To optimize the time values of the synthesized circuit, the 
Wire-Load Model and Non-Linear Delay Model are used. The 
first one provides the physical characteristics of the circuit 
lines, i.e. resistance and capacitance, depending on the number 
of fanouts for calculating the wire delay and in the cell itself. 
Non-Linear Delay Model is used to calculate the delay values 
exactly inside the cell, based on data from LookUp Tables 
stored in Liberty format, and using interpolation from the 
values obtained from these tables. 

These two models have been implemented as a time 
estimation module. In turn, this module is used in the delay 
strategy in terms of CutBasedMapper. It selects a сut and a 
matching technology cell based on the delay derived from the 
time-estimation module. 

IV. EXPERIMENTS RESULTS 

The idea of our experiments is to check what is the 
difference between results of our techmappers (optimization-
oriented implementations of a class CutBaseMapper) and the 
basic techmapper for OpenLane (Yosys working under 
OpenLane’s AREA0 strategy; the name of strategy here 
denotes a long set of logic optimizations called in ABC and 
Yosys to be performed under the target design). 

We made several experiments, using nineteen BENCH (in 
GraphML format) descriptions from OpenABC-D [14] 
dataset as input circuits for technology mapping. We derived 
the estimations for the worst arrival time (referred to as 
'delay'), area, and power based solely on the results of 
placement and routing, without conducting the other steps of 
physical synthesis. 

Given that this research is ongoing, the current findings are 
primarily focused on power optimization. Table 1 shows that 
in most cases our “power” strategy allows to get the resulted 
design better that those received from Yosys in terms of its 
power consumption. The area optimization should have the 
similar story because it is based on the similar idea (AreaFlow 
algorithm with selection of the best cell from the point of view 
of its physical characteristics). The timing strategy results is a 
priory dependent on the adequacy of the WLM model used 
and here more experiments are needed. 

CONCLUSION 

We have developed an implementation of the cut-based 
approach to technology mapping based on Utopia-EDA 
project. In the experiments conducted using some examples 
from OpenABC-D, we generated netlists composed of 
technology cells by means of our implementation, by 
Yosys+ABC, estimate their characteristics by means of 
OpenLane and compare them. The characteristics of the 
netlists estimated by OpenLane are similar to those in the 
netlists generated by Yosys+ABC, regardless of whether logic 
optimization is enabled or disabled in Yosys+ABC. The future 
work in our research is to use logic-level optimizations in 
Utopia EDA, improve the implementation's performance and 
improve our results in data arrival time. 

REFERENCES 

[1] A. Mishchenko, Sungmin Cho, Satrajit Chatterjee, and R. Brayton, 
“Combinational and sequential mapping with priority cuts,” in Proc. 
ICCAD, 2007. 

[2] ABC tool – URL: https://people.eecs.berkeley.edu/~alanmi/abc/ 
[3] YOSYS tool – URL: https://github.com/YosysHQ/yosys 
[4] OpenLane tool – URL: https://github.com/The-OpenROAD-

Project/OpenLane 
[5] Mockturtle tool – URL: https://github.com/lsils/mockturtle 
[6] A. T. Calvino and G. De Micheli, “Technology mapping using 

multioutput library cells,” Proc. ICCAD, 2023. 
[7] G. Radi, A. Tempia Calvino, and G. De Micheli, “In Medio Stat Virtus: 

Combining Boolean and Pattern Matching,” ASP-DAC, 2024. 

[8] Utopia EDA. - URL:  https://gitlab.ispras.ru/mvg/utopia-eda 

[9] Liberty standard “User Guides and Reference Manual Suite Version 
2017.06” 

https://people.eecs.berkeley.edu/~alanmi/abc/
https://github.com/YosysHQ/yosys
https://github.com/The-OpenROAD-Project/OpenLane
https://github.com/The-OpenROAD-Project/OpenLane
https://github.com/lsils/mockturtle
https://gitlab.ispras.ru/mvg/utopia-eda


[10] A. Mishchenko, R. Brayton, S. Jang, K. Chung. A power optimization 
toolbox for logic synthesis and mapping. Proc. IWLS'09, pp. 1-8. 

[11] V. Manohara-rajah, S. D. Brown, and Z. G. Vranesic, “Heuristics for 
area minimization in LUT-based FPGA technology mapping,” Proc. 
IWLS’04, pp. 14-21. 

[12] Golson S. Resistance is Futile! Building Better Wireload Models // 
Proceedings of SNUG’99, pp. 1-18, 1999. 

[13] Digital VLSI Chip Design with Cadence and Synopsys CAD Tools. 
Example Liberty File. – URL: 
https://users.cs.utah.edu/~elb/cadbook/Chapters/AppendixC/example.
lib.txt. 

[14] OpenABC-D test set – URL: https://github.com/NYU-
MLDA/OpenABC/tree/master/bench_openabcd data set: designs in 
BENCH format 

 

TABLE I.  COMPARISON OF POWER-AREA-DELAY IN EXPERIMENTS 

Design name 

Vertex / 

edges 

number 

Input/Output 

number 

Estimation of power consumption, target area and max data arrival 

time for different strategies 

Power-opts Area-opts Delay-opts Yosys+ABC 

ac97_ctrl 
22 060 / 
33 524 

4 476 

19 300 uW 19 000 uW 32 900 uW 28 100 uW 

328 032 um2 326 961 um2 419 108 um2 331 315 um2 

26.27 ns 9.72 ns 8.59 ns 7.09 ns 

aes 
39 215 / 

68 140 
1 212 

12 400 uW 16 900 uW 19 900 uW 14 900 uW 

120 810 um2 117 311 um2 251 973 um2 136 239 um2 

198.20 ns 70.76 ns 161.53 ns 6.94 ns 

des3_area_orig 
7 766 / 

12 737 
367 

636 uW 1 460 uW 1 870 uW 3 980 uW 

19 774 um2 18 742 um2 41 910 um2 23 759 um2 

3.33 ns 9.84 ns 46.07 ns 6.68 ns 

dynamic_node 
33 761 / 

51 855 
5 283 

55 500 uW 58 800 uW 143 000 uW 40 600 uW 

408 776 um2 406 698 um2 550 712 um2 417 902 um2 

98.01 ns 51.86 ns 433.43 ns 10.88 ns 

fir 
9 002 / 
13 560 

761 

1 640 uW 810 uW 3 630 uW 8 710 uW 

28 263 um2 26 853 um2 56 982 um2 33 143 um2 

55.56 ns 55.15 ns 2.77 ns 7.51 ns 

fpu 
55 935 / 
85 558 

1 041 

19 900 uW 12 700 uW n/a n/a 

138 358 um2 135 185 um2 n/a n/a 

286.47 ns 256.75 ns n/a n/a 

i2c 2 018 / 3 187 305 

384 uW 374 uW 622 uW 434 uW 

5478 um2 5 251 um2 10 774 um2 5 577 um2 

12.81 ns 12.16 ns 16.33 ns 4.58 ns 

iir 
13 645 / 

20 623 
935 

2260 uW 1 300 uW 6 040 uW 29 700 uW 

44 013 um2 42 555 um2 87 393 um2 48 583 um2 

23.95 ns 31.99 ns 58.50 ns 9.81 ns 

mem_ctrl 
29 814 / 
47 906 

2 149 

18 200 uW 14 700 uW 25 000 uW 7 770 uW 

135 944 um2 133 123 um2 229 775 um2 108 764 um2 

273.24 ns 225.64 ns 246.06 ns 9.52 ns 

pci 
38 279 / 
57 826 

6 586 

38 100 uW 37 100 uW 69 600 uW 59 200 uW 

619 649 um2 616 840 um2 773 795 um2 620 715 um2 

165.68 ns 216.26 ns 230.85 ns 12.24 ns 

sasc 1 214 / 1 827 260 

197 uW 191 uW 419 uW 406 uW 

3 269 um2 3 221 um2 8 523 um2 3 700 um2 

3.80 ns 4.36 ns 10.02 ns 3.32 ns 

sha256 
28 691 / 

44 507 
2 985 

64 800 uW n/a 92 700 uW 36 300 uW 

176 200 um2 n/a 235 301 um2 174 664 um2 

376.55 ns n/a 208.07 ns 11.29 ns 

simple_spi 1 764 / 2 694 296 

306 uW 330 uW 547 uW 484 uW 

4 673 um2 4 622 um2 10 729 um2 4 805 um2 

10.59 ns 11.64 ns 11.93 ns 3.29 ns 

spi 
8 311 / 
12 530 

492 

4 590 uW 8 109 uW 17 000 uW 2 080 uW 

22 024 um2 19 979 um2 43 450 um2 18 398 um2 

36.88 ns 28.34 ns 67.72 ns 6.13 ns 

ss_pcm 762 / 1 165 194 

124 uW 150 uW 208 uW 281 uW 

2 186 um2 2 136 um2 4 516 um2 2 367 um2 

2.28 ns 5.28 ns 8.26 ns 2.19 ns 

tv80 
19 241 / 

30 569 
997 

8 740 uW 9 250 uW 13 700 uW 5 160 uW 

62 451 um2 59 359 um2 114 158 um2 55 543 um2 

157.37 ns 197.53 ns 254.95 ns 8.60 ns 

usb_phy 893 / 1 380 222 

172 uW 180 uW 260 uW 239 uW 

2 576 um2 2 530 um2 5 235 um2 2 729 um2 

8.46 ns 8.62 ns 9.81 ns 2.43 ns 

wb_conmax 
81 107 / 
128 947 

4 197 

121 000 uW 98 500 uW 181 000 uW 94 600 uW 

440 237 um2 434 118 um2 705 276 um2 461 569 um2 

214.48 ns 336.64 ns 169.63 ns 10.35 ns 

wb_dma 
8 231 / 
12 818 

1 530 

4 860 uW 4980 uW 7 410 uW 4 290 uW 

56 335 um2 55 792 um2 88 552 um2 55 944 um2 

35.23 ns 63.23 ns 24.71 ns 7.09 ns 

 

 

https://users.cs.utah.edu/~elb/cadbook/Chapters/AppendixC/example.lib.txt
https://users.cs.utah.edu/~elb/cadbook/Chapters/AppendixC/example.lib.txt
https://github.com/NYU-MLDA/OpenABC/tree/master/bench_openabcd%20data%20set:%20designs%20in%20BENCH%20format
https://github.com/NYU-MLDA/OpenABC/tree/master/bench_openabcd%20data%20set:%20designs%20in%20BENCH%20format
https://github.com/NYU-MLDA/OpenABC/tree/master/bench_openabcd%20data%20set:%20designs%20in%20BENCH%20format

